Properties

Label 441.7.b.a.197.2
Level $441$
Weight $7$
Character 441.197
Analytic conductor $101.454$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,7,Mod(197,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.197"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 441.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-196,0,0,0,0,0,1620] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(101.453850876\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 197.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 441.197
Dual form 441.7.b.a.197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.7279i q^{2} -98.0000 q^{4} -63.6396i q^{5} -432.749i q^{8} +810.000 q^{10} -865.499i q^{11} -344.000 q^{13} -764.000 q^{16} +7140.36i q^{17} +2320.00 q^{19} +6236.68i q^{20} +11016.0 q^{22} +5753.02i q^{23} +11575.0 q^{25} -4378.41i q^{26} +23152.1i q^{29} +10564.0 q^{31} -37420.1i q^{32} -90882.0 q^{34} -24082.0 q^{37} +29528.8i q^{38} -27540.0 q^{40} +108836. i q^{41} -90952.0 q^{43} +84818.9i q^{44} -73224.0 q^{46} -128959. i q^{47} +147326. i q^{50} +33712.0 q^{52} -196685. i q^{53} -55080.0 q^{55} -294678. q^{58} -39812.9i q^{59} -251138. q^{61} +134458. i q^{62} +427384. q^{64} +21892.0i q^{65} -216088. q^{67} -699756. i q^{68} +53915.5i q^{71} +308176. q^{73} -306514. i q^{74} -227360. q^{76} -540124. q^{79} +48620.7i q^{80} -1.38526e6 q^{82} -932346. i q^{83} +454410. q^{85} -1.15763e6i q^{86} -374544. q^{88} -223413. i q^{89} -563796. i q^{92} +1.64138e6 q^{94} -147644. i q^{95} +37168.0 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 196 q^{4} + 1620 q^{10} - 688 q^{13} - 1528 q^{16} + 4640 q^{19} + 22032 q^{22} + 23150 q^{25} + 21128 q^{31} - 181764 q^{34} - 48164 q^{37} - 55080 q^{40} - 181904 q^{43} - 146448 q^{46} + 67424 q^{52}+ \cdots + 74336 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 12.7279i 1.59099i 0.605960 + 0.795495i \(0.292789\pi\)
−0.605960 + 0.795495i \(0.707211\pi\)
\(3\) 0 0
\(4\) −98.0000 −1.53125
\(5\) − 63.6396i − 0.509117i −0.967057 0.254558i \(-0.918070\pi\)
0.967057 0.254558i \(-0.0819301\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) − 432.749i − 0.845214i
\(9\) 0 0
\(10\) 810.000 0.810000
\(11\) − 865.499i − 0.650262i −0.945669 0.325131i \(-0.894592\pi\)
0.945669 0.325131i \(-0.105408\pi\)
\(12\) 0 0
\(13\) −344.000 −0.156577 −0.0782886 0.996931i \(-0.524946\pi\)
−0.0782886 + 0.996931i \(0.524946\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −764.000 −0.186523
\(17\) 7140.36i 1.45336i 0.686975 + 0.726681i \(0.258938\pi\)
−0.686975 + 0.726681i \(0.741062\pi\)
\(18\) 0 0
\(19\) 2320.00 0.338242 0.169121 0.985595i \(-0.445907\pi\)
0.169121 + 0.985595i \(0.445907\pi\)
\(20\) 6236.68i 0.779585i
\(21\) 0 0
\(22\) 11016.0 1.03456
\(23\) 5753.02i 0.472838i 0.971651 + 0.236419i \(0.0759738\pi\)
−0.971651 + 0.236419i \(0.924026\pi\)
\(24\) 0 0
\(25\) 11575.0 0.740800
\(26\) − 4378.41i − 0.249113i
\(27\) 0 0
\(28\) 0 0
\(29\) 23152.1i 0.949284i 0.880179 + 0.474642i \(0.157422\pi\)
−0.880179 + 0.474642i \(0.842578\pi\)
\(30\) 0 0
\(31\) 10564.0 0.354604 0.177302 0.984157i \(-0.443263\pi\)
0.177302 + 0.984157i \(0.443263\pi\)
\(32\) − 37420.1i − 1.14197i
\(33\) 0 0
\(34\) −90882.0 −2.31228
\(35\) 0 0
\(36\) 0 0
\(37\) −24082.0 −0.475431 −0.237715 0.971335i \(-0.576399\pi\)
−0.237715 + 0.971335i \(0.576399\pi\)
\(38\) 29528.8i 0.538139i
\(39\) 0 0
\(40\) −27540.0 −0.430312
\(41\) 108836.i 1.57915i 0.613655 + 0.789574i \(0.289698\pi\)
−0.613655 + 0.789574i \(0.710302\pi\)
\(42\) 0 0
\(43\) −90952.0 −1.14395 −0.571975 0.820271i \(-0.693822\pi\)
−0.571975 + 0.820271i \(0.693822\pi\)
\(44\) 84818.9i 0.995714i
\(45\) 0 0
\(46\) −73224.0 −0.752281
\(47\) − 128959.i − 1.24211i −0.783768 0.621054i \(-0.786705\pi\)
0.783768 0.621054i \(-0.213295\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 147326.i 1.17861i
\(51\) 0 0
\(52\) 33712.0 0.239759
\(53\) − 196685.i − 1.32112i −0.750773 0.660561i \(-0.770319\pi\)
0.750773 0.660561i \(-0.229681\pi\)
\(54\) 0 0
\(55\) −55080.0 −0.331059
\(56\) 0 0
\(57\) 0 0
\(58\) −294678. −1.51030
\(59\) − 39812.9i − 0.193851i −0.995292 0.0969255i \(-0.969099\pi\)
0.995292 0.0969255i \(-0.0309009\pi\)
\(60\) 0 0
\(61\) −251138. −1.10643 −0.553214 0.833039i \(-0.686599\pi\)
−0.553214 + 0.833039i \(0.686599\pi\)
\(62\) 134458.i 0.564171i
\(63\) 0 0
\(64\) 427384. 1.63034
\(65\) 21892.0i 0.0797161i
\(66\) 0 0
\(67\) −216088. −0.718466 −0.359233 0.933248i \(-0.616962\pi\)
−0.359233 + 0.933248i \(0.616962\pi\)
\(68\) − 699756.i − 2.22546i
\(69\) 0 0
\(70\) 0 0
\(71\) 53915.5i 0.150639i 0.997159 + 0.0753197i \(0.0239977\pi\)
−0.997159 + 0.0753197i \(0.976002\pi\)
\(72\) 0 0
\(73\) 308176. 0.792192 0.396096 0.918209i \(-0.370365\pi\)
0.396096 + 0.918209i \(0.370365\pi\)
\(74\) − 306514.i − 0.756406i
\(75\) 0 0
\(76\) −227360. −0.517933
\(77\) 0 0
\(78\) 0 0
\(79\) −540124. −1.09550 −0.547750 0.836642i \(-0.684515\pi\)
−0.547750 + 0.836642i \(0.684515\pi\)
\(80\) 48620.7i 0.0949622i
\(81\) 0 0
\(82\) −1.38526e6 −2.51241
\(83\) − 932346.i − 1.63058i −0.579051 0.815291i \(-0.696577\pi\)
0.579051 0.815291i \(-0.303423\pi\)
\(84\) 0 0
\(85\) 454410. 0.739931
\(86\) − 1.15763e6i − 1.82001i
\(87\) 0 0
\(88\) −374544. −0.549610
\(89\) − 223413.i − 0.316912i −0.987366 0.158456i \(-0.949348\pi\)
0.987366 0.158456i \(-0.0506516\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) − 563796.i − 0.724033i
\(93\) 0 0
\(94\) 1.64138e6 1.97618
\(95\) − 147644.i − 0.172205i
\(96\) 0 0
\(97\) 37168.0 0.0407243 0.0203622 0.999793i \(-0.493518\pi\)
0.0203622 + 0.999793i \(0.493518\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.13435e6 −1.13435
\(101\) − 559787.i − 0.543323i −0.962393 0.271662i \(-0.912427\pi\)
0.962393 0.271662i \(-0.0875732\pi\)
\(102\) 0 0
\(103\) −1.46018e6 −1.33627 −0.668136 0.744039i \(-0.732907\pi\)
−0.668136 + 0.744039i \(0.732907\pi\)
\(104\) 148866.i 0.132341i
\(105\) 0 0
\(106\) 2.50339e6 2.10189
\(107\) − 1.29031e6i − 1.05327i −0.850090 0.526637i \(-0.823453\pi\)
0.850090 0.526637i \(-0.176547\pi\)
\(108\) 0 0
\(109\) −1.43548e6 −1.10845 −0.554227 0.832366i \(-0.686986\pi\)
−0.554227 + 0.832366i \(0.686986\pi\)
\(110\) − 701054.i − 0.526712i
\(111\) 0 0
\(112\) 0 0
\(113\) − 186426.i − 0.129202i −0.997911 0.0646012i \(-0.979422\pi\)
0.997911 0.0646012i \(-0.0205775\pi\)
\(114\) 0 0
\(115\) 366120. 0.240730
\(116\) − 2.26890e6i − 1.45359i
\(117\) 0 0
\(118\) 506736. 0.308415
\(119\) 0 0
\(120\) 0 0
\(121\) 1.02247e6 0.577159
\(122\) − 3.19646e6i − 1.76032i
\(123\) 0 0
\(124\) −1.03527e6 −0.542987
\(125\) − 1.73100e6i − 0.886271i
\(126\) 0 0
\(127\) −127060. −0.0620294 −0.0310147 0.999519i \(-0.509874\pi\)
−0.0310147 + 0.999519i \(0.509874\pi\)
\(128\) 3.04482e6i 1.45189i
\(129\) 0 0
\(130\) −278640. −0.126827
\(131\) − 2.62348e6i − 1.16698i −0.812120 0.583490i \(-0.801687\pi\)
0.812120 0.583490i \(-0.198313\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) − 2.75035e6i − 1.14307i
\(135\) 0 0
\(136\) 3.08999e6 1.22840
\(137\) 202310.i 0.0786785i 0.999226 + 0.0393393i \(0.0125253\pi\)
−0.999226 + 0.0393393i \(0.987475\pi\)
\(138\) 0 0
\(139\) −2.02642e6 −0.754546 −0.377273 0.926102i \(-0.623138\pi\)
−0.377273 + 0.926102i \(0.623138\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −686232. −0.239666
\(143\) 297732.i 0.101816i
\(144\) 0 0
\(145\) 1.47339e6 0.483297
\(146\) 3.92244e6i 1.26037i
\(147\) 0 0
\(148\) 2.36004e6 0.728004
\(149\) 4.25534e6i 1.28640i 0.765699 + 0.643199i \(0.222393\pi\)
−0.765699 + 0.643199i \(0.777607\pi\)
\(150\) 0 0
\(151\) 3.74035e6 1.08638 0.543189 0.839610i \(-0.317217\pi\)
0.543189 + 0.839610i \(0.317217\pi\)
\(152\) − 1.00398e6i − 0.285886i
\(153\) 0 0
\(154\) 0 0
\(155\) − 672289.i − 0.180535i
\(156\) 0 0
\(157\) 2.38813e6 0.617105 0.308552 0.951207i \(-0.400155\pi\)
0.308552 + 0.951207i \(0.400155\pi\)
\(158\) − 6.87466e6i − 1.74293i
\(159\) 0 0
\(160\) −2.38140e6 −0.581396
\(161\) 0 0
\(162\) 0 0
\(163\) −6.74519e6 −1.55751 −0.778756 0.627327i \(-0.784149\pi\)
−0.778756 + 0.627327i \(0.784149\pi\)
\(164\) − 1.06660e7i − 2.41807i
\(165\) 0 0
\(166\) 1.18668e7 2.59424
\(167\) 6.61699e6i 1.42073i 0.703834 + 0.710364i \(0.251470\pi\)
−0.703834 + 0.710364i \(0.748530\pi\)
\(168\) 0 0
\(169\) −4.70847e6 −0.975484
\(170\) 5.78370e6i 1.17722i
\(171\) 0 0
\(172\) 8.91330e6 1.75167
\(173\) 5.58077e6i 1.07784i 0.842356 + 0.538922i \(0.181168\pi\)
−0.842356 + 0.538922i \(0.818832\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 661241.i 0.121289i
\(177\) 0 0
\(178\) 2.84359e6 0.504204
\(179\) 4.87103e6i 0.849301i 0.905357 + 0.424650i \(0.139603\pi\)
−0.905357 + 0.424650i \(0.860397\pi\)
\(180\) 0 0
\(181\) −8.47546e6 −1.42931 −0.714657 0.699475i \(-0.753417\pi\)
−0.714657 + 0.699475i \(0.753417\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.48962e6 0.399649
\(185\) 1.53257e6i 0.242050i
\(186\) 0 0
\(187\) 6.17998e6 0.945066
\(188\) 1.26380e7i 1.90198i
\(189\) 0 0
\(190\) 1.87920e6 0.273976
\(191\) 97037.7i 0.0139264i 0.999976 + 0.00696322i \(0.00221648\pi\)
−0.999976 + 0.00696322i \(0.997784\pi\)
\(192\) 0 0
\(193\) 7.49473e6 1.04252 0.521260 0.853398i \(-0.325462\pi\)
0.521260 + 0.853398i \(0.325462\pi\)
\(194\) 473071.i 0.0647920i
\(195\) 0 0
\(196\) 0 0
\(197\) − 9.84656e6i − 1.28791i −0.765063 0.643956i \(-0.777292\pi\)
0.765063 0.643956i \(-0.222708\pi\)
\(198\) 0 0
\(199\) −3.54170e6 −0.449420 −0.224710 0.974426i \(-0.572144\pi\)
−0.224710 + 0.974426i \(0.572144\pi\)
\(200\) − 5.00907e6i − 0.626134i
\(201\) 0 0
\(202\) 7.12492e6 0.864422
\(203\) 0 0
\(204\) 0 0
\(205\) 6.92631e6 0.803971
\(206\) − 1.85851e7i − 2.12600i
\(207\) 0 0
\(208\) 262816. 0.0292053
\(209\) − 2.00796e6i − 0.219946i
\(210\) 0 0
\(211\) −6.77298e6 −0.720996 −0.360498 0.932760i \(-0.617393\pi\)
−0.360498 + 0.932760i \(0.617393\pi\)
\(212\) 1.92751e7i 2.02297i
\(213\) 0 0
\(214\) 1.64229e7 1.67575
\(215\) 5.78815e6i 0.582404i
\(216\) 0 0
\(217\) 0 0
\(218\) − 1.82707e7i − 1.76354i
\(219\) 0 0
\(220\) 5.39784e6 0.506935
\(221\) − 2.45629e6i − 0.227563i
\(222\) 0 0
\(223\) 3.34186e6 0.301352 0.150676 0.988583i \(-0.451855\pi\)
0.150676 + 0.988583i \(0.451855\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.37281e6 0.205560
\(227\) − 1.62013e7i − 1.38507i −0.721385 0.692535i \(-0.756494\pi\)
0.721385 0.692535i \(-0.243506\pi\)
\(228\) 0 0
\(229\) 1.66351e7 1.38522 0.692611 0.721311i \(-0.256460\pi\)
0.692611 + 0.721311i \(0.256460\pi\)
\(230\) 4.65995e6i 0.382999i
\(231\) 0 0
\(232\) 1.00191e7 0.802348
\(233\) − 8.85600e6i − 0.700116i −0.936728 0.350058i \(-0.886162\pi\)
0.936728 0.350058i \(-0.113838\pi\)
\(234\) 0 0
\(235\) −8.20692e6 −0.632378
\(236\) 3.90167e6i 0.296834i
\(237\) 0 0
\(238\) 0 0
\(239\) − 1.12995e7i − 0.827689i −0.910348 0.413845i \(-0.864186\pi\)
0.910348 0.413845i \(-0.135814\pi\)
\(240\) 0 0
\(241\) −1.50090e7 −1.07226 −0.536129 0.844136i \(-0.680114\pi\)
−0.536129 + 0.844136i \(0.680114\pi\)
\(242\) 1.30140e7i 0.918255i
\(243\) 0 0
\(244\) 2.46115e7 1.69422
\(245\) 0 0
\(246\) 0 0
\(247\) −798080. −0.0529609
\(248\) − 4.57156e6i − 0.299716i
\(249\) 0 0
\(250\) 2.20320e7 1.41005
\(251\) − 3.04076e7i − 1.92292i −0.274950 0.961458i \(-0.588661\pi\)
0.274950 0.961458i \(-0.411339\pi\)
\(252\) 0 0
\(253\) 4.97923e6 0.307469
\(254\) − 1.61721e6i − 0.0986882i
\(255\) 0 0
\(256\) −1.14017e7 −0.679595
\(257\) 1.97422e7i 1.16305i 0.813530 + 0.581523i \(0.197543\pi\)
−0.813530 + 0.581523i \(0.802457\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) − 2.14542e6i − 0.122065i
\(261\) 0 0
\(262\) 3.33914e7 1.85666
\(263\) 3.48531e6i 0.191591i 0.995401 + 0.0957954i \(0.0305394\pi\)
−0.995401 + 0.0957954i \(0.969461\pi\)
\(264\) 0 0
\(265\) −1.25169e7 −0.672605
\(266\) 0 0
\(267\) 0 0
\(268\) 2.11766e7 1.10015
\(269\) − 5.65391e6i − 0.290464i −0.989398 0.145232i \(-0.953607\pi\)
0.989398 0.145232i \(-0.0463928\pi\)
\(270\) 0 0
\(271\) −2.91893e7 −1.46662 −0.733308 0.679897i \(-0.762024\pi\)
−0.733308 + 0.679897i \(0.762024\pi\)
\(272\) − 5.45524e6i − 0.271086i
\(273\) 0 0
\(274\) −2.57499e6 −0.125177
\(275\) − 1.00181e7i − 0.481714i
\(276\) 0 0
\(277\) 2.29938e7 1.08186 0.540931 0.841067i \(-0.318072\pi\)
0.540931 + 0.841067i \(0.318072\pi\)
\(278\) − 2.57922e7i − 1.20048i
\(279\) 0 0
\(280\) 0 0
\(281\) − 1.25303e6i − 0.0564730i −0.999601 0.0282365i \(-0.991011\pi\)
0.999601 0.0282365i \(-0.00898916\pi\)
\(282\) 0 0
\(283\) 1.45129e7 0.640317 0.320159 0.947364i \(-0.396264\pi\)
0.320159 + 0.947364i \(0.396264\pi\)
\(284\) − 5.28372e6i − 0.230666i
\(285\) 0 0
\(286\) −3.78950e6 −0.161989
\(287\) 0 0
\(288\) 0 0
\(289\) −2.68472e7 −1.11226
\(290\) 1.87532e7i 0.768920i
\(291\) 0 0
\(292\) −3.02012e7 −1.21304
\(293\) − 1.12729e7i − 0.448160i −0.974571 0.224080i \(-0.928062\pi\)
0.974571 0.224080i \(-0.0719377\pi\)
\(294\) 0 0
\(295\) −2.53368e6 −0.0986929
\(296\) 1.04215e7i 0.401841i
\(297\) 0 0
\(298\) −5.41616e7 −2.04665
\(299\) − 1.97904e6i − 0.0740356i
\(300\) 0 0
\(301\) 0 0
\(302\) 4.76069e7i 1.72842i
\(303\) 0 0
\(304\) −1.77248e6 −0.0630900
\(305\) 1.59823e7i 0.563301i
\(306\) 0 0
\(307\) −4.51916e7 −1.56186 −0.780930 0.624618i \(-0.785255\pi\)
−0.780930 + 0.624618i \(0.785255\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.55684e6 0.287229
\(311\) 9.74134e6i 0.323845i 0.986803 + 0.161923i \(0.0517695\pi\)
−0.986803 + 0.161923i \(0.948230\pi\)
\(312\) 0 0
\(313\) 5.30265e6 0.172926 0.0864630 0.996255i \(-0.472444\pi\)
0.0864630 + 0.996255i \(0.472444\pi\)
\(314\) 3.03959e7i 0.981808i
\(315\) 0 0
\(316\) 5.29322e7 1.67748
\(317\) − 1.05462e7i − 0.331068i −0.986204 0.165534i \(-0.947065\pi\)
0.986204 0.165534i \(-0.0529348\pi\)
\(318\) 0 0
\(319\) 2.00381e7 0.617283
\(320\) − 2.71986e7i − 0.830034i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.65656e7i 0.491587i
\(324\) 0 0
\(325\) −3.98180e6 −0.115992
\(326\) − 8.58523e7i − 2.47799i
\(327\) 0 0
\(328\) 4.70989e7 1.33472
\(329\) 0 0
\(330\) 0 0
\(331\) −3.81242e7 −1.05128 −0.525638 0.850708i \(-0.676174\pi\)
−0.525638 + 0.850708i \(0.676174\pi\)
\(332\) 9.13699e7i 2.49683i
\(333\) 0 0
\(334\) −8.42206e7 −2.26037
\(335\) 1.37518e7i 0.365783i
\(336\) 0 0
\(337\) −1.22682e7 −0.320548 −0.160274 0.987073i \(-0.551238\pi\)
−0.160274 + 0.987073i \(0.551238\pi\)
\(338\) − 5.99291e7i − 1.55198i
\(339\) 0 0
\(340\) −4.45322e7 −1.13302
\(341\) − 9.14313e6i − 0.230585i
\(342\) 0 0
\(343\) 0 0
\(344\) 3.93594e7i 0.966882i
\(345\) 0 0
\(346\) −7.10317e7 −1.71484
\(347\) 1.65809e7i 0.396843i 0.980117 + 0.198422i \(0.0635815\pi\)
−0.980117 + 0.198422i \(0.936418\pi\)
\(348\) 0 0
\(349\) −4.81038e7 −1.13163 −0.565813 0.824534i \(-0.691438\pi\)
−0.565813 + 0.824534i \(0.691438\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.23870e7 −0.742580
\(353\) − 1.47570e7i − 0.335485i −0.985831 0.167742i \(-0.946352\pi\)
0.985831 0.167742i \(-0.0536477\pi\)
\(354\) 0 0
\(355\) 3.43116e6 0.0766930
\(356\) 2.18945e7i 0.485272i
\(357\) 0 0
\(358\) −6.19980e7 −1.35123
\(359\) 1.78509e7i 0.385813i 0.981217 + 0.192907i \(0.0617914\pi\)
−0.981217 + 0.192907i \(0.938209\pi\)
\(360\) 0 0
\(361\) −4.16635e7 −0.885593
\(362\) − 1.07875e8i − 2.27403i
\(363\) 0 0
\(364\) 0 0
\(365\) − 1.96122e7i − 0.403318i
\(366\) 0 0
\(367\) −8.67940e6 −0.175587 −0.0877934 0.996139i \(-0.527982\pi\)
−0.0877934 + 0.996139i \(0.527982\pi\)
\(368\) − 4.39531e6i − 0.0881954i
\(369\) 0 0
\(370\) −1.95064e7 −0.385099
\(371\) 0 0
\(372\) 0 0
\(373\) −7.94052e7 −1.53011 −0.765055 0.643965i \(-0.777288\pi\)
−0.765055 + 0.643965i \(0.777288\pi\)
\(374\) 7.86583e7i 1.50359i
\(375\) 0 0
\(376\) −5.58071e7 −1.04985
\(377\) − 7.96432e6i − 0.148636i
\(378\) 0 0
\(379\) −1.46346e7 −0.268821 −0.134410 0.990926i \(-0.542914\pi\)
−0.134410 + 0.990926i \(0.542914\pi\)
\(380\) 1.44691e7i 0.263688i
\(381\) 0 0
\(382\) −1.23509e6 −0.0221568
\(383\) 9.16736e6i 0.163173i 0.996666 + 0.0815865i \(0.0259987\pi\)
−0.996666 + 0.0815865i \(0.974001\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 9.53924e7i 1.65864i
\(387\) 0 0
\(388\) −3.64246e6 −0.0623591
\(389\) 9.26668e6i 0.157426i 0.996897 + 0.0787128i \(0.0250810\pi\)
−0.996897 + 0.0787128i \(0.974919\pi\)
\(390\) 0 0
\(391\) −4.10787e7 −0.687205
\(392\) 0 0
\(393\) 0 0
\(394\) 1.25326e8 2.04905
\(395\) 3.43733e7i 0.557737i
\(396\) 0 0
\(397\) −7.25544e7 −1.15956 −0.579779 0.814774i \(-0.696861\pi\)
−0.579779 + 0.814774i \(0.696861\pi\)
\(398\) − 4.50785e7i − 0.715023i
\(399\) 0 0
\(400\) −8.84330e6 −0.138177
\(401\) − 7.37246e7i − 1.14335i −0.820480 0.571675i \(-0.806294\pi\)
0.820480 0.571675i \(-0.193706\pi\)
\(402\) 0 0
\(403\) −3.63402e6 −0.0555228
\(404\) 5.48591e7i 0.831964i
\(405\) 0 0
\(406\) 0 0
\(407\) 2.08429e7i 0.309155i
\(408\) 0 0
\(409\) −3.43558e7 −0.502146 −0.251073 0.967968i \(-0.580783\pi\)
−0.251073 + 0.967968i \(0.580783\pi\)
\(410\) 8.81575e7i 1.27911i
\(411\) 0 0
\(412\) 1.43098e8 2.04617
\(413\) 0 0
\(414\) 0 0
\(415\) −5.93341e7 −0.830157
\(416\) 1.28725e7i 0.178806i
\(417\) 0 0
\(418\) 2.55571e7 0.349932
\(419\) − 1.31347e8i − 1.78557i −0.450479 0.892787i \(-0.648747\pi\)
0.450479 0.892787i \(-0.351253\pi\)
\(420\) 0 0
\(421\) 2.36756e6 0.0317289 0.0158644 0.999874i \(-0.494950\pi\)
0.0158644 + 0.999874i \(0.494950\pi\)
\(422\) − 8.62060e7i − 1.14710i
\(423\) 0 0
\(424\) −8.51151e7 −1.11663
\(425\) 8.26497e7i 1.07665i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.26450e8i 1.61283i
\(429\) 0 0
\(430\) −7.36711e7 −0.926599
\(431\) 1.13049e8i 1.41200i 0.708212 + 0.705999i \(0.249502\pi\)
−0.708212 + 0.705999i \(0.750498\pi\)
\(432\) 0 0
\(433\) −4.50927e7 −0.555447 −0.277723 0.960661i \(-0.589580\pi\)
−0.277723 + 0.960661i \(0.589580\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.40677e8 1.69732
\(437\) 1.33470e7i 0.159934i
\(438\) 0 0
\(439\) 1.61605e8 1.91013 0.955064 0.296399i \(-0.0957858\pi\)
0.955064 + 0.296399i \(0.0957858\pi\)
\(440\) 2.38358e7i 0.279816i
\(441\) 0 0
\(442\) 3.12634e7 0.362051
\(443\) 2.54011e7i 0.292174i 0.989272 + 0.146087i \(0.0466679\pi\)
−0.989272 + 0.146087i \(0.953332\pi\)
\(444\) 0 0
\(445\) −1.42179e7 −0.161345
\(446\) 4.25349e7i 0.479448i
\(447\) 0 0
\(448\) 0 0
\(449\) − 9.43898e7i − 1.04276i −0.853323 0.521382i \(-0.825417\pi\)
0.853323 0.521382i \(-0.174583\pi\)
\(450\) 0 0
\(451\) 9.41978e7 1.02686
\(452\) 1.82697e7i 0.197841i
\(453\) 0 0
\(454\) 2.06209e8 2.20363
\(455\) 0 0
\(456\) 0 0
\(457\) 4.68452e7 0.490813 0.245407 0.969420i \(-0.421078\pi\)
0.245407 + 0.969420i \(0.421078\pi\)
\(458\) 2.11730e8i 2.20387i
\(459\) 0 0
\(460\) −3.58798e7 −0.368618
\(461\) − 2.33797e7i − 0.238636i −0.992856 0.119318i \(-0.961929\pi\)
0.992856 0.119318i \(-0.0380708\pi\)
\(462\) 0 0
\(463\) −4.98269e7 −0.502019 −0.251010 0.967985i \(-0.580763\pi\)
−0.251010 + 0.967985i \(0.580763\pi\)
\(464\) − 1.76882e7i − 0.177064i
\(465\) 0 0
\(466\) 1.12718e8 1.11388
\(467\) 9.52369e7i 0.935092i 0.883969 + 0.467546i \(0.154862\pi\)
−0.883969 + 0.467546i \(0.845138\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) − 1.04457e8i − 1.00611i
\(471\) 0 0
\(472\) −1.72290e7 −0.163846
\(473\) 7.87188e7i 0.743867i
\(474\) 0 0
\(475\) 2.68540e7 0.250569
\(476\) 0 0
\(477\) 0 0
\(478\) 1.43820e8 1.31685
\(479\) − 1.97141e8i − 1.79378i −0.442251 0.896891i \(-0.645820\pi\)
0.442251 0.896891i \(-0.354180\pi\)
\(480\) 0 0
\(481\) 8.28421e6 0.0744416
\(482\) − 1.91033e8i − 1.70595i
\(483\) 0 0
\(484\) −1.00202e8 −0.883775
\(485\) − 2.36536e6i − 0.0207334i
\(486\) 0 0
\(487\) 1.92602e6 0.0166753 0.00833765 0.999965i \(-0.497346\pi\)
0.00833765 + 0.999965i \(0.497346\pi\)
\(488\) 1.08680e8i 0.935167i
\(489\) 0 0
\(490\) 0 0
\(491\) − 1.79722e8i − 1.51830i −0.650916 0.759150i \(-0.725615\pi\)
0.650916 0.759150i \(-0.274385\pi\)
\(492\) 0 0
\(493\) −1.65314e8 −1.37965
\(494\) − 1.01579e7i − 0.0842603i
\(495\) 0 0
\(496\) −8.07090e6 −0.0661419
\(497\) 0 0
\(498\) 0 0
\(499\) 1.54018e8 1.23956 0.619782 0.784774i \(-0.287221\pi\)
0.619782 + 0.784774i \(0.287221\pi\)
\(500\) 1.69638e8i 1.35710i
\(501\) 0 0
\(502\) 3.87025e8 3.05934
\(503\) − 2.25142e7i − 0.176910i −0.996080 0.0884551i \(-0.971807\pi\)
0.996080 0.0884551i \(-0.0281930\pi\)
\(504\) 0 0
\(505\) −3.56246e7 −0.276615
\(506\) 6.33753e7i 0.489180i
\(507\) 0 0
\(508\) 1.24519e7 0.0949825
\(509\) 2.16126e8i 1.63891i 0.573147 + 0.819453i \(0.305722\pi\)
−0.573147 + 0.819453i \(0.694278\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 4.97487e7i 0.370656i
\(513\) 0 0
\(514\) −2.51278e8 −1.85040
\(515\) 9.29253e7i 0.680318i
\(516\) 0 0
\(517\) −1.11614e8 −0.807695
\(518\) 0 0
\(519\) 0 0
\(520\) 9.47376e6 0.0673771
\(521\) − 8.35166e7i − 0.590554i −0.955412 0.295277i \(-0.904588\pi\)
0.955412 0.295277i \(-0.0954120\pi\)
\(522\) 0 0
\(523\) −2.08856e8 −1.45997 −0.729983 0.683466i \(-0.760472\pi\)
−0.729983 + 0.683466i \(0.760472\pi\)
\(524\) 2.57101e8i 1.78694i
\(525\) 0 0
\(526\) −4.43608e7 −0.304819
\(527\) 7.54308e7i 0.515367i
\(528\) 0 0
\(529\) 1.14939e8 0.776424
\(530\) − 1.59315e8i − 1.07011i
\(531\) 0 0
\(532\) 0 0
\(533\) − 3.74397e7i − 0.247258i
\(534\) 0 0
\(535\) −8.21146e7 −0.536240
\(536\) 9.35119e7i 0.607257i
\(537\) 0 0
\(538\) 7.19625e7 0.462125
\(539\) 0 0
\(540\) 0 0
\(541\) −1.21245e8 −0.765727 −0.382863 0.923805i \(-0.625062\pi\)
−0.382863 + 0.923805i \(0.625062\pi\)
\(542\) − 3.71519e8i − 2.33337i
\(543\) 0 0
\(544\) 2.67193e8 1.65970
\(545\) 9.13534e7i 0.564333i
\(546\) 0 0
\(547\) −1.33857e8 −0.817861 −0.408931 0.912565i \(-0.634098\pi\)
−0.408931 + 0.912565i \(0.634098\pi\)
\(548\) − 1.98264e7i − 0.120477i
\(549\) 0 0
\(550\) 1.27510e8 0.766402
\(551\) 5.37128e7i 0.321087i
\(552\) 0 0
\(553\) 0 0
\(554\) 2.92664e8i 1.72123i
\(555\) 0 0
\(556\) 1.98590e8 1.15540
\(557\) − 8.20694e7i − 0.474915i −0.971398 0.237457i \(-0.923686\pi\)
0.971398 0.237457i \(-0.0763140\pi\)
\(558\) 0 0
\(559\) 3.12875e7 0.179116
\(560\) 0 0
\(561\) 0 0
\(562\) 1.59484e7 0.0898480
\(563\) 2.21977e8i 1.24389i 0.783059 + 0.621947i \(0.213658\pi\)
−0.783059 + 0.621947i \(0.786342\pi\)
\(564\) 0 0
\(565\) −1.18641e7 −0.0657792
\(566\) 1.84719e8i 1.01874i
\(567\) 0 0
\(568\) 2.33319e7 0.127322
\(569\) 2.88087e8i 1.56382i 0.623391 + 0.781911i \(0.285755\pi\)
−0.623391 + 0.781911i \(0.714245\pi\)
\(570\) 0 0
\(571\) 1.83227e8 0.984197 0.492098 0.870540i \(-0.336230\pi\)
0.492098 + 0.870540i \(0.336230\pi\)
\(572\) − 2.91777e7i − 0.155906i
\(573\) 0 0
\(574\) 0 0
\(575\) 6.65912e7i 0.350278i
\(576\) 0 0
\(577\) 2.07783e8 1.08164 0.540820 0.841139i \(-0.318114\pi\)
0.540820 + 0.841139i \(0.318114\pi\)
\(578\) − 3.41709e8i − 1.76959i
\(579\) 0 0
\(580\) −1.44392e8 −0.740048
\(581\) 0 0
\(582\) 0 0
\(583\) −1.70230e8 −0.859075
\(584\) − 1.33363e8i − 0.669571i
\(585\) 0 0
\(586\) 1.43481e8 0.713018
\(587\) 3.28908e8i 1.62615i 0.582161 + 0.813073i \(0.302207\pi\)
−0.582161 + 0.813073i \(0.697793\pi\)
\(588\) 0 0
\(589\) 2.45085e7 0.119942
\(590\) − 3.22485e7i − 0.157019i
\(591\) 0 0
\(592\) 1.83986e7 0.0886790
\(593\) 1.97249e7i 0.0945914i 0.998881 + 0.0472957i \(0.0150603\pi\)
−0.998881 + 0.0472957i \(0.984940\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 4.17023e8i − 1.96980i
\(597\) 0 0
\(598\) 2.51891e7 0.117790
\(599\) 9.38486e7i 0.436664i 0.975875 + 0.218332i \(0.0700616\pi\)
−0.975875 + 0.218332i \(0.929938\pi\)
\(600\) 0 0
\(601\) −1.53106e8 −0.705293 −0.352646 0.935757i \(-0.614718\pi\)
−0.352646 + 0.935757i \(0.614718\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.66554e8 −1.66352
\(605\) − 6.50698e7i − 0.293842i
\(606\) 0 0
\(607\) −1.08279e8 −0.484147 −0.242074 0.970258i \(-0.577828\pi\)
−0.242074 + 0.970258i \(0.577828\pi\)
\(608\) − 8.68146e7i − 0.386262i
\(609\) 0 0
\(610\) −2.03422e8 −0.896206
\(611\) 4.43620e7i 0.194486i
\(612\) 0 0
\(613\) −2.60288e8 −1.12999 −0.564993 0.825096i \(-0.691121\pi\)
−0.564993 + 0.825096i \(0.691121\pi\)
\(614\) − 5.75195e8i − 2.48491i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.65376e8i 0.704073i 0.935986 + 0.352036i \(0.114511\pi\)
−0.935986 + 0.352036i \(0.885489\pi\)
\(618\) 0 0
\(619\) 1.36836e8 0.576935 0.288468 0.957490i \(-0.406854\pi\)
0.288468 + 0.957490i \(0.406854\pi\)
\(620\) 6.58843e7i 0.276444i
\(621\) 0 0
\(622\) −1.23987e8 −0.515235
\(623\) 0 0
\(624\) 0 0
\(625\) 7.06994e7 0.289585
\(626\) 6.74918e7i 0.275124i
\(627\) 0 0
\(628\) −2.34037e8 −0.944942
\(629\) − 1.71954e8i − 0.690973i
\(630\) 0 0
\(631\) 2.66941e8 1.06249 0.531247 0.847217i \(-0.321723\pi\)
0.531247 + 0.847217i \(0.321723\pi\)
\(632\) 2.33738e8i 0.925931i
\(633\) 0 0
\(634\) 1.34231e8 0.526727
\(635\) 8.08605e6i 0.0315802i
\(636\) 0 0
\(637\) 0 0
\(638\) 2.55043e8i 0.982092i
\(639\) 0 0
\(640\) 1.93771e8 0.739179
\(641\) − 3.69866e8i − 1.40433i −0.712013 0.702167i \(-0.752216\pi\)
0.712013 0.702167i \(-0.247784\pi\)
\(642\) 0 0
\(643\) 9.29168e7 0.349511 0.174756 0.984612i \(-0.444086\pi\)
0.174756 + 0.984612i \(0.444086\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.10846e8 −0.782111
\(647\) − 9.21336e7i − 0.340177i −0.985429 0.170089i \(-0.945595\pi\)
0.985429 0.170089i \(-0.0544054\pi\)
\(648\) 0 0
\(649\) −3.44580e7 −0.126054
\(650\) − 5.06800e7i − 0.184543i
\(651\) 0 0
\(652\) 6.61029e8 2.38494
\(653\) − 2.20689e8i − 0.792576i −0.918126 0.396288i \(-0.870298\pi\)
0.918126 0.396288i \(-0.129702\pi\)
\(654\) 0 0
\(655\) −1.66957e8 −0.594130
\(656\) − 8.31511e7i − 0.294548i
\(657\) 0 0
\(658\) 0 0
\(659\) − 5.01619e8i − 1.75274i −0.481639 0.876370i \(-0.659958\pi\)
0.481639 0.876370i \(-0.340042\pi\)
\(660\) 0 0
\(661\) 2.78166e8 0.963163 0.481582 0.876401i \(-0.340063\pi\)
0.481582 + 0.876401i \(0.340063\pi\)
\(662\) − 4.85242e8i − 1.67257i
\(663\) 0 0
\(664\) −4.03472e8 −1.37819
\(665\) 0 0
\(666\) 0 0
\(667\) −1.33194e8 −0.448858
\(668\) − 6.48465e8i − 2.17549i
\(669\) 0 0
\(670\) −1.75031e8 −0.581957
\(671\) 2.17360e8i 0.719468i
\(672\) 0 0
\(673\) 5.34850e8 1.75464 0.877318 0.479910i \(-0.159331\pi\)
0.877318 + 0.479910i \(0.159331\pi\)
\(674\) − 1.56149e8i − 0.509988i
\(675\) 0 0
\(676\) 4.61430e8 1.49371
\(677\) − 1.41358e6i − 0.00455568i −0.999997 0.00227784i \(-0.999275\pi\)
0.999997 0.00227784i \(-0.000725059\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) − 1.96646e8i − 0.625400i
\(681\) 0 0
\(682\) 1.16373e8 0.366859
\(683\) 2.41616e8i 0.758340i 0.925327 + 0.379170i \(0.123791\pi\)
−0.925327 + 0.379170i \(0.876209\pi\)
\(684\) 0 0
\(685\) 1.28750e7 0.0400566
\(686\) 0 0
\(687\) 0 0
\(688\) 6.94873e7 0.213373
\(689\) 6.76595e7i 0.206857i
\(690\) 0 0
\(691\) −5.30543e8 −1.60800 −0.804001 0.594628i \(-0.797299\pi\)
−0.804001 + 0.594628i \(0.797299\pi\)
\(692\) − 5.46916e8i − 1.65045i
\(693\) 0 0
\(694\) −2.11040e8 −0.631374
\(695\) 1.28961e8i 0.384152i
\(696\) 0 0
\(697\) −7.77132e8 −2.29507
\(698\) − 6.12261e8i − 1.80041i
\(699\) 0 0
\(700\) 0 0
\(701\) − 5.49256e7i − 0.159449i −0.996817 0.0797244i \(-0.974596\pi\)
0.996817 0.0797244i \(-0.0254040\pi\)
\(702\) 0 0
\(703\) −5.58702e7 −0.160811
\(704\) − 3.69900e8i − 1.06015i
\(705\) 0 0
\(706\) 1.87826e8 0.533753
\(707\) 0 0
\(708\) 0 0
\(709\) 3.16706e7 0.0888622 0.0444311 0.999012i \(-0.485852\pi\)
0.0444311 + 0.999012i \(0.485852\pi\)
\(710\) 4.36715e7i 0.122018i
\(711\) 0 0
\(712\) −9.66819e7 −0.267858
\(713\) 6.07749e7i 0.167670i
\(714\) 0 0
\(715\) 1.89475e7 0.0518363
\(716\) − 4.77361e8i − 1.30049i
\(717\) 0 0
\(718\) −2.27205e8 −0.613825
\(719\) 4.37723e8i 1.17764i 0.808264 + 0.588820i \(0.200407\pi\)
−0.808264 + 0.588820i \(0.799593\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 5.30290e8i − 1.40897i
\(723\) 0 0
\(724\) 8.30595e8 2.18864
\(725\) 2.67985e8i 0.703230i
\(726\) 0 0
\(727\) 4.64180e8 1.20805 0.604023 0.796967i \(-0.293564\pi\)
0.604023 + 0.796967i \(0.293564\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.49623e8 0.641675
\(731\) − 6.49430e8i − 1.66257i
\(732\) 0 0
\(733\) −7.04886e8 −1.78981 −0.894905 0.446256i \(-0.852757\pi\)
−0.894905 + 0.446256i \(0.852757\pi\)
\(734\) − 1.10471e8i − 0.279357i
\(735\) 0 0
\(736\) 2.15279e8 0.539967
\(737\) 1.87024e8i 0.467191i
\(738\) 0 0
\(739\) −2.83900e8 −0.703448 −0.351724 0.936104i \(-0.614404\pi\)
−0.351724 + 0.936104i \(0.614404\pi\)
\(740\) − 1.50192e8i − 0.370639i
\(741\) 0 0
\(742\) 0 0
\(743\) 5.01018e8i 1.22148i 0.791830 + 0.610741i \(0.209128\pi\)
−0.791830 + 0.610741i \(0.790872\pi\)
\(744\) 0 0
\(745\) 2.70808e8 0.654927
\(746\) − 1.01066e9i − 2.43439i
\(747\) 0 0
\(748\) −6.05638e8 −1.44713
\(749\) 0 0
\(750\) 0 0
\(751\) −1.48249e8 −0.350004 −0.175002 0.984568i \(-0.555993\pi\)
−0.175002 + 0.984568i \(0.555993\pi\)
\(752\) 9.85249e7i 0.231682i
\(753\) 0 0
\(754\) 1.01369e8 0.236479
\(755\) − 2.38034e8i − 0.553094i
\(756\) 0 0
\(757\) 2.14422e8 0.494291 0.247145 0.968978i \(-0.420507\pi\)
0.247145 + 0.968978i \(0.420507\pi\)
\(758\) − 1.86268e8i − 0.427691i
\(759\) 0 0
\(760\) −6.38928e7 −0.145550
\(761\) − 2.69760e7i − 0.0612101i −0.999532 0.0306051i \(-0.990257\pi\)
0.999532 0.0306051i \(-0.00974341\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 9.50969e6i − 0.0213249i
\(765\) 0 0
\(766\) −1.16681e8 −0.259607
\(767\) 1.36957e7i 0.0303526i
\(768\) 0 0
\(769\) 4.90064e8 1.07764 0.538821 0.842421i \(-0.318870\pi\)
0.538821 + 0.842421i \(0.318870\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.34484e8 −1.59636
\(773\) 4.17032e8i 0.902882i 0.892301 + 0.451441i \(0.149090\pi\)
−0.892301 + 0.451441i \(0.850910\pi\)
\(774\) 0 0
\(775\) 1.22278e8 0.262690
\(776\) − 1.60844e7i − 0.0344208i
\(777\) 0 0
\(778\) −1.17946e8 −0.250463
\(779\) 2.52501e8i 0.534134i
\(780\) 0 0
\(781\) 4.66638e7 0.0979550
\(782\) − 5.22846e8i − 1.09334i
\(783\) 0 0
\(784\) 0 0
\(785\) − 1.51980e8i − 0.314179i
\(786\) 0 0
\(787\) 3.46111e8 0.710054 0.355027 0.934856i \(-0.384472\pi\)
0.355027 + 0.934856i \(0.384472\pi\)
\(788\) 9.64963e8i 1.97211i
\(789\) 0 0
\(790\) −4.37500e8 −0.887355
\(791\) 0 0
\(792\) 0 0
\(793\) 8.63915e7 0.173241
\(794\) − 9.23467e8i − 1.84484i
\(795\) 0 0
\(796\) 3.47087e8 0.688175
\(797\) 7.25306e8i 1.43267i 0.697756 + 0.716335i \(0.254182\pi\)
−0.697756 + 0.716335i \(0.745818\pi\)
\(798\) 0 0
\(799\) 9.20816e8 1.80523
\(800\) − 4.33138e8i − 0.845972i
\(801\) 0 0
\(802\) 9.38361e8 1.81906
\(803\) − 2.66726e8i − 0.515132i
\(804\) 0 0
\(805\) 0 0
\(806\) − 4.62535e7i − 0.0883363i
\(807\) 0 0
\(808\) −2.42247e8 −0.459224
\(809\) 4.93161e8i 0.931415i 0.884939 + 0.465707i \(0.154200\pi\)
−0.884939 + 0.465707i \(0.845800\pi\)
\(810\) 0 0
\(811\) 5.34731e7 0.100247 0.0501237 0.998743i \(-0.484038\pi\)
0.0501237 + 0.998743i \(0.484038\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.65287e8 −0.491862
\(815\) 4.29261e8i 0.792956i
\(816\) 0 0
\(817\) −2.11009e8 −0.386931
\(818\) − 4.37278e8i − 0.798909i
\(819\) 0 0
\(820\) −6.78778e8 −1.23108
\(821\) 1.07674e9i 1.94573i 0.231377 + 0.972864i \(0.425677\pi\)
−0.231377 + 0.972864i \(0.574323\pi\)
\(822\) 0 0
\(823\) 8.88441e7 0.159378 0.0796891 0.996820i \(-0.474607\pi\)
0.0796891 + 0.996820i \(0.474607\pi\)
\(824\) 6.31892e8i 1.12943i
\(825\) 0 0
\(826\) 0 0
\(827\) 9.82047e7i 0.173626i 0.996225 + 0.0868132i \(0.0276683\pi\)
−0.996225 + 0.0868132i \(0.972332\pi\)
\(828\) 0 0
\(829\) −2.25045e8 −0.395008 −0.197504 0.980302i \(-0.563283\pi\)
−0.197504 + 0.980302i \(0.563283\pi\)
\(830\) − 7.55200e8i − 1.32077i
\(831\) 0 0
\(832\) −1.47020e8 −0.255274
\(833\) 0 0
\(834\) 0 0
\(835\) 4.21103e8 0.723317
\(836\) 1.96780e8i 0.336792i
\(837\) 0 0
\(838\) 1.67177e9 2.84083
\(839\) 7.84433e8i 1.32822i 0.747635 + 0.664110i \(0.231189\pi\)
−0.747635 + 0.664110i \(0.768811\pi\)
\(840\) 0 0
\(841\) 5.88040e7 0.0988597
\(842\) 3.01341e7i 0.0504803i
\(843\) 0 0
\(844\) 6.63752e8 1.10402
\(845\) 2.99645e8i 0.496635i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.50267e8i 0.246420i
\(849\) 0 0
\(850\) −1.05196e9 −1.71294
\(851\) − 1.38544e8i − 0.224802i
\(852\) 0 0
\(853\) 7.97906e7 0.128560 0.0642798 0.997932i \(-0.479525\pi\)
0.0642798 + 0.997932i \(0.479525\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.58379e8 −0.890241
\(857\) − 1.06107e9i − 1.68579i −0.538080 0.842894i \(-0.680850\pi\)
0.538080 0.842894i \(-0.319150\pi\)
\(858\) 0 0
\(859\) −3.34286e8 −0.527399 −0.263699 0.964605i \(-0.584943\pi\)
−0.263699 + 0.964605i \(0.584943\pi\)
\(860\) − 5.67239e8i − 0.891806i
\(861\) 0 0
\(862\) −1.43888e9 −2.24648
\(863\) − 2.65292e7i − 0.0412754i −0.999787 0.0206377i \(-0.993430\pi\)
0.999787 0.0206377i \(-0.00656965\pi\)
\(864\) 0 0
\(865\) 3.55158e8 0.548749
\(866\) − 5.73936e8i − 0.883711i
\(867\) 0 0
\(868\) 0 0
\(869\) 4.67477e8i 0.712362i
\(870\) 0 0
\(871\) 7.43343e7 0.112495
\(872\) 6.21203e8i 0.936880i
\(873\) 0 0
\(874\) −1.69880e8 −0.254453
\(875\) 0 0
\(876\) 0 0
\(877\) −1.30791e8 −0.193901 −0.0969504 0.995289i \(-0.530909\pi\)
−0.0969504 + 0.995289i \(0.530909\pi\)
\(878\) 2.05690e9i 3.03900i
\(879\) 0 0
\(880\) 4.20811e7 0.0617503
\(881\) 9.18953e8i 1.34390i 0.740598 + 0.671948i \(0.234542\pi\)
−0.740598 + 0.671948i \(0.765458\pi\)
\(882\) 0 0
\(883\) −1.09112e9 −1.58486 −0.792432 0.609961i \(-0.791185\pi\)
−0.792432 + 0.609961i \(0.791185\pi\)
\(884\) 2.40716e8i 0.348456i
\(885\) 0 0
\(886\) −3.23303e8 −0.464846
\(887\) 5.36427e8i 0.768670i 0.923194 + 0.384335i \(0.125569\pi\)
−0.923194 + 0.384335i \(0.874431\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) − 1.80965e8i − 0.256699i
\(891\) 0 0
\(892\) −3.27502e8 −0.461445
\(893\) − 2.99186e8i − 0.420133i
\(894\) 0 0
\(895\) 3.09990e8 0.432393
\(896\) 0 0
\(897\) 0 0
\(898\) 1.20139e9 1.65903
\(899\) 2.44579e8i 0.336620i
\(900\) 0 0
\(901\) 1.40440e9 1.92007
\(902\) 1.19894e9i 1.63372i
\(903\) 0 0
\(904\) −8.06757e7 −0.109204
\(905\) 5.39375e8i 0.727688i
\(906\) 0 0
\(907\) −4.60985e8 −0.617824 −0.308912 0.951091i \(-0.599965\pi\)
−0.308912 + 0.951091i \(0.599965\pi\)
\(908\) 1.58772e9i 2.12089i
\(909\) 0 0
\(910\) 0 0
\(911\) − 8.68400e8i − 1.14859i −0.818649 0.574295i \(-0.805276\pi\)
0.818649 0.574295i \(-0.194724\pi\)
\(912\) 0 0
\(913\) −8.06944e8 −1.06031
\(914\) 5.96242e8i 0.780879i
\(915\) 0 0
\(916\) −1.63024e9 −2.12112
\(917\) 0 0
\(918\) 0 0
\(919\) 1.28061e9 1.64995 0.824976 0.565168i \(-0.191189\pi\)
0.824976 + 0.565168i \(0.191189\pi\)
\(920\) − 1.58438e8i − 0.203468i
\(921\) 0 0
\(922\) 2.97575e8 0.379668
\(923\) − 1.85469e7i − 0.0235867i
\(924\) 0 0
\(925\) −2.78749e8 −0.352199
\(926\) − 6.34192e8i − 0.798708i
\(927\) 0 0
\(928\) 8.66353e8 1.08405
\(929\) 3.23960e8i 0.404058i 0.979380 + 0.202029i \(0.0647536\pi\)
−0.979380 + 0.202029i \(0.935246\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8.67888e8i 1.07205i
\(933\) 0 0
\(934\) −1.21217e9 −1.48772
\(935\) − 3.93291e8i − 0.481149i
\(936\) 0 0
\(937\) 1.33188e9 1.61900 0.809498 0.587123i \(-0.199739\pi\)
0.809498 + 0.587123i \(0.199739\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8.04278e8 0.968329
\(941\) − 8.24869e8i − 0.989957i −0.868905 0.494978i \(-0.835176\pi\)
0.868905 0.494978i \(-0.164824\pi\)
\(942\) 0 0
\(943\) −6.26138e8 −0.746681
\(944\) 3.04171e7i 0.0361578i
\(945\) 0 0
\(946\) −1.00193e9 −1.18349
\(947\) 7.33660e8i 0.863863i 0.901906 + 0.431931i \(0.142168\pi\)
−0.901906 + 0.431931i \(0.857832\pi\)
\(948\) 0 0
\(949\) −1.06013e8 −0.124039
\(950\) 3.41796e8i 0.398654i
\(951\) 0 0
\(952\) 0 0
\(953\) 6.87744e8i 0.794600i 0.917689 + 0.397300i \(0.130053\pi\)
−0.917689 + 0.397300i \(0.869947\pi\)
\(954\) 0 0
\(955\) 6.17544e6 0.00709019
\(956\) 1.10736e9i 1.26740i
\(957\) 0 0
\(958\) 2.50919e9 2.85389
\(959\) 0 0
\(960\) 0 0
\(961\) −7.75906e8 −0.874256
\(962\) 1.05441e8i 0.118436i
\(963\) 0 0
\(964\) 1.47088e9 1.64190
\(965\) − 4.76962e8i − 0.530764i
\(966\) 0 0
\(967\) 1.43001e9 1.58147 0.790733 0.612162i \(-0.209700\pi\)
0.790733 + 0.612162i \(0.209700\pi\)
\(968\) − 4.42475e8i − 0.487823i
\(969\) 0 0
\(970\) 3.01061e7 0.0329867
\(971\) 1.05628e9i 1.15377i 0.816824 + 0.576887i \(0.195733\pi\)
−0.816824 + 0.576887i \(0.804267\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 2.45142e7i 0.0265303i
\(975\) 0 0
\(976\) 1.91869e8 0.206375
\(977\) 8.72371e8i 0.935443i 0.883876 + 0.467722i \(0.154925\pi\)
−0.883876 + 0.467722i \(0.845075\pi\)
\(978\) 0 0
\(979\) −1.93364e8 −0.206076
\(980\) 0 0
\(981\) 0 0
\(982\) 2.28749e9 2.41560
\(983\) 7.90860e8i 0.832605i 0.909226 + 0.416302i \(0.136674\pi\)
−0.909226 + 0.416302i \(0.863326\pi\)
\(984\) 0 0
\(985\) −6.26631e8 −0.655697
\(986\) − 2.10411e9i − 2.19501i
\(987\) 0 0
\(988\) 7.82118e7 0.0810964
\(989\) − 5.23249e8i − 0.540903i
\(990\) 0 0
\(991\) 1.38796e8 0.142612 0.0713062 0.997454i \(-0.477283\pi\)
0.0713062 + 0.997454i \(0.477283\pi\)
\(992\) − 3.95306e8i − 0.404947i
\(993\) 0 0
\(994\) 0 0
\(995\) 2.25392e8i 0.228807i
\(996\) 0 0
\(997\) 3.29036e8 0.332015 0.166008 0.986124i \(-0.446912\pi\)
0.166008 + 0.986124i \(0.446912\pi\)
\(998\) 1.96032e9i 1.97213i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.7.b.a.197.2 2
3.2 odd 2 inner 441.7.b.a.197.1 2
7.6 odd 2 9.7.b.a.8.2 yes 2
21.20 even 2 9.7.b.a.8.1 2
28.27 even 2 144.7.e.a.17.2 2
35.13 even 4 225.7.d.a.224.3 4
35.27 even 4 225.7.d.a.224.2 4
35.34 odd 2 225.7.c.a.26.1 2
56.13 odd 2 576.7.e.l.449.1 2
56.27 even 2 576.7.e.a.449.1 2
63.13 odd 6 81.7.d.d.26.1 4
63.20 even 6 81.7.d.d.53.1 4
63.34 odd 6 81.7.d.d.53.2 4
63.41 even 6 81.7.d.d.26.2 4
84.83 odd 2 144.7.e.a.17.1 2
105.62 odd 4 225.7.d.a.224.4 4
105.83 odd 4 225.7.d.a.224.1 4
105.104 even 2 225.7.c.a.26.2 2
168.83 odd 2 576.7.e.a.449.2 2
168.125 even 2 576.7.e.l.449.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.7.b.a.8.1 2 21.20 even 2
9.7.b.a.8.2 yes 2 7.6 odd 2
81.7.d.d.26.1 4 63.13 odd 6
81.7.d.d.26.2 4 63.41 even 6
81.7.d.d.53.1 4 63.20 even 6
81.7.d.d.53.2 4 63.34 odd 6
144.7.e.a.17.1 2 84.83 odd 2
144.7.e.a.17.2 2 28.27 even 2
225.7.c.a.26.1 2 35.34 odd 2
225.7.c.a.26.2 2 105.104 even 2
225.7.d.a.224.1 4 105.83 odd 4
225.7.d.a.224.2 4 35.27 even 4
225.7.d.a.224.3 4 35.13 even 4
225.7.d.a.224.4 4 105.62 odd 4
441.7.b.a.197.1 2 3.2 odd 2 inner
441.7.b.a.197.2 2 1.1 even 1 trivial
576.7.e.a.449.1 2 56.27 even 2
576.7.e.a.449.2 2 168.83 odd 2
576.7.e.l.449.1 2 56.13 odd 2
576.7.e.l.449.2 2 168.125 even 2