Properties

Label 4356.3.f.m.1693.9
Level $4356$
Weight $3$
Character 4356.1693
Analytic conductor $118.692$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4356,3,Mod(1693,4356)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4356.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4356, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4356.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,92,0,184,0,0,0, 0,0,-104,0,0,0,0,0,144,0,0,0,0,0,0,0,0,0,80,0,-172,0,0,0,32,0,0,0,0,0, -4,0,0,0,0,0,0,0,-316,0,0,0,-132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12, 0,-656] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(118.692403155\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 45 x^{14} + 278 x^{13} + 569 x^{12} - 3118 x^{11} + 4245 x^{10} - 22868 x^{9} + \cdots + 188375625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 11^{4} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.9
Root \(-0.638487 + 2.64005i\) of defining polynomial
Character \(\chi\) \(=\) 4356.1693
Dual form 4356.3.f.m.1693.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.99572 q^{5} -4.27442i q^{7} +5.55938i q^{13} -12.4287i q^{17} +17.4843i q^{19} -5.57255 q^{23} -21.0171 q^{25} -21.4684i q^{29} -25.8537 q^{31} -8.53054i q^{35} +44.5086 q^{37} +34.7764i q^{41} +49.3763i q^{43} +28.6679 q^{47} +30.7294 q^{49} -34.6602 q^{53} -64.2165 q^{59} +30.3578i q^{61} +11.0950i q^{65} +89.0195 q^{67} +20.1148 q^{71} +59.4717i q^{73} +120.703i q^{79} -22.2367i q^{83} -24.8043i q^{85} -118.788 q^{89} +23.7631 q^{91} +34.8938i q^{95} +37.2961 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{5} + 92 q^{23} + 184 q^{25} - 104 q^{31} + 144 q^{37} + 80 q^{47} - 172 q^{49} + 32 q^{53} - 4 q^{59} - 316 q^{67} - 132 q^{71} - 12 q^{89} - 656 q^{91} - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4356\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\) \(2179\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.99572 0.399144 0.199572 0.979883i \(-0.436045\pi\)
0.199572 + 0.979883i \(0.436045\pi\)
\(6\) 0 0
\(7\) − 4.27442i − 0.610631i −0.952251 0.305315i \(-0.901238\pi\)
0.952251 0.305315i \(-0.0987619\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 5.55938i 0.427645i 0.976873 + 0.213822i \(0.0685913\pi\)
−0.976873 + 0.213822i \(0.931409\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 12.4287i − 0.731101i −0.930792 0.365550i \(-0.880881\pi\)
0.930792 0.365550i \(-0.119119\pi\)
\(18\) 0 0
\(19\) 17.4843i 0.920225i 0.887861 + 0.460113i \(0.152191\pi\)
−0.887861 + 0.460113i \(0.847809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.57255 −0.242285 −0.121142 0.992635i \(-0.538656\pi\)
−0.121142 + 0.992635i \(0.538656\pi\)
\(24\) 0 0
\(25\) −21.0171 −0.840684
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 21.4684i − 0.740290i −0.928974 0.370145i \(-0.879308\pi\)
0.928974 0.370145i \(-0.120692\pi\)
\(30\) 0 0
\(31\) −25.8537 −0.833990 −0.416995 0.908909i \(-0.636917\pi\)
−0.416995 + 0.908909i \(0.636917\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 8.53054i − 0.243730i
\(36\) 0 0
\(37\) 44.5086 1.20294 0.601468 0.798897i \(-0.294583\pi\)
0.601468 + 0.798897i \(0.294583\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 34.7764i 0.848204i 0.905614 + 0.424102i \(0.139410\pi\)
−0.905614 + 0.424102i \(0.860590\pi\)
\(42\) 0 0
\(43\) 49.3763i 1.14829i 0.818755 + 0.574143i \(0.194665\pi\)
−0.818755 + 0.574143i \(0.805335\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 28.6679 0.609955 0.304977 0.952360i \(-0.401351\pi\)
0.304977 + 0.952360i \(0.401351\pi\)
\(48\) 0 0
\(49\) 30.7294 0.627130
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −34.6602 −0.653966 −0.326983 0.945030i \(-0.606032\pi\)
−0.326983 + 0.945030i \(0.606032\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −64.2165 −1.08842 −0.544208 0.838950i \(-0.683170\pi\)
−0.544208 + 0.838950i \(0.683170\pi\)
\(60\) 0 0
\(61\) 30.3578i 0.497669i 0.968546 + 0.248834i \(0.0800474\pi\)
−0.968546 + 0.248834i \(0.919953\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.0950i 0.170692i
\(66\) 0 0
\(67\) 89.0195 1.32865 0.664325 0.747444i \(-0.268719\pi\)
0.664325 + 0.747444i \(0.268719\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 20.1148 0.283306 0.141653 0.989916i \(-0.454758\pi\)
0.141653 + 0.989916i \(0.454758\pi\)
\(72\) 0 0
\(73\) 59.4717i 0.814681i 0.913276 + 0.407340i \(0.133544\pi\)
−0.913276 + 0.407340i \(0.866456\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 120.703i 1.52789i 0.645283 + 0.763944i \(0.276739\pi\)
−0.645283 + 0.763944i \(0.723261\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 22.2367i − 0.267912i −0.990987 0.133956i \(-0.957232\pi\)
0.990987 0.133956i \(-0.0427680\pi\)
\(84\) 0 0
\(85\) − 24.8043i − 0.291815i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −118.788 −1.33470 −0.667350 0.744744i \(-0.732571\pi\)
−0.667350 + 0.744744i \(0.732571\pi\)
\(90\) 0 0
\(91\) 23.7631 0.261133
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 34.8938i 0.367303i
\(96\) 0 0
\(97\) 37.2961 0.384496 0.192248 0.981346i \(-0.438422\pi\)
0.192248 + 0.981346i \(0.438422\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 167.707i − 1.66047i −0.557415 0.830234i \(-0.688207\pi\)
0.557415 0.830234i \(-0.311793\pi\)
\(102\) 0 0
\(103\) −121.785 −1.18238 −0.591188 0.806534i \(-0.701341\pi\)
−0.591188 + 0.806534i \(0.701341\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 105.647i 0.987352i 0.869646 + 0.493676i \(0.164347\pi\)
−0.869646 + 0.493676i \(0.835653\pi\)
\(108\) 0 0
\(109\) 88.3582i 0.810625i 0.914178 + 0.405313i \(0.132837\pi\)
−0.914178 + 0.405313i \(0.867163\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 159.499 1.41149 0.705747 0.708464i \(-0.250611\pi\)
0.705747 + 0.708464i \(0.250611\pi\)
\(114\) 0 0
\(115\) −11.1213 −0.0967066
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −53.1255 −0.446433
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −91.8373 −0.734698
\(126\) 0 0
\(127\) 213.671i 1.68245i 0.540686 + 0.841225i \(0.318165\pi\)
−0.540686 + 0.841225i \(0.681835\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 260.251i − 1.98665i −0.115349 0.993325i \(-0.536799\pi\)
0.115349 0.993325i \(-0.463201\pi\)
\(132\) 0 0
\(133\) 74.7351 0.561918
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 54.5129 0.397904 0.198952 0.980009i \(-0.436246\pi\)
0.198952 + 0.980009i \(0.436246\pi\)
\(138\) 0 0
\(139\) 16.9607i 0.122020i 0.998137 + 0.0610099i \(0.0194321\pi\)
−0.998137 + 0.0610099i \(0.980568\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 42.8450i − 0.295482i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 179.100i 1.20202i 0.799243 + 0.601008i \(0.205234\pi\)
−0.799243 + 0.601008i \(0.794766\pi\)
\(150\) 0 0
\(151\) − 144.706i − 0.958315i −0.877729 0.479158i \(-0.840942\pi\)
0.877729 0.479158i \(-0.159058\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −51.5967 −0.332882
\(156\) 0 0
\(157\) −100.725 −0.641563 −0.320782 0.947153i \(-0.603946\pi\)
−0.320782 + 0.947153i \(0.603946\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 23.8194i 0.147947i
\(162\) 0 0
\(163\) 87.1103 0.534419 0.267209 0.963638i \(-0.413898\pi\)
0.267209 + 0.963638i \(0.413898\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 30.0052i − 0.179672i −0.995957 0.0898359i \(-0.971366\pi\)
0.995957 0.0898359i \(-0.0286343\pi\)
\(168\) 0 0
\(169\) 138.093 0.817120
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 220.968i 1.27727i 0.769509 + 0.638635i \(0.220501\pi\)
−0.769509 + 0.638635i \(0.779499\pi\)
\(174\) 0 0
\(175\) 89.8358i 0.513347i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 316.793 1.76979 0.884897 0.465787i \(-0.154229\pi\)
0.884897 + 0.465787i \(0.154229\pi\)
\(180\) 0 0
\(181\) −70.5839 −0.389966 −0.194983 0.980807i \(-0.562465\pi\)
−0.194983 + 0.980807i \(0.562465\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 88.8269 0.480145
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 296.917 1.55454 0.777270 0.629167i \(-0.216604\pi\)
0.777270 + 0.629167i \(0.216604\pi\)
\(192\) 0 0
\(193\) 136.180i 0.705598i 0.935699 + 0.352799i \(0.114770\pi\)
−0.935699 + 0.352799i \(0.885230\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 140.944i 0.715450i 0.933827 + 0.357725i \(0.116448\pi\)
−0.933827 + 0.357725i \(0.883552\pi\)
\(198\) 0 0
\(199\) 289.812 1.45634 0.728172 0.685395i \(-0.240370\pi\)
0.728172 + 0.685395i \(0.240370\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −91.7649 −0.452044
\(204\) 0 0
\(205\) 69.4040i 0.338556i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 12.6654i 0.0600255i 0.999550 + 0.0300128i \(0.00955480\pi\)
−0.999550 + 0.0300128i \(0.990445\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 98.5414i 0.458332i
\(216\) 0 0
\(217\) 110.509i 0.509260i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 69.0959 0.312651
\(222\) 0 0
\(223\) 238.808 1.07089 0.535445 0.844570i \(-0.320144\pi\)
0.535445 + 0.844570i \(0.320144\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 254.939i 1.12308i 0.827449 + 0.561541i \(0.189791\pi\)
−0.827449 + 0.561541i \(0.810209\pi\)
\(228\) 0 0
\(229\) −366.702 −1.60132 −0.800659 0.599121i \(-0.795517\pi\)
−0.800659 + 0.599121i \(0.795517\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 436.795i − 1.87466i −0.348449 0.937328i \(-0.613292\pi\)
0.348449 0.937328i \(-0.386708\pi\)
\(234\) 0 0
\(235\) 57.2131 0.243460
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 171.126i 0.716009i 0.933720 + 0.358004i \(0.116543\pi\)
−0.933720 + 0.358004i \(0.883457\pi\)
\(240\) 0 0
\(241\) 29.5990i 0.122817i 0.998113 + 0.0614086i \(0.0195593\pi\)
−0.998113 + 0.0614086i \(0.980441\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 61.3273 0.250315
\(246\) 0 0
\(247\) −97.2017 −0.393529
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −279.128 −1.11206 −0.556032 0.831161i \(-0.687677\pi\)
−0.556032 + 0.831161i \(0.687677\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −312.004 −1.21402 −0.607012 0.794693i \(-0.707632\pi\)
−0.607012 + 0.794693i \(0.707632\pi\)
\(258\) 0 0
\(259\) − 190.248i − 0.734550i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 345.558i 1.31391i 0.753930 + 0.656955i \(0.228156\pi\)
−0.753930 + 0.656955i \(0.771844\pi\)
\(264\) 0 0
\(265\) −69.1722 −0.261027
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −140.545 −0.522471 −0.261235 0.965275i \(-0.584130\pi\)
−0.261235 + 0.965275i \(0.584130\pi\)
\(270\) 0 0
\(271\) − 65.1005i − 0.240223i −0.992760 0.120112i \(-0.961675\pi\)
0.992760 0.120112i \(-0.0383253\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 153.119i − 0.552777i −0.961046 0.276389i \(-0.910862\pi\)
0.961046 0.276389i \(-0.0891377\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 62.7887i − 0.223447i −0.993739 0.111724i \(-0.964363\pi\)
0.993739 0.111724i \(-0.0356372\pi\)
\(282\) 0 0
\(283\) 189.771i 0.670571i 0.942117 + 0.335285i \(0.108833\pi\)
−0.942117 + 0.335285i \(0.891167\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 148.649 0.517940
\(288\) 0 0
\(289\) 134.527 0.465491
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 171.047i − 0.583779i −0.956452 0.291890i \(-0.905716\pi\)
0.956452 0.291890i \(-0.0942840\pi\)
\(294\) 0 0
\(295\) −128.158 −0.434435
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 30.9799i − 0.103612i
\(300\) 0 0
\(301\) 211.055 0.701179
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 60.5857i 0.198642i
\(306\) 0 0
\(307\) 203.453i 0.662714i 0.943505 + 0.331357i \(0.107506\pi\)
−0.943505 + 0.331357i \(0.892494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 488.348 1.57025 0.785126 0.619336i \(-0.212598\pi\)
0.785126 + 0.619336i \(0.212598\pi\)
\(312\) 0 0
\(313\) 204.475 0.653274 0.326637 0.945150i \(-0.394085\pi\)
0.326637 + 0.945150i \(0.394085\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −450.752 −1.42193 −0.710965 0.703227i \(-0.751742\pi\)
−0.710965 + 0.703227i \(0.751742\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 217.307 0.672778
\(324\) 0 0
\(325\) − 116.842i − 0.359514i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 122.538i − 0.372457i
\(330\) 0 0
\(331\) −59.0892 −0.178517 −0.0892587 0.996008i \(-0.528450\pi\)
−0.0892587 + 0.996008i \(0.528450\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 177.658 0.530323
\(336\) 0 0
\(337\) 552.013i 1.63802i 0.573778 + 0.819011i \(0.305477\pi\)
−0.573778 + 0.819011i \(0.694523\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 340.796i − 0.993576i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 637.931i 1.83842i 0.393772 + 0.919208i \(0.371170\pi\)
−0.393772 + 0.919208i \(0.628830\pi\)
\(348\) 0 0
\(349\) 576.180i 1.65095i 0.564442 + 0.825473i \(0.309092\pi\)
−0.564442 + 0.825473i \(0.690908\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 606.017 1.71676 0.858381 0.513013i \(-0.171471\pi\)
0.858381 + 0.513013i \(0.171471\pi\)
\(354\) 0 0
\(355\) 40.1434 0.113080
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 432.644i 1.20514i 0.798068 + 0.602568i \(0.205856\pi\)
−0.798068 + 0.602568i \(0.794144\pi\)
\(360\) 0 0
\(361\) 55.3000 0.153185
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 118.689i 0.325175i
\(366\) 0 0
\(367\) −78.5581 −0.214055 −0.107027 0.994256i \(-0.534133\pi\)
−0.107027 + 0.994256i \(0.534133\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 148.152i 0.399332i
\(372\) 0 0
\(373\) − 708.914i − 1.90057i −0.311375 0.950287i \(-0.600790\pi\)
0.311375 0.950287i \(-0.399210\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 119.351 0.316581
\(378\) 0 0
\(379\) −94.8860 −0.250359 −0.125179 0.992134i \(-0.539951\pi\)
−0.125179 + 0.992134i \(0.539951\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 33.2704 0.0868679 0.0434340 0.999056i \(-0.486170\pi\)
0.0434340 + 0.999056i \(0.486170\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −243.917 −0.627036 −0.313518 0.949582i \(-0.601508\pi\)
−0.313518 + 0.949582i \(0.601508\pi\)
\(390\) 0 0
\(391\) 69.2596i 0.177135i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 240.890i 0.609847i
\(396\) 0 0
\(397\) −534.439 −1.34619 −0.673097 0.739555i \(-0.735036\pi\)
−0.673097 + 0.739555i \(0.735036\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −103.020 −0.256908 −0.128454 0.991715i \(-0.541002\pi\)
−0.128454 + 0.991715i \(0.541002\pi\)
\(402\) 0 0
\(403\) − 143.730i − 0.356651i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 8.50648i 0.0207982i 0.999946 + 0.0103991i \(0.00331020\pi\)
−0.999946 + 0.0103991i \(0.996690\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 274.488i 0.664620i
\(414\) 0 0
\(415\) − 44.3782i − 0.106935i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 351.102 0.837952 0.418976 0.907997i \(-0.362389\pi\)
0.418976 + 0.907997i \(0.362389\pi\)
\(420\) 0 0
\(421\) 764.361 1.81558 0.907792 0.419421i \(-0.137767\pi\)
0.907792 + 0.419421i \(0.137767\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 261.216i 0.614625i
\(426\) 0 0
\(427\) 129.762 0.303892
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 384.778i 0.892755i 0.894845 + 0.446378i \(0.147286\pi\)
−0.894845 + 0.446378i \(0.852714\pi\)
\(432\) 0 0
\(433\) −520.075 −1.20110 −0.600548 0.799588i \(-0.705051\pi\)
−0.600548 + 0.799588i \(0.705051\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 97.4320i − 0.222957i
\(438\) 0 0
\(439\) − 79.5957i − 0.181311i −0.995882 0.0906557i \(-0.971104\pi\)
0.995882 0.0906557i \(-0.0288963\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −524.711 −1.18445 −0.592224 0.805773i \(-0.701750\pi\)
−0.592224 + 0.805773i \(0.701750\pi\)
\(444\) 0 0
\(445\) −237.068 −0.532738
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −138.191 −0.307774 −0.153887 0.988088i \(-0.549179\pi\)
−0.153887 + 0.988088i \(0.549179\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 47.4245 0.104230
\(456\) 0 0
\(457\) 647.870i 1.41766i 0.705380 + 0.708829i \(0.250776\pi\)
−0.705380 + 0.708829i \(0.749224\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 603.213i 1.30849i 0.756284 + 0.654244i \(0.227013\pi\)
−0.756284 + 0.654244i \(0.772987\pi\)
\(462\) 0 0
\(463\) −105.557 −0.227986 −0.113993 0.993482i \(-0.536364\pi\)
−0.113993 + 0.993482i \(0.536364\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 280.330 0.600278 0.300139 0.953895i \(-0.402967\pi\)
0.300139 + 0.953895i \(0.402967\pi\)
\(468\) 0 0
\(469\) − 380.506i − 0.811314i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 367.469i − 0.773618i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 779.025i 1.62636i 0.582015 + 0.813178i \(0.302265\pi\)
−0.582015 + 0.813178i \(0.697735\pi\)
\(480\) 0 0
\(481\) 247.440i 0.514429i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 74.4327 0.153469
\(486\) 0 0
\(487\) 102.065 0.209579 0.104790 0.994494i \(-0.466583\pi\)
0.104790 + 0.994494i \(0.466583\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 527.003i 1.07333i 0.843797 + 0.536663i \(0.180315\pi\)
−0.843797 + 0.536663i \(0.819685\pi\)
\(492\) 0 0
\(493\) −266.825 −0.541227
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 85.9788i − 0.172996i
\(498\) 0 0
\(499\) −692.086 −1.38695 −0.693473 0.720483i \(-0.743920\pi\)
−0.693473 + 0.720483i \(0.743920\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 474.578i 0.943495i 0.881734 + 0.471747i \(0.156377\pi\)
−0.881734 + 0.471747i \(0.843623\pi\)
\(504\) 0 0
\(505\) − 334.697i − 0.662766i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 857.022 1.68374 0.841869 0.539682i \(-0.181456\pi\)
0.841869 + 0.539682i \(0.181456\pi\)
\(510\) 0 0
\(511\) 254.207 0.497469
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −243.048 −0.471938
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −206.606 −0.396557 −0.198279 0.980146i \(-0.563535\pi\)
−0.198279 + 0.980146i \(0.563535\pi\)
\(522\) 0 0
\(523\) 49.3219i 0.0943058i 0.998888 + 0.0471529i \(0.0150148\pi\)
−0.998888 + 0.0471529i \(0.984985\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 321.328i 0.609731i
\(528\) 0 0
\(529\) −497.947 −0.941298
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −193.335 −0.362730
\(534\) 0 0
\(535\) 210.841i 0.394096i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 41.1928i 0.0761420i 0.999275 + 0.0380710i \(0.0121213\pi\)
−0.999275 + 0.0380710i \(0.987879\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 176.338i 0.323556i
\(546\) 0 0
\(547\) − 531.357i − 0.971402i −0.874125 0.485701i \(-0.838564\pi\)
0.874125 0.485701i \(-0.161436\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 375.360 0.681233
\(552\) 0 0
\(553\) 515.935 0.932975
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 148.347i − 0.266332i −0.991094 0.133166i \(-0.957486\pi\)
0.991094 0.133166i \(-0.0425143\pi\)
\(558\) 0 0
\(559\) −274.502 −0.491058
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 580.912i 1.03182i 0.856644 + 0.515908i \(0.172545\pi\)
−0.856644 + 0.515908i \(0.827455\pi\)
\(564\) 0 0
\(565\) 318.315 0.563390
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 5.08773i − 0.00894154i −0.999990 0.00447077i \(-0.998577\pi\)
0.999990 0.00447077i \(-0.00142309\pi\)
\(570\) 0 0
\(571\) 351.952i 0.616378i 0.951325 + 0.308189i \(0.0997229\pi\)
−0.951325 + 0.308189i \(0.900277\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 117.119 0.203685
\(576\) 0 0
\(577\) 1056.85 1.83163 0.915817 0.401595i \(-0.131544\pi\)
0.915817 + 0.401595i \(0.131544\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −95.0488 −0.163595
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 784.047 1.33569 0.667843 0.744302i \(-0.267218\pi\)
0.667843 + 0.744302i \(0.267218\pi\)
\(588\) 0 0
\(589\) − 452.033i − 0.767458i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 378.692i − 0.638604i −0.947653 0.319302i \(-0.896551\pi\)
0.947653 0.319302i \(-0.103449\pi\)
\(594\) 0 0
\(595\) −106.024 −0.178191
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −176.013 −0.293845 −0.146922 0.989148i \(-0.546937\pi\)
−0.146922 + 0.989148i \(0.546937\pi\)
\(600\) 0 0
\(601\) − 468.533i − 0.779590i −0.920902 0.389795i \(-0.872546\pi\)
0.920902 0.389795i \(-0.127454\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1036.78i − 1.70804i −0.520243 0.854018i \(-0.674159\pi\)
0.520243 0.854018i \(-0.325841\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 159.376i 0.260844i
\(612\) 0 0
\(613\) 1087.98i 1.77484i 0.460963 + 0.887419i \(0.347504\pi\)
−0.460963 + 0.887419i \(0.652496\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −301.362 −0.488431 −0.244216 0.969721i \(-0.578530\pi\)
−0.244216 + 0.969721i \(0.578530\pi\)
\(618\) 0 0
\(619\) −67.5843 −0.109183 −0.0545915 0.998509i \(-0.517386\pi\)
−0.0545915 + 0.998509i \(0.517386\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 507.751i 0.815009i
\(624\) 0 0
\(625\) 342.146 0.547433
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 553.185i − 0.879468i
\(630\) 0 0
\(631\) −252.237 −0.399742 −0.199871 0.979822i \(-0.564052\pi\)
−0.199871 + 0.979822i \(0.564052\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 426.428i 0.671540i
\(636\) 0 0
\(637\) 170.836i 0.268189i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 597.888 0.932743 0.466372 0.884589i \(-0.345561\pi\)
0.466372 + 0.884589i \(0.345561\pi\)
\(642\) 0 0
\(643\) −757.964 −1.17879 −0.589397 0.807844i \(-0.700634\pi\)
−0.589397 + 0.807844i \(0.700634\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 83.5746 0.129173 0.0645863 0.997912i \(-0.479427\pi\)
0.0645863 + 0.997912i \(0.479427\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.23477 0.00342231 0.00171116 0.999999i \(-0.499455\pi\)
0.00171116 + 0.999999i \(0.499455\pi\)
\(654\) 0 0
\(655\) − 519.389i − 0.792960i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 644.819i 0.978482i 0.872149 + 0.489241i \(0.162726\pi\)
−0.872149 + 0.489241i \(0.837274\pi\)
\(660\) 0 0
\(661\) 729.227 1.10322 0.551609 0.834103i \(-0.314014\pi\)
0.551609 + 0.834103i \(0.314014\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 149.150 0.224286
\(666\) 0 0
\(667\) 119.634i 0.179361i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 185.906i − 0.276235i −0.990416 0.138117i \(-0.955895\pi\)
0.990416 0.138117i \(-0.0441051\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18.5555i 0.0274084i 0.999906 + 0.0137042i \(0.00436232\pi\)
−0.999906 + 0.0137042i \(0.995638\pi\)
\(678\) 0 0
\(679\) − 159.419i − 0.234785i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 410.544 0.601090 0.300545 0.953768i \(-0.402831\pi\)
0.300545 + 0.953768i \(0.402831\pi\)
\(684\) 0 0
\(685\) 108.793 0.158821
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 192.689i − 0.279665i
\(690\) 0 0
\(691\) 112.223 0.162406 0.0812030 0.996698i \(-0.474124\pi\)
0.0812030 + 0.996698i \(0.474124\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.8489i 0.0487035i
\(696\) 0 0
\(697\) 432.226 0.620123
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 56.2228i 0.0802038i 0.999196 + 0.0401019i \(0.0127683\pi\)
−0.999196 + 0.0401019i \(0.987232\pi\)
\(702\) 0 0
\(703\) 778.202i 1.10697i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −716.850 −1.01393
\(708\) 0 0
\(709\) −805.555 −1.13619 −0.568093 0.822965i \(-0.692319\pi\)
−0.568093 + 0.822965i \(0.692319\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 144.071 0.202063
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 294.061 0.408985 0.204493 0.978868i \(-0.434446\pi\)
0.204493 + 0.978868i \(0.434446\pi\)
\(720\) 0 0
\(721\) 520.558i 0.721995i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 451.203i 0.622350i
\(726\) 0 0
\(727\) 675.124 0.928644 0.464322 0.885666i \(-0.346298\pi\)
0.464322 + 0.885666i \(0.346298\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 613.684 0.839513
\(732\) 0 0
\(733\) 360.437i 0.491728i 0.969304 + 0.245864i \(0.0790717\pi\)
−0.969304 + 0.245864i \(0.920928\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1112.66i 1.50563i 0.658235 + 0.752813i \(0.271303\pi\)
−0.658235 + 0.752813i \(0.728697\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.157513i 0 0.000211996i 1.00000 0.000105998i \(3.37401e-5\pi\)
−1.00000 0.000105998i \(0.999966\pi\)
\(744\) 0 0
\(745\) 357.434i 0.479778i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 451.578 0.602908
\(750\) 0 0
\(751\) −391.009 −0.520652 −0.260326 0.965521i \(-0.583830\pi\)
−0.260326 + 0.965521i \(0.583830\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 288.792i − 0.382506i
\(756\) 0 0
\(757\) −257.842 −0.340611 −0.170305 0.985391i \(-0.554475\pi\)
−0.170305 + 0.985391i \(0.554475\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1287.40i − 1.69172i −0.533402 0.845862i \(-0.679087\pi\)
0.533402 0.845862i \(-0.320913\pi\)
\(762\) 0 0
\(763\) 377.679 0.494993
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 357.004i − 0.465455i
\(768\) 0 0
\(769\) − 235.786i − 0.306614i −0.988179 0.153307i \(-0.951008\pi\)
0.988179 0.153307i \(-0.0489923\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.6732 0.0189822 0.00949110 0.999955i \(-0.496979\pi\)
0.00949110 + 0.999955i \(0.496979\pi\)
\(774\) 0 0
\(775\) 543.369 0.701122
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −608.040 −0.780539
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −201.020 −0.256076
\(786\) 0 0
\(787\) 164.869i 0.209490i 0.994499 + 0.104745i \(0.0334027\pi\)
−0.994499 + 0.104745i \(0.966597\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 681.765i − 0.861902i
\(792\) 0 0
\(793\) −168.770 −0.212825
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 64.1926 0.0805428 0.0402714 0.999189i \(-0.487178\pi\)
0.0402714 + 0.999189i \(0.487178\pi\)
\(798\) 0 0
\(799\) − 356.305i − 0.445938i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 47.5369i 0.0590520i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 520.853i − 0.643824i −0.946770 0.321912i \(-0.895675\pi\)
0.946770 0.321912i \(-0.104325\pi\)
\(810\) 0 0
\(811\) 229.804i 0.283359i 0.989913 + 0.141680i \(0.0452503\pi\)
−0.989913 + 0.141680i \(0.954750\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 173.848 0.213310
\(816\) 0 0
\(817\) −863.309 −1.05668
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 897.675i − 1.09339i −0.837331 0.546696i \(-0.815885\pi\)
0.837331 0.546696i \(-0.184115\pi\)
\(822\) 0 0
\(823\) −736.485 −0.894878 −0.447439 0.894314i \(-0.647664\pi\)
−0.447439 + 0.894314i \(0.647664\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 208.213i − 0.251769i −0.992045 0.125884i \(-0.959823\pi\)
0.992045 0.125884i \(-0.0401768\pi\)
\(828\) 0 0
\(829\) 557.318 0.672277 0.336139 0.941813i \(-0.390879\pi\)
0.336139 + 0.941813i \(0.390879\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 381.927i − 0.458495i
\(834\) 0 0
\(835\) − 59.8820i − 0.0717150i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 215.364 0.256691 0.128346 0.991729i \(-0.459033\pi\)
0.128346 + 0.991729i \(0.459033\pi\)
\(840\) 0 0
\(841\) 380.108 0.451971
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 275.596 0.326149
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −248.027 −0.291453
\(852\) 0 0
\(853\) − 207.821i − 0.243635i −0.992552 0.121818i \(-0.961128\pi\)
0.992552 0.121818i \(-0.0388723\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1643.32i − 1.91752i −0.284209 0.958762i \(-0.591731\pi\)
0.284209 0.958762i \(-0.408269\pi\)
\(858\) 0 0
\(859\) 596.456 0.694361 0.347181 0.937798i \(-0.387139\pi\)
0.347181 + 0.937798i \(0.387139\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −861.713 −0.998508 −0.499254 0.866456i \(-0.666393\pi\)
−0.499254 + 0.866456i \(0.666393\pi\)
\(864\) 0 0
\(865\) 440.990i 0.509815i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 494.893i 0.568190i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 392.551i 0.448629i
\(876\) 0 0
\(877\) − 1423.15i − 1.62275i −0.584527 0.811374i \(-0.698720\pi\)
0.584527 0.811374i \(-0.301280\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1172.32 −1.33067 −0.665337 0.746543i \(-0.731712\pi\)
−0.665337 + 0.746543i \(0.731712\pi\)
\(882\) 0 0
\(883\) 24.1743 0.0273775 0.0136887 0.999906i \(-0.495643\pi\)
0.0136887 + 0.999906i \(0.495643\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 190.901i 0.215221i 0.994193 + 0.107610i \(0.0343199\pi\)
−0.994193 + 0.107610i \(0.965680\pi\)
\(888\) 0 0
\(889\) 913.319 1.02736
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 501.237i 0.561296i
\(894\) 0 0
\(895\) 632.231 0.706403
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 555.037i 0.617394i
\(900\) 0 0
\(901\) 430.782i 0.478115i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −140.866 −0.155653
\(906\) 0 0
\(907\) −97.9473 −0.107990 −0.0539952 0.998541i \(-0.517196\pi\)
−0.0539952 + 0.998541i \(0.517196\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1128.92 1.23921 0.619605 0.784914i \(-0.287293\pi\)
0.619605 + 0.784914i \(0.287293\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1112.42 −1.21311
\(918\) 0 0
\(919\) 1244.01i 1.35366i 0.736140 + 0.676829i \(0.236646\pi\)
−0.736140 + 0.676829i \(0.763354\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 111.826i 0.121154i
\(924\) 0 0
\(925\) −935.442 −1.01129
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1400.19 −1.50720 −0.753598 0.657336i \(-0.771683\pi\)
−0.753598 + 0.657336i \(0.771683\pi\)
\(930\) 0 0
\(931\) 537.281i 0.577101i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 520.734i 0.555746i 0.960618 + 0.277873i \(0.0896295\pi\)
−0.960618 + 0.277873i \(0.910371\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1618.21i − 1.71967i −0.510573 0.859835i \(-0.670567\pi\)
0.510573 0.859835i \(-0.329433\pi\)
\(942\) 0 0
\(943\) − 193.793i − 0.205507i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1530.96 −1.61664 −0.808320 0.588743i \(-0.799623\pi\)
−0.808320 + 0.588743i \(0.799623\pi\)
\(948\) 0 0
\(949\) −330.626 −0.348394
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 165.927i − 0.174110i −0.996203 0.0870552i \(-0.972254\pi\)
0.996203 0.0870552i \(-0.0277456\pi\)
\(954\) 0 0
\(955\) 592.564 0.620486
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 233.011i − 0.242973i
\(960\) 0 0
\(961\) −292.587 −0.304461
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 271.778i 0.281635i
\(966\) 0 0
\(967\) − 684.767i − 0.708135i −0.935220 0.354067i \(-0.884798\pi\)
0.935220 0.354067i \(-0.115202\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 310.150 0.319413 0.159706 0.987165i \(-0.448945\pi\)
0.159706 + 0.987165i \(0.448945\pi\)
\(972\) 0 0
\(973\) 72.4973 0.0745090
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −350.141 −0.358384 −0.179192 0.983814i \(-0.557348\pi\)
−0.179192 + 0.983814i \(0.557348\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1016.15 −1.03372 −0.516862 0.856069i \(-0.672900\pi\)
−0.516862 + 0.856069i \(0.672900\pi\)
\(984\) 0 0
\(985\) 281.284i 0.285568i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 275.152i − 0.278212i
\(990\) 0 0
\(991\) 1230.37 1.24154 0.620770 0.783993i \(-0.286820\pi\)
0.620770 + 0.783993i \(0.286820\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 578.385 0.581291
\(996\) 0 0
\(997\) 1258.19i 1.26197i 0.775794 + 0.630987i \(0.217350\pi\)
−0.775794 + 0.630987i \(0.782650\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4356.3.f.m.1693.9 16
3.2 odd 2 1452.3.f.d.241.11 16
11.6 odd 10 396.3.t.c.217.2 16
11.9 even 5 396.3.t.c.73.2 16
11.10 odd 2 inner 4356.3.f.m.1693.10 16
33.17 even 10 132.3.l.a.85.4 yes 16
33.20 odd 10 132.3.l.a.73.4 16
33.32 even 2 1452.3.f.d.241.12 16
132.83 odd 10 528.3.bf.a.481.2 16
132.119 even 10 528.3.bf.a.337.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.l.a.73.4 16 33.20 odd 10
132.3.l.a.85.4 yes 16 33.17 even 10
396.3.t.c.73.2 16 11.9 even 5
396.3.t.c.217.2 16 11.6 odd 10
528.3.bf.a.337.2 16 132.119 even 10
528.3.bf.a.481.2 16 132.83 odd 10
1452.3.f.d.241.11 16 3.2 odd 2
1452.3.f.d.241.12 16 33.32 even 2
4356.3.f.m.1693.9 16 1.1 even 1 trivial
4356.3.f.m.1693.10 16 11.10 odd 2 inner