Properties

Label 4356.3.f.m.1693.1
Level $4356$
Weight $3$
Character 4356.1693
Analytic conductor $118.692$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4356,3,Mod(1693,4356)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4356.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4356, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4356.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,92,0,184,0,0,0, 0,0,-104,0,0,0,0,0,144,0,0,0,0,0,0,0,0,0,80,0,-172,0,0,0,32,0,0,0,0,0, -4,0,0,0,0,0,0,0,-316,0,0,0,-132,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-12, 0,-656] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(118.692403155\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 45 x^{14} + 278 x^{13} + 569 x^{12} - 3118 x^{11} + 4245 x^{10} - 22868 x^{9} + \cdots + 188375625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 11^{4} \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.1
Root \(-6.17368 - 0.00685009i\) of defining polynomial
Character \(\chi\) \(=\) 4356.1693
Dual form 4356.3.f.m.1693.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.43361 q^{5} -3.18836i q^{7} +10.7138i q^{13} +32.8304i q^{17} +25.0072i q^{19} -20.4320 q^{23} +63.9930 q^{25} -7.55416i q^{29} +5.27753 q^{31} +30.0778i q^{35} +48.5998 q^{37} -30.6668i q^{41} -51.3462i q^{43} +24.6883 q^{47} +38.8344 q^{49} +42.1056 q^{53} +3.75534 q^{59} -36.3652i q^{61} -101.070i q^{65} -72.7217 q^{67} +2.18450 q^{71} +17.8049i q^{73} +96.1361i q^{79} -29.8529i q^{83} -309.709i q^{85} -99.5260 q^{89} +34.1596 q^{91} -235.908i q^{95} +73.9702 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{5} + 92 q^{23} + 184 q^{25} - 104 q^{31} + 144 q^{37} + 80 q^{47} - 172 q^{49} + 32 q^{53} - 4 q^{59} - 316 q^{67} - 132 q^{71} - 12 q^{89} - 656 q^{91} - 296 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4356\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\) \(2179\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.43361 −1.88672 −0.943361 0.331768i \(-0.892355\pi\)
−0.943361 + 0.331768i \(0.892355\pi\)
\(6\) 0 0
\(7\) − 3.18836i − 0.455480i −0.973722 0.227740i \(-0.926866\pi\)
0.973722 0.227740i \(-0.0731336\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 10.7138i 0.824141i 0.911152 + 0.412071i \(0.135194\pi\)
−0.911152 + 0.412071i \(0.864806\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 32.8304i 1.93120i 0.260029 + 0.965601i \(0.416268\pi\)
−0.260029 + 0.965601i \(0.583732\pi\)
\(18\) 0 0
\(19\) 25.0072i 1.31617i 0.752945 + 0.658083i \(0.228632\pi\)
−0.752945 + 0.658083i \(0.771368\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −20.4320 −0.888348 −0.444174 0.895941i \(-0.646503\pi\)
−0.444174 + 0.895941i \(0.646503\pi\)
\(24\) 0 0
\(25\) 63.9930 2.55972
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 7.55416i − 0.260488i −0.991482 0.130244i \(-0.958424\pi\)
0.991482 0.130244i \(-0.0415761\pi\)
\(30\) 0 0
\(31\) 5.27753 0.170243 0.0851215 0.996371i \(-0.472872\pi\)
0.0851215 + 0.996371i \(0.472872\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 30.0778i 0.859364i
\(36\) 0 0
\(37\) 48.5998 1.31351 0.656755 0.754104i \(-0.271929\pi\)
0.656755 + 0.754104i \(0.271929\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 30.6668i − 0.747970i −0.927435 0.373985i \(-0.877991\pi\)
0.927435 0.373985i \(-0.122009\pi\)
\(42\) 0 0
\(43\) − 51.3462i − 1.19410i −0.802205 0.597049i \(-0.796340\pi\)
0.802205 0.597049i \(-0.203660\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 24.6883 0.525282 0.262641 0.964894i \(-0.415407\pi\)
0.262641 + 0.964894i \(0.415407\pi\)
\(48\) 0 0
\(49\) 38.8344 0.792538
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 42.1056 0.794446 0.397223 0.917722i \(-0.369974\pi\)
0.397223 + 0.917722i \(0.369974\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.75534 0.0636498 0.0318249 0.999493i \(-0.489868\pi\)
0.0318249 + 0.999493i \(0.489868\pi\)
\(60\) 0 0
\(61\) − 36.3652i − 0.596151i −0.954542 0.298075i \(-0.903655\pi\)
0.954542 0.298075i \(-0.0963447\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 101.070i − 1.55493i
\(66\) 0 0
\(67\) −72.7217 −1.08540 −0.542699 0.839927i \(-0.682598\pi\)
−0.542699 + 0.839927i \(0.682598\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.18450 0.0307675 0.0153838 0.999882i \(-0.495103\pi\)
0.0153838 + 0.999882i \(0.495103\pi\)
\(72\) 0 0
\(73\) 17.8049i 0.243903i 0.992536 + 0.121952i \(0.0389152\pi\)
−0.992536 + 0.121952i \(0.961085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 96.1361i 1.21691i 0.793587 + 0.608456i \(0.208211\pi\)
−0.793587 + 0.608456i \(0.791789\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 29.8529i − 0.359674i −0.983696 0.179837i \(-0.942443\pi\)
0.983696 0.179837i \(-0.0575570\pi\)
\(84\) 0 0
\(85\) − 309.709i − 3.64364i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −99.5260 −1.11827 −0.559135 0.829077i \(-0.688867\pi\)
−0.559135 + 0.829077i \(0.688867\pi\)
\(90\) 0 0
\(91\) 34.1596 0.375380
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 235.908i − 2.48324i
\(96\) 0 0
\(97\) 73.9702 0.762580 0.381290 0.924456i \(-0.375480\pi\)
0.381290 + 0.924456i \(0.375480\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 153.802i 1.52279i 0.648287 + 0.761396i \(0.275486\pi\)
−0.648287 + 0.761396i \(0.724514\pi\)
\(102\) 0 0
\(103\) 48.4212 0.470109 0.235054 0.971982i \(-0.424473\pi\)
0.235054 + 0.971982i \(0.424473\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 195.686i 1.82884i 0.404765 + 0.914421i \(0.367353\pi\)
−0.404765 + 0.914421i \(0.632647\pi\)
\(108\) 0 0
\(109\) − 25.7099i − 0.235871i −0.993021 0.117935i \(-0.962372\pi\)
0.993021 0.117935i \(-0.0376276\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −76.3369 −0.675547 −0.337774 0.941227i \(-0.609674\pi\)
−0.337774 + 0.941227i \(0.609674\pi\)
\(114\) 0 0
\(115\) 192.748 1.67607
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 104.675 0.879624
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −367.845 −2.94276
\(126\) 0 0
\(127\) − 56.0694i − 0.441492i −0.975331 0.220746i \(-0.929151\pi\)
0.975331 0.220746i \(-0.0708491\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 84.2041i − 0.642780i −0.946947 0.321390i \(-0.895850\pi\)
0.946947 0.321390i \(-0.104150\pi\)
\(132\) 0 0
\(133\) 79.7318 0.599487
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −51.9521 −0.379213 −0.189606 0.981860i \(-0.560721\pi\)
−0.189606 + 0.981860i \(0.560721\pi\)
\(138\) 0 0
\(139\) 186.964i 1.34506i 0.740068 + 0.672532i \(0.234793\pi\)
−0.740068 + 0.672532i \(0.765207\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 71.2630i 0.491469i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 72.5256i 0.486749i 0.969932 + 0.243375i \(0.0782545\pi\)
−0.969932 + 0.243375i \(0.921746\pi\)
\(150\) 0 0
\(151\) 213.572i 1.41438i 0.707022 + 0.707192i \(0.250038\pi\)
−0.707022 + 0.707192i \(0.749962\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −49.7862 −0.321201
\(156\) 0 0
\(157\) −11.3908 −0.0725529 −0.0362765 0.999342i \(-0.511550\pi\)
−0.0362765 + 0.999342i \(0.511550\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 65.1446i 0.404625i
\(162\) 0 0
\(163\) −120.865 −0.741505 −0.370753 0.928732i \(-0.620900\pi\)
−0.370753 + 0.928732i \(0.620900\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 205.052i 1.22786i 0.789362 + 0.613929i \(0.210412\pi\)
−0.789362 + 0.613929i \(0.789588\pi\)
\(168\) 0 0
\(169\) 54.2137 0.320791
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 82.1056i − 0.474599i −0.971437 0.237299i \(-0.923738\pi\)
0.971437 0.237299i \(-0.0762623\pi\)
\(174\) 0 0
\(175\) − 204.033i − 1.16590i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −170.274 −0.951252 −0.475626 0.879648i \(-0.657778\pi\)
−0.475626 + 0.879648i \(0.657778\pi\)
\(180\) 0 0
\(181\) 212.035 1.17147 0.585733 0.810504i \(-0.300807\pi\)
0.585733 + 0.810504i \(0.300807\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −458.472 −2.47823
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 55.5015 0.290584 0.145292 0.989389i \(-0.453588\pi\)
0.145292 + 0.989389i \(0.453588\pi\)
\(192\) 0 0
\(193\) 167.281i 0.866739i 0.901216 + 0.433370i \(0.142676\pi\)
−0.901216 + 0.433370i \(0.857324\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 72.3636i 0.367328i 0.982989 + 0.183664i \(0.0587958\pi\)
−0.982989 + 0.183664i \(0.941204\pi\)
\(198\) 0 0
\(199\) 317.651 1.59624 0.798118 0.602501i \(-0.205829\pi\)
0.798118 + 0.602501i \(0.205829\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.0854 −0.118647
\(204\) 0 0
\(205\) 289.298i 1.41121i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 248.577i − 1.17809i −0.808100 0.589046i \(-0.799504\pi\)
0.808100 0.589046i \(-0.200496\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 484.380i 2.25293i
\(216\) 0 0
\(217\) − 16.8267i − 0.0775423i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −351.740 −1.59158
\(222\) 0 0
\(223\) 98.7957 0.443030 0.221515 0.975157i \(-0.428900\pi\)
0.221515 + 0.975157i \(0.428900\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 411.271i 1.81177i 0.423527 + 0.905884i \(0.360792\pi\)
−0.423527 + 0.905884i \(0.639208\pi\)
\(228\) 0 0
\(229\) −300.824 −1.31364 −0.656821 0.754046i \(-0.728099\pi\)
−0.656821 + 0.754046i \(0.728099\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.4018i 0.0832697i 0.999133 + 0.0416348i \(0.0132566\pi\)
−0.999133 + 0.0416348i \(0.986743\pi\)
\(234\) 0 0
\(235\) −232.899 −0.991061
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 18.0215i 0.0754039i 0.999289 + 0.0377020i \(0.0120038\pi\)
−0.999289 + 0.0377020i \(0.987996\pi\)
\(240\) 0 0
\(241\) 26.6523i 0.110591i 0.998470 + 0.0552953i \(0.0176100\pi\)
−0.998470 + 0.0552953i \(0.982390\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −366.348 −1.49530
\(246\) 0 0
\(247\) −267.923 −1.08471
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 183.977 0.732975 0.366487 0.930423i \(-0.380560\pi\)
0.366487 + 0.930423i \(0.380560\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −40.8892 −0.159102 −0.0795510 0.996831i \(-0.525349\pi\)
−0.0795510 + 0.996831i \(0.525349\pi\)
\(258\) 0 0
\(259\) − 154.954i − 0.598277i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 518.488i − 1.97144i −0.168402 0.985718i \(-0.553861\pi\)
0.168402 0.985718i \(-0.446139\pi\)
\(264\) 0 0
\(265\) −397.208 −1.49890
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −281.603 −1.04685 −0.523425 0.852072i \(-0.675346\pi\)
−0.523425 + 0.852072i \(0.675346\pi\)
\(270\) 0 0
\(271\) − 128.615i − 0.474595i −0.971437 0.237298i \(-0.923738\pi\)
0.971437 0.237298i \(-0.0762617\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 317.542i − 1.14636i −0.819429 0.573180i \(-0.805709\pi\)
0.819429 0.573180i \(-0.194291\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 270.149i − 0.961385i −0.876889 0.480692i \(-0.840385\pi\)
0.876889 0.480692i \(-0.159615\pi\)
\(282\) 0 0
\(283\) 411.351i 1.45354i 0.686882 + 0.726769i \(0.258979\pi\)
−0.686882 + 0.726769i \(0.741021\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −97.7767 −0.340685
\(288\) 0 0
\(289\) −788.837 −2.72954
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 235.474i − 0.803667i −0.915713 0.401834i \(-0.868373\pi\)
0.915713 0.401834i \(-0.131627\pi\)
\(294\) 0 0
\(295\) −35.4264 −0.120089
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 218.905i − 0.732125i
\(300\) 0 0
\(301\) −163.710 −0.543888
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 343.055i 1.12477i
\(306\) 0 0
\(307\) 202.665i 0.660146i 0.943955 + 0.330073i \(0.107073\pi\)
−0.943955 + 0.330073i \(0.892927\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.49354 −0.00801780 −0.00400890 0.999992i \(-0.501276\pi\)
−0.00400890 + 0.999992i \(0.501276\pi\)
\(312\) 0 0
\(313\) −433.480 −1.38492 −0.692460 0.721456i \(-0.743473\pi\)
−0.692460 + 0.721456i \(0.743473\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −247.195 −0.779795 −0.389897 0.920858i \(-0.627490\pi\)
−0.389897 + 0.920858i \(0.627490\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −820.996 −2.54178
\(324\) 0 0
\(325\) 685.611i 2.10957i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 78.7151i − 0.239255i
\(330\) 0 0
\(331\) −581.456 −1.75666 −0.878332 0.478050i \(-0.841344\pi\)
−0.878332 + 0.478050i \(0.841344\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 686.028 2.04784
\(336\) 0 0
\(337\) 18.3203i 0.0543629i 0.999631 + 0.0271814i \(0.00865318\pi\)
−0.999631 + 0.0271814i \(0.991347\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 280.048i − 0.816465i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 283.283i 0.816379i 0.912897 + 0.408189i \(0.133840\pi\)
−0.912897 + 0.408189i \(0.866160\pi\)
\(348\) 0 0
\(349\) − 398.818i − 1.14274i −0.820691 0.571372i \(-0.806411\pi\)
0.820691 0.571372i \(-0.193589\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 395.028 1.11906 0.559530 0.828810i \(-0.310982\pi\)
0.559530 + 0.828810i \(0.310982\pi\)
\(354\) 0 0
\(355\) −20.6077 −0.0580498
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 148.680i − 0.414151i −0.978325 0.207075i \(-0.933605\pi\)
0.978325 0.207075i \(-0.0663946\pi\)
\(360\) 0 0
\(361\) −264.358 −0.732293
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 167.965i − 0.460177i
\(366\) 0 0
\(367\) −483.684 −1.31794 −0.658970 0.752169i \(-0.729008\pi\)
−0.658970 + 0.752169i \(0.729008\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 134.248i − 0.361854i
\(372\) 0 0
\(373\) − 170.877i − 0.458115i −0.973413 0.229057i \(-0.926436\pi\)
0.973413 0.229057i \(-0.0735644\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 80.9341 0.214679
\(378\) 0 0
\(379\) −435.307 −1.14857 −0.574283 0.818657i \(-0.694719\pi\)
−0.574283 + 0.818657i \(0.694719\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −158.942 −0.414991 −0.207496 0.978236i \(-0.566531\pi\)
−0.207496 + 0.978236i \(0.566531\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 443.319 1.13964 0.569819 0.821770i \(-0.307013\pi\)
0.569819 + 0.821770i \(0.307013\pi\)
\(390\) 0 0
\(391\) − 670.791i − 1.71558i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 906.910i − 2.29598i
\(396\) 0 0
\(397\) −145.331 −0.366074 −0.183037 0.983106i \(-0.558593\pi\)
−0.183037 + 0.983106i \(0.558593\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 620.853 1.54826 0.774131 0.633026i \(-0.218187\pi\)
0.774131 + 0.633026i \(0.218187\pi\)
\(402\) 0 0
\(403\) 56.5426i 0.140304i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 571.379i 1.39701i 0.715603 + 0.698507i \(0.246152\pi\)
−0.715603 + 0.698507i \(0.753848\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 11.9734i − 0.0289912i
\(414\) 0 0
\(415\) 281.621i 0.678604i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −271.765 −0.648604 −0.324302 0.945954i \(-0.605129\pi\)
−0.324302 + 0.945954i \(0.605129\pi\)
\(420\) 0 0
\(421\) −434.059 −1.03102 −0.515510 0.856884i \(-0.672397\pi\)
−0.515510 + 0.856884i \(0.672397\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2100.92i 4.94334i
\(426\) 0 0
\(427\) −115.945 −0.271535
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 425.188i 0.986516i 0.869883 + 0.493258i \(0.164194\pi\)
−0.869883 + 0.493258i \(0.835806\pi\)
\(432\) 0 0
\(433\) −230.771 −0.532958 −0.266479 0.963841i \(-0.585860\pi\)
−0.266479 + 0.963841i \(0.585860\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 510.946i − 1.16921i
\(438\) 0 0
\(439\) 115.222i 0.262465i 0.991352 + 0.131233i \(0.0418934\pi\)
−0.991352 + 0.131233i \(0.958107\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 158.779 0.358416 0.179208 0.983811i \(-0.442646\pi\)
0.179208 + 0.983811i \(0.442646\pi\)
\(444\) 0 0
\(445\) 938.890 2.10986
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −407.707 −0.908033 −0.454016 0.890993i \(-0.650009\pi\)
−0.454016 + 0.890993i \(0.650009\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −322.248 −0.708238
\(456\) 0 0
\(457\) 797.114i 1.74423i 0.489300 + 0.872116i \(0.337252\pi\)
−0.489300 + 0.872116i \(0.662748\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 380.724i − 0.825866i −0.910761 0.412933i \(-0.864504\pi\)
0.910761 0.412933i \(-0.135496\pi\)
\(462\) 0 0
\(463\) 702.102 1.51642 0.758209 0.652011i \(-0.226075\pi\)
0.758209 + 0.652011i \(0.226075\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 29.8377 0.0638923 0.0319461 0.999490i \(-0.489829\pi\)
0.0319461 + 0.999490i \(0.489829\pi\)
\(468\) 0 0
\(469\) 231.863i 0.494377i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 1600.28i 3.36902i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 346.379i − 0.723128i −0.932347 0.361564i \(-0.882243\pi\)
0.932347 0.361564i \(-0.117757\pi\)
\(480\) 0 0
\(481\) 520.691i 1.08252i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −697.806 −1.43878
\(486\) 0 0
\(487\) 676.614 1.38935 0.694675 0.719324i \(-0.255548\pi\)
0.694675 + 0.719324i \(0.255548\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 147.029i 0.299448i 0.988728 + 0.149724i \(0.0478385\pi\)
−0.988728 + 0.149724i \(0.952162\pi\)
\(492\) 0 0
\(493\) 248.006 0.503056
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.96496i − 0.0140140i
\(498\) 0 0
\(499\) −839.154 −1.68167 −0.840836 0.541290i \(-0.817936\pi\)
−0.840836 + 0.541290i \(0.817936\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 296.831i − 0.590121i −0.955479 0.295061i \(-0.904660\pi\)
0.955479 0.295061i \(-0.0953398\pi\)
\(504\) 0 0
\(505\) − 1450.91i − 2.87309i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 421.228 0.827560 0.413780 0.910377i \(-0.364208\pi\)
0.413780 + 0.910377i \(0.364208\pi\)
\(510\) 0 0
\(511\) 56.7685 0.111093
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −456.787 −0.886965
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 169.070 0.324510 0.162255 0.986749i \(-0.448123\pi\)
0.162255 + 0.986749i \(0.448123\pi\)
\(522\) 0 0
\(523\) − 399.217i − 0.763322i −0.924302 0.381661i \(-0.875352\pi\)
0.924302 0.381661i \(-0.124648\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 173.264i 0.328774i
\(528\) 0 0
\(529\) −111.533 −0.210838
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 328.559 0.616433
\(534\) 0 0
\(535\) − 1846.03i − 3.45051i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 57.8425i − 0.106918i −0.998570 0.0534589i \(-0.982975\pi\)
0.998570 0.0534589i \(-0.0170246\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 242.537i 0.445023i
\(546\) 0 0
\(547\) 64.5030i 0.117921i 0.998260 + 0.0589607i \(0.0187786\pi\)
−0.998260 + 0.0589607i \(0.981221\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 188.908 0.342846
\(552\) 0 0
\(553\) 306.517 0.554279
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 956.474i − 1.71719i −0.512655 0.858595i \(-0.671338\pi\)
0.512655 0.858595i \(-0.328662\pi\)
\(558\) 0 0
\(559\) 550.115 0.984105
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 819.742i 1.45603i 0.685564 + 0.728013i \(0.259556\pi\)
−0.685564 + 0.728013i \(0.740444\pi\)
\(564\) 0 0
\(565\) 720.132 1.27457
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 980.298i − 1.72284i −0.507890 0.861422i \(-0.669574\pi\)
0.507890 0.861422i \(-0.330426\pi\)
\(570\) 0 0
\(571\) − 579.244i − 1.01444i −0.861817 0.507219i \(-0.830674\pi\)
0.861817 0.507219i \(-0.169326\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1307.51 −2.27392
\(576\) 0 0
\(577\) −645.740 −1.11913 −0.559567 0.828785i \(-0.689033\pi\)
−0.559567 + 0.828785i \(0.689033\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −95.1819 −0.163824
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 372.950 0.635349 0.317674 0.948200i \(-0.397098\pi\)
0.317674 + 0.948200i \(0.397098\pi\)
\(588\) 0 0
\(589\) 131.976i 0.224068i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 199.689i − 0.336743i −0.985724 0.168372i \(-0.946149\pi\)
0.985724 0.168372i \(-0.0538509\pi\)
\(594\) 0 0
\(595\) −987.465 −1.65961
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −356.856 −0.595753 −0.297877 0.954604i \(-0.596278\pi\)
−0.297877 + 0.954604i \(0.596278\pi\)
\(600\) 0 0
\(601\) − 549.397i − 0.914139i −0.889431 0.457069i \(-0.848899\pi\)
0.889431 0.457069i \(-0.151101\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 625.736i 1.03087i 0.856930 + 0.515433i \(0.172369\pi\)
−0.856930 + 0.515433i \(0.827631\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 264.506i 0.432907i
\(612\) 0 0
\(613\) − 707.024i − 1.15338i −0.816962 0.576691i \(-0.804344\pi\)
0.816962 0.576691i \(-0.195656\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −444.514 −0.720445 −0.360222 0.932866i \(-0.617299\pi\)
−0.360222 + 0.932866i \(0.617299\pi\)
\(618\) 0 0
\(619\) −413.690 −0.668320 −0.334160 0.942516i \(-0.608453\pi\)
−0.334160 + 0.942516i \(0.608453\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 317.325i 0.509350i
\(624\) 0 0
\(625\) 1870.28 2.99245
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1595.55i 2.53665i
\(630\) 0 0
\(631\) −57.8885 −0.0917409 −0.0458705 0.998947i \(-0.514606\pi\)
−0.0458705 + 0.998947i \(0.514606\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 528.937i 0.832972i
\(636\) 0 0
\(637\) 416.065i 0.653163i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1075.85 1.67840 0.839200 0.543823i \(-0.183024\pi\)
0.839200 + 0.543823i \(0.183024\pi\)
\(642\) 0 0
\(643\) 507.262 0.788899 0.394450 0.918918i \(-0.370935\pi\)
0.394450 + 0.918918i \(0.370935\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 917.342 1.41784 0.708920 0.705289i \(-0.249183\pi\)
0.708920 + 0.705289i \(0.249183\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −627.147 −0.960409 −0.480205 0.877157i \(-0.659438\pi\)
−0.480205 + 0.877157i \(0.659438\pi\)
\(654\) 0 0
\(655\) 794.349i 1.21275i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 297.301i − 0.451140i −0.974227 0.225570i \(-0.927576\pi\)
0.974227 0.225570i \(-0.0724245\pi\)
\(660\) 0 0
\(661\) −470.110 −0.711210 −0.355605 0.934636i \(-0.615725\pi\)
−0.355605 + 0.934636i \(0.615725\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −752.159 −1.13107
\(666\) 0 0
\(667\) 154.347i 0.231404i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 415.011i − 0.616659i −0.951280 0.308329i \(-0.900230\pi\)
0.951280 0.308329i \(-0.0997699\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 755.920i − 1.11657i −0.829648 0.558286i \(-0.811459\pi\)
0.829648 0.558286i \(-0.188541\pi\)
\(678\) 0 0
\(679\) − 235.844i − 0.347340i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −293.903 −0.430311 −0.215156 0.976580i \(-0.569026\pi\)
−0.215156 + 0.976580i \(0.569026\pi\)
\(684\) 0 0
\(685\) 490.096 0.715469
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 451.113i 0.654736i
\(690\) 0 0
\(691\) −481.482 −0.696791 −0.348395 0.937348i \(-0.613273\pi\)
−0.348395 + 0.937348i \(0.613273\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1763.74i − 2.53776i
\(696\) 0 0
\(697\) 1006.80 1.44448
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 967.437i 1.38008i 0.723770 + 0.690041i \(0.242407\pi\)
−0.723770 + 0.690041i \(0.757593\pi\)
\(702\) 0 0
\(703\) 1215.34i 1.72880i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 490.376 0.693601
\(708\) 0 0
\(709\) −281.105 −0.396480 −0.198240 0.980153i \(-0.563523\pi\)
−0.198240 + 0.980153i \(0.563523\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −107.831 −0.151235
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 488.441 0.679333 0.339667 0.940546i \(-0.389686\pi\)
0.339667 + 0.940546i \(0.389686\pi\)
\(720\) 0 0
\(721\) − 154.384i − 0.214125i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 483.414i − 0.666777i
\(726\) 0 0
\(727\) −450.038 −0.619035 −0.309517 0.950894i \(-0.600167\pi\)
−0.309517 + 0.950894i \(0.600167\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1685.72 2.30604
\(732\) 0 0
\(733\) 677.704i 0.924562i 0.886733 + 0.462281i \(0.152969\pi\)
−0.886733 + 0.462281i \(0.847031\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 398.745i 0.539573i 0.962920 + 0.269787i \(0.0869532\pi\)
−0.962920 + 0.269787i \(0.913047\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1168.88i 1.57319i 0.617471 + 0.786594i \(0.288157\pi\)
−0.617471 + 0.786594i \(0.711843\pi\)
\(744\) 0 0
\(745\) − 684.179i − 0.918361i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 623.918 0.833001
\(750\) 0 0
\(751\) −428.785 −0.570952 −0.285476 0.958386i \(-0.592152\pi\)
−0.285476 + 0.958386i \(0.592152\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 2014.75i − 2.66855i
\(756\) 0 0
\(757\) −1322.77 −1.74738 −0.873691 0.486482i \(-0.838280\pi\)
−0.873691 + 0.486482i \(0.838280\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 663.677i − 0.872112i −0.899919 0.436056i \(-0.856375\pi\)
0.899919 0.436056i \(-0.143625\pi\)
\(762\) 0 0
\(763\) −81.9725 −0.107434
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 40.2341i 0.0524564i
\(768\) 0 0
\(769\) − 215.995i − 0.280878i −0.990089 0.140439i \(-0.955149\pi\)
0.990089 0.140439i \(-0.0448514\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 206.459 0.267088 0.133544 0.991043i \(-0.457364\pi\)
0.133544 + 0.991043i \(0.457364\pi\)
\(774\) 0 0
\(775\) 337.725 0.435774
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 766.888 0.984452
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 107.456 0.136887
\(786\) 0 0
\(787\) 947.296i 1.20368i 0.798617 + 0.601840i \(0.205566\pi\)
−0.798617 + 0.601840i \(0.794434\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 243.389i 0.307698i
\(792\) 0 0
\(793\) 389.611 0.491313
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 845.877 1.06133 0.530663 0.847583i \(-0.321943\pi\)
0.530663 + 0.847583i \(0.321943\pi\)
\(798\) 0 0
\(799\) 810.526i 1.01443i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 614.549i − 0.763415i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 754.562i − 0.932710i −0.884598 0.466355i \(-0.845567\pi\)
0.884598 0.466355i \(-0.154433\pi\)
\(810\) 0 0
\(811\) 407.368i 0.502303i 0.967948 + 0.251152i \(0.0808093\pi\)
−0.967948 + 0.251152i \(0.919191\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1140.20 1.39901
\(816\) 0 0
\(817\) 1284.02 1.57163
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1280.50i 1.55968i 0.625980 + 0.779839i \(0.284699\pi\)
−0.625980 + 0.779839i \(0.715301\pi\)
\(822\) 0 0
\(823\) −988.194 −1.20072 −0.600361 0.799729i \(-0.704976\pi\)
−0.600361 + 0.799729i \(0.704976\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 586.967i 0.709755i 0.934913 + 0.354877i \(0.115477\pi\)
−0.934913 + 0.354877i \(0.884523\pi\)
\(828\) 0 0
\(829\) −517.567 −0.624326 −0.312163 0.950028i \(-0.601054\pi\)
−0.312163 + 0.950028i \(0.601054\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1274.95i 1.53055i
\(834\) 0 0
\(835\) − 1934.38i − 2.31663i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −190.017 −0.226481 −0.113240 0.993568i \(-0.536123\pi\)
−0.113240 + 0.993568i \(0.536123\pi\)
\(840\) 0 0
\(841\) 783.935 0.932146
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −511.431 −0.605243
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −992.992 −1.16685
\(852\) 0 0
\(853\) − 1450.28i − 1.70021i −0.526612 0.850106i \(-0.676538\pi\)
0.526612 0.850106i \(-0.323462\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 468.523i 0.546701i 0.961914 + 0.273351i \(0.0881319\pi\)
−0.961914 + 0.273351i \(0.911868\pi\)
\(858\) 0 0
\(859\) −836.529 −0.973841 −0.486920 0.873446i \(-0.661880\pi\)
−0.486920 + 0.873446i \(0.661880\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1614.22 −1.87048 −0.935238 0.354019i \(-0.884815\pi\)
−0.935238 + 0.354019i \(0.884815\pi\)
\(864\) 0 0
\(865\) 774.552i 0.895436i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 779.128i − 0.894521i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1172.82i 1.34037i
\(876\) 0 0
\(877\) 803.570i 0.916271i 0.888882 + 0.458135i \(0.151483\pi\)
−0.888882 + 0.458135i \(0.848517\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −991.644 −1.12559 −0.562794 0.826597i \(-0.690274\pi\)
−0.562794 + 0.826597i \(0.690274\pi\)
\(882\) 0 0
\(883\) −1075.09 −1.21754 −0.608770 0.793347i \(-0.708337\pi\)
−0.608770 + 0.793347i \(0.708337\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 384.505i − 0.433489i −0.976228 0.216744i \(-0.930456\pi\)
0.976228 0.216744i \(-0.0695438\pi\)
\(888\) 0 0
\(889\) −178.770 −0.201091
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 617.383i 0.691358i
\(894\) 0 0
\(895\) 1606.30 1.79475
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 39.8673i − 0.0443463i
\(900\) 0 0
\(901\) 1382.35i 1.53423i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2000.26 −2.21023
\(906\) 0 0
\(907\) −758.683 −0.836475 −0.418238 0.908338i \(-0.637352\pi\)
−0.418238 + 0.908338i \(0.637352\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −968.642 −1.06327 −0.531637 0.846972i \(-0.678423\pi\)
−0.531637 + 0.846972i \(0.678423\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −268.473 −0.292773
\(918\) 0 0
\(919\) − 1046.68i − 1.13893i −0.822015 0.569466i \(-0.807150\pi\)
0.822015 0.569466i \(-0.192850\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 23.4043i 0.0253568i
\(924\) 0 0
\(925\) 3110.05 3.36222
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 92.4683 0.0995353 0.0497677 0.998761i \(-0.484152\pi\)
0.0497677 + 0.998761i \(0.484152\pi\)
\(930\) 0 0
\(931\) 971.137i 1.04311i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 941.367i − 1.00466i −0.864676 0.502331i \(-0.832476\pi\)
0.864676 0.502331i \(-0.167524\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 495.866i − 0.526957i −0.964665 0.263478i \(-0.915130\pi\)
0.964665 0.263478i \(-0.0848698\pi\)
\(942\) 0 0
\(943\) 626.583i 0.664457i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −865.407 −0.913841 −0.456920 0.889508i \(-0.651048\pi\)
−0.456920 + 0.889508i \(0.651048\pi\)
\(948\) 0 0
\(949\) −190.759 −0.201011
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1357.22i − 1.42415i −0.702102 0.712076i \(-0.747755\pi\)
0.702102 0.712076i \(-0.252245\pi\)
\(954\) 0 0
\(955\) −523.580 −0.548251
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 165.642i 0.172724i
\(960\) 0 0
\(961\) −933.148 −0.971017
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1578.06i − 1.63530i
\(966\) 0 0
\(967\) 1423.32i 1.47190i 0.677038 + 0.735948i \(0.263263\pi\)
−0.677038 + 0.735948i \(0.736737\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1667.99 −1.71781 −0.858903 0.512139i \(-0.828853\pi\)
−0.858903 + 0.512139i \(0.828853\pi\)
\(972\) 0 0
\(973\) 596.108 0.612650
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 822.327 0.841685 0.420843 0.907134i \(-0.361734\pi\)
0.420843 + 0.907134i \(0.361734\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 685.082 0.696930 0.348465 0.937322i \(-0.386703\pi\)
0.348465 + 0.937322i \(0.386703\pi\)
\(984\) 0 0
\(985\) − 682.650i − 0.693045i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1049.11i 1.06077i
\(990\) 0 0
\(991\) 1425.94 1.43888 0.719442 0.694552i \(-0.244397\pi\)
0.719442 + 0.694552i \(0.244397\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2996.60 −3.01165
\(996\) 0 0
\(997\) − 860.170i − 0.862759i −0.902171 0.431379i \(-0.858027\pi\)
0.902171 0.431379i \(-0.141973\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4356.3.f.m.1693.1 16
3.2 odd 2 1452.3.f.d.241.7 16
11.3 even 5 396.3.t.c.145.1 16
11.7 odd 10 396.3.t.c.325.1 16
11.10 odd 2 inner 4356.3.f.m.1693.2 16
33.14 odd 10 132.3.l.a.13.4 16
33.29 even 10 132.3.l.a.61.4 yes 16
33.32 even 2 1452.3.f.d.241.8 16
132.47 even 10 528.3.bf.a.145.2 16
132.95 odd 10 528.3.bf.a.193.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.3.l.a.13.4 16 33.14 odd 10
132.3.l.a.61.4 yes 16 33.29 even 10
396.3.t.c.145.1 16 11.3 even 5
396.3.t.c.325.1 16 11.7 odd 10
528.3.bf.a.145.2 16 132.47 even 10
528.3.bf.a.193.2 16 132.95 odd 10
1452.3.f.d.241.7 16 3.2 odd 2
1452.3.f.d.241.8 16 33.32 even 2
4356.3.f.m.1693.1 16 1.1 even 1 trivial
4356.3.f.m.1693.2 16 11.10 odd 2 inner