Properties

Label 4356.3.f.g.1693.8
Level $4356$
Weight $3$
Character 4356.1693
Analytic conductor $118.692$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4356,3,Mod(1693,4356)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4356.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4356, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4356.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-100,0,-34,0,0, 0,0,0,98,0,0,0,0,0,-210,0,0,0,0,0,0,0,0,0,110,0,22,0,0,0,-250,0,0,0,0, 0,-112,0,0,0,0,0,0,0,10,0,0,0,198,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18, 0,440] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(118.692403155\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 19x^{6} - 37x^{5} + 229x^{4} + 196x^{3} + 1496x^{2} + 2952x + 26896 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{4}\cdot 11^{3} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.8
Root \(3.08941 + 2.24459i\) of defining polynomial
Character \(\chi\) \(=\) 4356.1693
Dual form 4356.3.f.g.1693.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.17883 q^{5} +1.10828i q^{7} -12.3893i q^{13} +11.8588i q^{17} -26.4404i q^{19} -19.9563 q^{23} -7.53741 q^{25} +48.4719i q^{29} +17.2974 q^{31} +4.63130i q^{35} -72.6211 q^{37} +41.2570i q^{41} +57.9276i q^{43} +8.75419 q^{47} +47.7717 q^{49} -0.259379 q^{53} +43.5555 q^{59} +81.8700i q^{61} -51.7725i q^{65} +52.4087 q^{67} +66.3063 q^{71} -57.9034i q^{73} +8.59534i q^{79} +87.2900i q^{83} +49.5560i q^{85} +3.65450 q^{89} +13.7307 q^{91} -110.490i q^{95} +6.85977 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 14 q^{5} - 100 q^{23} - 34 q^{25} + 98 q^{31} - 210 q^{37} + 110 q^{47} + 22 q^{49} - 250 q^{53} - 112 q^{59} + 10 q^{67} + 198 q^{71} - 18 q^{89} + 440 q^{91} - 220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4356\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\) \(2179\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.17883 0.835765 0.417883 0.908501i \(-0.362772\pi\)
0.417883 + 0.908501i \(0.362772\pi\)
\(6\) 0 0
\(7\) 1.10828i 0.158325i 0.996862 + 0.0791627i \(0.0252247\pi\)
−0.996862 + 0.0791627i \(0.974775\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 12.3893i − 0.953019i −0.879169 0.476510i \(-0.841902\pi\)
0.879169 0.476510i \(-0.158098\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 11.8588i 0.697578i 0.937201 + 0.348789i \(0.113407\pi\)
−0.937201 + 0.348789i \(0.886593\pi\)
\(18\) 0 0
\(19\) − 26.4404i − 1.39160i −0.718235 0.695800i \(-0.755050\pi\)
0.718235 0.695800i \(-0.244950\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −19.9563 −0.867664 −0.433832 0.900994i \(-0.642839\pi\)
−0.433832 + 0.900994i \(0.642839\pi\)
\(24\) 0 0
\(25\) −7.53741 −0.301497
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 48.4719i 1.67145i 0.549151 + 0.835723i \(0.314951\pi\)
−0.549151 + 0.835723i \(0.685049\pi\)
\(30\) 0 0
\(31\) 17.2974 0.557980 0.278990 0.960294i \(-0.410000\pi\)
0.278990 + 0.960294i \(0.410000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.63130i 0.132323i
\(36\) 0 0
\(37\) −72.6211 −1.96273 −0.981367 0.192145i \(-0.938456\pi\)
−0.981367 + 0.192145i \(0.938456\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 41.2570i 1.00627i 0.864208 + 0.503135i \(0.167820\pi\)
−0.864208 + 0.503135i \(0.832180\pi\)
\(42\) 0 0
\(43\) 57.9276i 1.34715i 0.739117 + 0.673577i \(0.235243\pi\)
−0.739117 + 0.673577i \(0.764757\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.75419 0.186259 0.0931297 0.995654i \(-0.470313\pi\)
0.0931297 + 0.995654i \(0.470313\pi\)
\(48\) 0 0
\(49\) 47.7717 0.974933
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.259379 −0.00489395 −0.00244697 0.999997i \(-0.500779\pi\)
−0.00244697 + 0.999997i \(0.500779\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 43.5555 0.738229 0.369115 0.929384i \(-0.379661\pi\)
0.369115 + 0.929384i \(0.379661\pi\)
\(60\) 0 0
\(61\) 81.8700i 1.34213i 0.741398 + 0.671066i \(0.234163\pi\)
−0.741398 + 0.671066i \(0.765837\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 51.7725i − 0.796500i
\(66\) 0 0
\(67\) 52.4087 0.782220 0.391110 0.920344i \(-0.372091\pi\)
0.391110 + 0.920344i \(0.372091\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 66.3063 0.933891 0.466946 0.884286i \(-0.345354\pi\)
0.466946 + 0.884286i \(0.345354\pi\)
\(72\) 0 0
\(73\) − 57.9034i − 0.793197i −0.917992 0.396598i \(-0.870191\pi\)
0.917992 0.396598i \(-0.129809\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.59534i 0.108802i 0.998519 + 0.0544009i \(0.0173249\pi\)
−0.998519 + 0.0544009i \(0.982675\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 87.2900i 1.05169i 0.850581 + 0.525843i \(0.176250\pi\)
−0.850581 + 0.525843i \(0.823750\pi\)
\(84\) 0 0
\(85\) 49.5560i 0.583011i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.65450 0.0410618 0.0205309 0.999789i \(-0.493464\pi\)
0.0205309 + 0.999789i \(0.493464\pi\)
\(90\) 0 0
\(91\) 13.7307 0.150887
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 110.490i − 1.16305i
\(96\) 0 0
\(97\) 6.85977 0.0707192 0.0353596 0.999375i \(-0.488742\pi\)
0.0353596 + 0.999375i \(0.488742\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 85.7335i − 0.848847i −0.905464 0.424423i \(-0.860477\pi\)
0.905464 0.424423i \(-0.139523\pi\)
\(102\) 0 0
\(103\) 140.889 1.36786 0.683929 0.729548i \(-0.260270\pi\)
0.683929 + 0.729548i \(0.260270\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 118.566i 1.10810i 0.832484 + 0.554048i \(0.186918\pi\)
−0.832484 + 0.554048i \(0.813082\pi\)
\(108\) 0 0
\(109\) 39.5835i 0.363152i 0.983377 + 0.181576i \(0.0581198\pi\)
−0.983377 + 0.181576i \(0.941880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 168.331 1.48966 0.744828 0.667256i \(-0.232531\pi\)
0.744828 + 0.667256i \(0.232531\pi\)
\(114\) 0 0
\(115\) −83.3938 −0.725163
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.1429 −0.110444
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −135.968 −1.08775
\(126\) 0 0
\(127\) − 38.2286i − 0.301013i −0.988609 0.150506i \(-0.951910\pi\)
0.988609 0.150506i \(-0.0480904\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 241.214i 1.84133i 0.390354 + 0.920665i \(0.372353\pi\)
−0.390354 + 0.920665i \(0.627647\pi\)
\(132\) 0 0
\(133\) 29.3033 0.220326
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −112.255 −0.819382 −0.409691 0.912224i \(-0.634363\pi\)
−0.409691 + 0.912224i \(0.634363\pi\)
\(138\) 0 0
\(139\) 100.051i 0.719792i 0.932992 + 0.359896i \(0.117188\pi\)
−0.932992 + 0.359896i \(0.882812\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 202.556i 1.39694i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 126.123i − 0.846461i −0.906022 0.423231i \(-0.860896\pi\)
0.906022 0.423231i \(-0.139104\pi\)
\(150\) 0 0
\(151\) 216.075i 1.43096i 0.698632 + 0.715482i \(0.253793\pi\)
−0.698632 + 0.715482i \(0.746207\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 72.2827 0.466340
\(156\) 0 0
\(157\) 118.805 0.756718 0.378359 0.925659i \(-0.376488\pi\)
0.378359 + 0.925659i \(0.376488\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 22.1171i − 0.137373i
\(162\) 0 0
\(163\) −189.108 −1.16017 −0.580085 0.814556i \(-0.696981\pi\)
−0.580085 + 0.814556i \(0.696981\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 98.6256i − 0.590572i −0.955409 0.295286i \(-0.904585\pi\)
0.955409 0.295286i \(-0.0954150\pi\)
\(168\) 0 0
\(169\) 15.5064 0.0917540
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 147.804i − 0.854356i −0.904168 0.427178i \(-0.859508\pi\)
0.904168 0.427178i \(-0.140492\pi\)
\(174\) 0 0
\(175\) − 8.35355i − 0.0477346i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 151.074 0.843988 0.421994 0.906599i \(-0.361330\pi\)
0.421994 + 0.906599i \(0.361330\pi\)
\(180\) 0 0
\(181\) 252.503 1.39504 0.697521 0.716564i \(-0.254286\pi\)
0.697521 + 0.716564i \(0.254286\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −303.471 −1.64038
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −207.500 −1.08638 −0.543192 0.839608i \(-0.682785\pi\)
−0.543192 + 0.839608i \(0.682785\pi\)
\(192\) 0 0
\(193\) 241.474i 1.25116i 0.780160 + 0.625580i \(0.215137\pi\)
−0.780160 + 0.625580i \(0.784863\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 172.018i − 0.873188i −0.899659 0.436594i \(-0.856185\pi\)
0.899659 0.436594i \(-0.143815\pi\)
\(198\) 0 0
\(199\) 33.4659 0.168171 0.0840853 0.996459i \(-0.473203\pi\)
0.0840853 + 0.996459i \(0.473203\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −53.7204 −0.264632
\(204\) 0 0
\(205\) 172.406i 0.841005i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 169.306i − 0.802399i −0.915991 0.401199i \(-0.868593\pi\)
0.915991 0.401199i \(-0.131407\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 242.069i 1.12590i
\(216\) 0 0
\(217\) 19.1703i 0.0883425i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 146.922 0.664805
\(222\) 0 0
\(223\) −19.7426 −0.0885319 −0.0442660 0.999020i \(-0.514095\pi\)
−0.0442660 + 0.999020i \(0.514095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 421.037i 1.85479i 0.374087 + 0.927393i \(0.377956\pi\)
−0.374087 + 0.927393i \(0.622044\pi\)
\(228\) 0 0
\(229\) −26.6503 −0.116377 −0.0581883 0.998306i \(-0.518532\pi\)
−0.0581883 + 0.998306i \(0.518532\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 311.001i − 1.33477i −0.744714 0.667383i \(-0.767414\pi\)
0.744714 0.667383i \(-0.232586\pi\)
\(234\) 0 0
\(235\) 36.5822 0.155669
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 412.161i 1.72452i 0.506463 + 0.862262i \(0.330953\pi\)
−0.506463 + 0.862262i \(0.669047\pi\)
\(240\) 0 0
\(241\) − 112.453i − 0.466608i −0.972404 0.233304i \(-0.925046\pi\)
0.972404 0.233304i \(-0.0749537\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 199.630 0.814815
\(246\) 0 0
\(247\) −327.577 −1.32622
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 75.5126 0.300847 0.150424 0.988622i \(-0.451936\pi\)
0.150424 + 0.988622i \(0.451936\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 202.357 0.787383 0.393692 0.919243i \(-0.371198\pi\)
0.393692 + 0.919243i \(0.371198\pi\)
\(258\) 0 0
\(259\) − 80.4844i − 0.310751i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 13.9761i − 0.0531412i −0.999647 0.0265706i \(-0.991541\pi\)
0.999647 0.0265706i \(-0.00845867\pi\)
\(264\) 0 0
\(265\) −1.08390 −0.00409019
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 101.905 0.378829 0.189414 0.981897i \(-0.439341\pi\)
0.189414 + 0.981897i \(0.439341\pi\)
\(270\) 0 0
\(271\) 310.833i 1.14698i 0.819211 + 0.573492i \(0.194412\pi\)
−0.819211 + 0.573492i \(0.805588\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 477.335i − 1.72323i −0.507562 0.861615i \(-0.669453\pi\)
0.507562 0.861615i \(-0.330547\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 474.292i 1.68787i 0.536445 + 0.843935i \(0.319767\pi\)
−0.536445 + 0.843935i \(0.680233\pi\)
\(282\) 0 0
\(283\) − 441.956i − 1.56168i −0.624729 0.780841i \(-0.714791\pi\)
0.624729 0.780841i \(-0.285209\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −45.7243 −0.159318
\(288\) 0 0
\(289\) 148.368 0.513385
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 189.144i 0.645542i 0.946477 + 0.322771i \(0.104614\pi\)
−0.946477 + 0.322771i \(0.895386\pi\)
\(294\) 0 0
\(295\) 182.011 0.616986
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 247.243i 0.826901i
\(300\) 0 0
\(301\) −64.1999 −0.213289
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 342.121i 1.12171i
\(306\) 0 0
\(307\) − 26.0108i − 0.0847257i −0.999102 0.0423628i \(-0.986511\pi\)
0.999102 0.0423628i \(-0.0134885\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 103.585 0.333071 0.166535 0.986035i \(-0.446742\pi\)
0.166535 + 0.986035i \(0.446742\pi\)
\(312\) 0 0
\(313\) −235.138 −0.751240 −0.375620 0.926774i \(-0.622570\pi\)
−0.375620 + 0.926774i \(0.622570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.4466 −0.0676549 −0.0338274 0.999428i \(-0.510770\pi\)
−0.0338274 + 0.999428i \(0.510770\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 313.552 0.970750
\(324\) 0 0
\(325\) 93.3829i 0.287332i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.70208i 0.0294896i
\(330\) 0 0
\(331\) 41.5345 0.125482 0.0627410 0.998030i \(-0.480016\pi\)
0.0627410 + 0.998030i \(0.480016\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 219.007 0.653752
\(336\) 0 0
\(337\) − 332.113i − 0.985499i −0.870171 0.492749i \(-0.835992\pi\)
0.870171 0.492749i \(-0.164008\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 107.250i 0.312682i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 115.865i 0.333905i 0.985965 + 0.166953i \(0.0533927\pi\)
−0.985965 + 0.166953i \(0.946607\pi\)
\(348\) 0 0
\(349\) 34.2319i 0.0980855i 0.998797 + 0.0490428i \(0.0156171\pi\)
−0.998797 + 0.0490428i \(0.984383\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −198.775 −0.563102 −0.281551 0.959546i \(-0.590849\pi\)
−0.281551 + 0.959546i \(0.590849\pi\)
\(354\) 0 0
\(355\) 277.082 0.780514
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 351.303i 0.978561i 0.872127 + 0.489280i \(0.162741\pi\)
−0.872127 + 0.489280i \(0.837259\pi\)
\(360\) 0 0
\(361\) −338.095 −0.936551
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 241.968i − 0.662926i
\(366\) 0 0
\(367\) −548.053 −1.49333 −0.746666 0.665199i \(-0.768347\pi\)
−0.746666 + 0.665199i \(0.768347\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 0.287464i 0 0.000774837i
\(372\) 0 0
\(373\) 142.065i 0.380872i 0.981700 + 0.190436i \(0.0609901\pi\)
−0.981700 + 0.190436i \(0.939010\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 600.531 1.59292
\(378\) 0 0
\(379\) 128.747 0.339701 0.169850 0.985470i \(-0.445672\pi\)
0.169850 + 0.985470i \(0.445672\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −738.153 −1.92729 −0.963646 0.267181i \(-0.913908\pi\)
−0.963646 + 0.267181i \(0.913908\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 219.312 0.563785 0.281893 0.959446i \(-0.409038\pi\)
0.281893 + 0.959446i \(0.409038\pi\)
\(390\) 0 0
\(391\) − 236.658i − 0.605263i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 35.9184i 0.0909328i
\(396\) 0 0
\(397\) −4.97040 −0.0125199 −0.00625995 0.999980i \(-0.501993\pi\)
−0.00625995 + 0.999980i \(0.501993\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −292.908 −0.730444 −0.365222 0.930921i \(-0.619007\pi\)
−0.365222 + 0.930921i \(0.619007\pi\)
\(402\) 0 0
\(403\) − 214.302i − 0.531766i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 279.292i − 0.682866i −0.939906 0.341433i \(-0.889088\pi\)
0.939906 0.341433i \(-0.110912\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 48.2717i 0.116881i
\(414\) 0 0
\(415\) 364.770i 0.878963i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 582.160 1.38940 0.694701 0.719298i \(-0.255537\pi\)
0.694701 + 0.719298i \(0.255537\pi\)
\(420\) 0 0
\(421\) 148.957 0.353817 0.176909 0.984227i \(-0.443390\pi\)
0.176909 + 0.984227i \(0.443390\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 89.3849i − 0.210317i
\(426\) 0 0
\(427\) −90.7348 −0.212494
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 175.230i − 0.406567i −0.979120 0.203283i \(-0.934839\pi\)
0.979120 0.203283i \(-0.0651613\pi\)
\(432\) 0 0
\(433\) 289.806 0.669298 0.334649 0.942343i \(-0.391382\pi\)
0.334649 + 0.942343i \(0.391382\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 527.652i 1.20744i
\(438\) 0 0
\(439\) 439.213i 1.00049i 0.865885 + 0.500243i \(0.166756\pi\)
−0.865885 + 0.500243i \(0.833244\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 588.827 1.32918 0.664590 0.747208i \(-0.268606\pi\)
0.664590 + 0.747208i \(0.268606\pi\)
\(444\) 0 0
\(445\) 15.2715 0.0343180
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −206.664 −0.460277 −0.230139 0.973158i \(-0.573918\pi\)
−0.230139 + 0.973158i \(0.573918\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 57.3784 0.126106
\(456\) 0 0
\(457\) − 5.40423i − 0.0118254i −0.999983 0.00591272i \(-0.998118\pi\)
0.999983 0.00591272i \(-0.00188209\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 858.622i 1.86252i 0.364355 + 0.931260i \(0.381289\pi\)
−0.364355 + 0.931260i \(0.618711\pi\)
\(462\) 0 0
\(463\) 382.107 0.825285 0.412643 0.910893i \(-0.364606\pi\)
0.412643 + 0.910893i \(0.364606\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −358.586 −0.767850 −0.383925 0.923364i \(-0.625428\pi\)
−0.383925 + 0.923364i \(0.625428\pi\)
\(468\) 0 0
\(469\) 58.0835i 0.123845i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 199.292i 0.419563i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 683.067i 1.42603i 0.701150 + 0.713014i \(0.252670\pi\)
−0.701150 + 0.713014i \(0.747330\pi\)
\(480\) 0 0
\(481\) 899.721i 1.87052i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.6658 0.0591047
\(486\) 0 0
\(487\) 798.119 1.63885 0.819424 0.573188i \(-0.194294\pi\)
0.819424 + 0.573188i \(0.194294\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 263.493i 0.536645i 0.963329 + 0.268323i \(0.0864693\pi\)
−0.963329 + 0.268323i \(0.913531\pi\)
\(492\) 0 0
\(493\) −574.820 −1.16596
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 73.4858i 0.147859i
\(498\) 0 0
\(499\) 177.263 0.355237 0.177618 0.984099i \(-0.443161\pi\)
0.177618 + 0.984099i \(0.443161\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 26.9594i − 0.0535973i −0.999641 0.0267986i \(-0.991469\pi\)
0.999641 0.0267986i \(-0.00853129\pi\)
\(504\) 0 0
\(505\) − 358.265i − 0.709436i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −52.5671 −0.103275 −0.0516376 0.998666i \(-0.516444\pi\)
−0.0516376 + 0.998666i \(0.516444\pi\)
\(510\) 0 0
\(511\) 64.1731 0.125583
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 588.752 1.14321
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −878.205 −1.68561 −0.842807 0.538216i \(-0.819099\pi\)
−0.842807 + 0.538216i \(0.819099\pi\)
\(522\) 0 0
\(523\) 974.006i 1.86234i 0.364579 + 0.931172i \(0.381213\pi\)
−0.364579 + 0.931172i \(0.618787\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 205.127i 0.389235i
\(528\) 0 0
\(529\) −130.747 −0.247159
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 511.144 0.958994
\(534\) 0 0
\(535\) 495.468i 0.926109i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 552.954i − 1.02210i −0.859552 0.511048i \(-0.829257\pi\)
0.859552 0.511048i \(-0.170743\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 165.413i 0.303510i
\(546\) 0 0
\(547\) 415.428i 0.759466i 0.925096 + 0.379733i \(0.123984\pi\)
−0.925096 + 0.379733i \(0.876016\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1281.62 2.32598
\(552\) 0 0
\(553\) −9.52603 −0.0172261
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 448.918i − 0.805958i −0.915209 0.402979i \(-0.867975\pi\)
0.915209 0.402979i \(-0.132025\pi\)
\(558\) 0 0
\(559\) 717.680 1.28386
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 82.5651i − 0.146652i −0.997308 0.0733260i \(-0.976639\pi\)
0.997308 0.0733260i \(-0.0233614\pi\)
\(564\) 0 0
\(565\) 703.427 1.24500
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 42.5753i 0.0748248i 0.999300 + 0.0374124i \(0.0119115\pi\)
−0.999300 + 0.0374124i \(0.988088\pi\)
\(570\) 0 0
\(571\) − 460.190i − 0.805936i −0.915214 0.402968i \(-0.867979\pi\)
0.915214 0.402968i \(-0.132021\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 150.419 0.261598
\(576\) 0 0
\(577\) 161.005 0.279038 0.139519 0.990219i \(-0.455444\pi\)
0.139519 + 0.990219i \(0.455444\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −96.7416 −0.166509
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −141.810 −0.241584 −0.120792 0.992678i \(-0.538543\pi\)
−0.120792 + 0.992678i \(0.538543\pi\)
\(588\) 0 0
\(589\) − 457.350i − 0.776485i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 279.117i − 0.470686i −0.971912 0.235343i \(-0.924379\pi\)
0.971912 0.235343i \(-0.0756213\pi\)
\(594\) 0 0
\(595\) −54.9218 −0.0923056
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.5052 0.0676214 0.0338107 0.999428i \(-0.489236\pi\)
0.0338107 + 0.999428i \(0.489236\pi\)
\(600\) 0 0
\(601\) 425.882i 0.708623i 0.935127 + 0.354311i \(0.115285\pi\)
−0.935127 + 0.354311i \(0.884715\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 747.551i 1.23155i 0.787922 + 0.615775i \(0.211157\pi\)
−0.787922 + 0.615775i \(0.788843\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 108.458i − 0.177509i
\(612\) 0 0
\(613\) 83.9925i 0.137019i 0.997650 + 0.0685094i \(0.0218243\pi\)
−0.997650 + 0.0685094i \(0.978176\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 247.279 0.400776 0.200388 0.979717i \(-0.435780\pi\)
0.200388 + 0.979717i \(0.435780\pi\)
\(618\) 0 0
\(619\) −658.298 −1.06349 −0.531743 0.846906i \(-0.678463\pi\)
−0.531743 + 0.846906i \(0.678463\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.05020i 0.00650113i
\(624\) 0 0
\(625\) −379.752 −0.607603
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 861.201i − 1.36916i
\(630\) 0 0
\(631\) −688.820 −1.09163 −0.545816 0.837905i \(-0.683780\pi\)
−0.545816 + 0.837905i \(0.683780\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 159.751i − 0.251576i
\(636\) 0 0
\(637\) − 591.856i − 0.929130i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −605.576 −0.944736 −0.472368 0.881401i \(-0.656601\pi\)
−0.472368 + 0.881401i \(0.656601\pi\)
\(642\) 0 0
\(643\) 924.883 1.43839 0.719194 0.694810i \(-0.244511\pi\)
0.719194 + 0.694810i \(0.244511\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −672.280 −1.03907 −0.519536 0.854448i \(-0.673895\pi\)
−0.519536 + 0.854448i \(0.673895\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −822.691 −1.25986 −0.629932 0.776650i \(-0.716917\pi\)
−0.629932 + 0.776650i \(0.716917\pi\)
\(654\) 0 0
\(655\) 1007.99i 1.53892i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 378.008i 0.573608i 0.957989 + 0.286804i \(0.0925928\pi\)
−0.957989 + 0.286804i \(0.907407\pi\)
\(660\) 0 0
\(661\) −1273.25 −1.92625 −0.963127 0.269046i \(-0.913292\pi\)
−0.963127 + 0.269046i \(0.913292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 122.454 0.184141
\(666\) 0 0
\(667\) − 967.319i − 1.45025i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 507.430i 0.753982i 0.926217 + 0.376991i \(0.123041\pi\)
−0.926217 + 0.376991i \(0.876959\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 755.138i 1.11542i 0.830036 + 0.557709i \(0.188320\pi\)
−0.830036 + 0.557709i \(0.811680\pi\)
\(678\) 0 0
\(679\) 7.60253i 0.0111967i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1145.46 −1.67710 −0.838549 0.544826i \(-0.816596\pi\)
−0.838549 + 0.544826i \(0.816596\pi\)
\(684\) 0 0
\(685\) −469.095 −0.684811
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.21352i 0.00466403i
\(690\) 0 0
\(691\) 20.7784 0.0300701 0.0150351 0.999887i \(-0.495214\pi\)
0.0150351 + 0.999887i \(0.495214\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 418.096i 0.601577i
\(696\) 0 0
\(697\) −489.260 −0.701951
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 184.332i 0.262956i 0.991319 + 0.131478i \(0.0419722\pi\)
−0.991319 + 0.131478i \(0.958028\pi\)
\(702\) 0 0
\(703\) 1920.13i 2.73134i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 95.0166 0.134394
\(708\) 0 0
\(709\) 420.388 0.592931 0.296466 0.955044i \(-0.404192\pi\)
0.296466 + 0.955044i \(0.404192\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −345.191 −0.484139
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 491.056 0.682971 0.341486 0.939887i \(-0.389070\pi\)
0.341486 + 0.939887i \(0.389070\pi\)
\(720\) 0 0
\(721\) 156.145i 0.216567i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 365.353i − 0.503935i
\(726\) 0 0
\(727\) −29.1173 −0.0400514 −0.0200257 0.999799i \(-0.506375\pi\)
−0.0200257 + 0.999799i \(0.506375\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −686.953 −0.939745
\(732\) 0 0
\(733\) 1030.07i 1.40528i 0.711544 + 0.702641i \(0.247996\pi\)
−0.711544 + 0.702641i \(0.752004\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 949.857i − 1.28533i −0.766148 0.642664i \(-0.777829\pi\)
0.766148 0.642664i \(-0.222171\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 23.3401i − 0.0314133i −0.999877 0.0157067i \(-0.995000\pi\)
0.999877 0.0157067i \(-0.00499979\pi\)
\(744\) 0 0
\(745\) − 527.045i − 0.707443i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −131.405 −0.175440
\(750\) 0 0
\(751\) 438.132 0.583398 0.291699 0.956510i \(-0.405779\pi\)
0.291699 + 0.956510i \(0.405779\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 902.942i 1.19595i
\(756\) 0 0
\(757\) 987.970 1.30511 0.652556 0.757741i \(-0.273697\pi\)
0.652556 + 0.757741i \(0.273697\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.9181i 0.0655954i 0.999462 + 0.0327977i \(0.0104417\pi\)
−0.999462 + 0.0327977i \(0.989558\pi\)
\(762\) 0 0
\(763\) −43.8696 −0.0574962
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 539.621i − 0.703547i
\(768\) 0 0
\(769\) 197.596i 0.256952i 0.991713 + 0.128476i \(0.0410086\pi\)
−0.991713 + 0.128476i \(0.958991\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1155.34 1.49462 0.747309 0.664477i \(-0.231345\pi\)
0.747309 + 0.664477i \(0.231345\pi\)
\(774\) 0 0
\(775\) −130.378 −0.168229
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1090.85 1.40032
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 496.464 0.632439
\(786\) 0 0
\(787\) − 55.3936i − 0.0703857i −0.999381 0.0351929i \(-0.988795\pi\)
0.999381 0.0351929i \(-0.0112046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 186.558i 0.235851i
\(792\) 0 0
\(793\) 1014.31 1.27908
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 896.713 1.12511 0.562555 0.826760i \(-0.309818\pi\)
0.562555 + 0.826760i \(0.309818\pi\)
\(798\) 0 0
\(799\) 103.814i 0.129930i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 92.4235i − 0.114812i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 747.195i − 0.923603i −0.886983 0.461801i \(-0.847203\pi\)
0.886983 0.461801i \(-0.152797\pi\)
\(810\) 0 0
\(811\) − 622.640i − 0.767744i −0.923386 0.383872i \(-0.874590\pi\)
0.923386 0.383872i \(-0.125410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −790.248 −0.969629
\(816\) 0 0
\(817\) 1531.63 1.87470
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 499.842i 0.608821i 0.952541 + 0.304410i \(0.0984594\pi\)
−0.952541 + 0.304410i \(0.901541\pi\)
\(822\) 0 0
\(823\) −351.874 −0.427551 −0.213775 0.976883i \(-0.568576\pi\)
−0.213775 + 0.976883i \(0.568576\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 785.766i 0.950140i 0.879948 + 0.475070i \(0.157577\pi\)
−0.879948 + 0.475070i \(0.842423\pi\)
\(828\) 0 0
\(829\) −319.544 −0.385457 −0.192729 0.981252i \(-0.561734\pi\)
−0.192729 + 0.981252i \(0.561734\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 566.517i 0.680092i
\(834\) 0 0
\(835\) − 412.139i − 0.493580i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −709.047 −0.845110 −0.422555 0.906337i \(-0.638867\pi\)
−0.422555 + 0.906337i \(0.638867\pi\)
\(840\) 0 0
\(841\) −1508.53 −1.79373
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 64.7987 0.0766848
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1449.25 1.70299
\(852\) 0 0
\(853\) − 1000.17i − 1.17253i −0.810118 0.586266i \(-0.800597\pi\)
0.810118 0.586266i \(-0.199403\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 118.189i 0.137910i 0.997620 + 0.0689552i \(0.0219665\pi\)
−0.997620 + 0.0689552i \(0.978033\pi\)
\(858\) 0 0
\(859\) 709.931 0.826463 0.413231 0.910626i \(-0.364400\pi\)
0.413231 + 0.910626i \(0.364400\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 374.324 0.433747 0.216873 0.976200i \(-0.430414\pi\)
0.216873 + 0.976200i \(0.430414\pi\)
\(864\) 0 0
\(865\) − 617.645i − 0.714041i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 649.305i − 0.745471i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 150.691i − 0.172218i
\(876\) 0 0
\(877\) − 813.286i − 0.927351i −0.886005 0.463675i \(-0.846530\pi\)
0.886005 0.463675i \(-0.153470\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −782.139 −0.887786 −0.443893 0.896080i \(-0.646403\pi\)
−0.443893 + 0.896080i \(0.646403\pi\)
\(882\) 0 0
\(883\) −1282.01 −1.45188 −0.725939 0.687759i \(-0.758595\pi\)
−0.725939 + 0.687759i \(0.758595\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 939.076i − 1.05871i −0.848400 0.529355i \(-0.822434\pi\)
0.848400 0.529355i \(-0.177566\pi\)
\(888\) 0 0
\(889\) 42.3679 0.0476580
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 231.464i − 0.259198i
\(894\) 0 0
\(895\) 631.311 0.705376
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 838.437i 0.932633i
\(900\) 0 0
\(901\) − 3.07593i − 0.00341391i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1055.17 1.16593
\(906\) 0 0
\(907\) −285.210 −0.314454 −0.157227 0.987562i \(-0.550255\pi\)
−0.157227 + 0.987562i \(0.550255\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1238.24 −1.35920 −0.679602 0.733581i \(-0.737848\pi\)
−0.679602 + 0.733581i \(0.737848\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −267.333 −0.291529
\(918\) 0 0
\(919\) − 626.565i − 0.681790i −0.940101 0.340895i \(-0.889270\pi\)
0.940101 0.340895i \(-0.110730\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 821.485i − 0.890016i
\(924\) 0 0
\(925\) 547.375 0.591757
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −62.0672 −0.0668107 −0.0334054 0.999442i \(-0.510635\pi\)
−0.0334054 + 0.999442i \(0.510635\pi\)
\(930\) 0 0
\(931\) − 1263.10i − 1.35672i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 484.663i 0.517250i 0.965978 + 0.258625i \(0.0832694\pi\)
−0.965978 + 0.258625i \(0.916731\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 127.978i − 0.136002i −0.997685 0.0680009i \(-0.978338\pi\)
0.997685 0.0680009i \(-0.0216621\pi\)
\(942\) 0 0
\(943\) − 823.337i − 0.873104i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1560.24 1.64757 0.823783 0.566906i \(-0.191860\pi\)
0.823783 + 0.566906i \(0.191860\pi\)
\(948\) 0 0
\(949\) −717.379 −0.755932
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 827.137i − 0.867929i −0.900930 0.433965i \(-0.857114\pi\)
0.900930 0.433965i \(-0.142886\pi\)
\(954\) 0 0
\(955\) −867.104 −0.907963
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 124.410i − 0.129729i
\(960\) 0 0
\(961\) −661.801 −0.688658
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1009.08i 1.04568i
\(966\) 0 0
\(967\) − 867.442i − 0.897044i −0.893772 0.448522i \(-0.851951\pi\)
0.893772 0.448522i \(-0.148049\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1584.40 −1.63172 −0.815860 0.578249i \(-0.803736\pi\)
−0.815860 + 0.578249i \(0.803736\pi\)
\(972\) 0 0
\(973\) −110.885 −0.113961
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1534.99 1.57112 0.785562 0.618783i \(-0.212374\pi\)
0.785562 + 0.618783i \(0.212374\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 143.526 0.146008 0.0730042 0.997332i \(-0.476741\pi\)
0.0730042 + 0.997332i \(0.476741\pi\)
\(984\) 0 0
\(985\) − 718.834i − 0.729780i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1156.02i − 1.16888i
\(990\) 0 0
\(991\) 169.830 0.171372 0.0856860 0.996322i \(-0.472692\pi\)
0.0856860 + 0.996322i \(0.472692\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 139.848 0.140551
\(996\) 0 0
\(997\) − 669.850i − 0.671865i −0.941886 0.335933i \(-0.890949\pi\)
0.941886 0.335933i \(-0.109051\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4356.3.f.g.1693.8 8
3.2 odd 2 484.3.d.c.241.6 8
11.6 odd 10 396.3.t.a.217.1 8
11.9 even 5 396.3.t.a.73.1 8
11.10 odd 2 inner 4356.3.f.g.1693.7 8
33.2 even 10 484.3.f.a.161.2 8
33.5 odd 10 484.3.f.a.481.2 8
33.8 even 10 484.3.f.e.233.1 8
33.14 odd 10 484.3.f.d.233.1 8
33.17 even 10 44.3.f.a.41.2 yes 8
33.20 odd 10 44.3.f.a.29.2 8
33.26 odd 10 484.3.f.e.457.1 8
33.29 even 10 484.3.f.d.457.1 8
33.32 even 2 484.3.d.c.241.5 8
132.83 odd 10 176.3.n.c.129.1 8
132.119 even 10 176.3.n.c.161.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.3.f.a.29.2 8 33.20 odd 10
44.3.f.a.41.2 yes 8 33.17 even 10
176.3.n.c.129.1 8 132.83 odd 10
176.3.n.c.161.1 8 132.119 even 10
396.3.t.a.73.1 8 11.9 even 5
396.3.t.a.217.1 8 11.6 odd 10
484.3.d.c.241.5 8 33.32 even 2
484.3.d.c.241.6 8 3.2 odd 2
484.3.f.a.161.2 8 33.2 even 10
484.3.f.a.481.2 8 33.5 odd 10
484.3.f.d.233.1 8 33.14 odd 10
484.3.f.d.457.1 8 33.29 even 10
484.3.f.e.233.1 8 33.8 even 10
484.3.f.e.457.1 8 33.26 odd 10
4356.3.f.g.1693.7 8 11.10 odd 2 inner
4356.3.f.g.1693.8 8 1.1 even 1 trivial