Properties

Label 4350.2.e.j.349.1
Level $4350$
Weight $2$
Character 4350.349
Analytic conductor $34.735$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4350,2,Mod(349,4350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4350.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4350 = 2 \cdot 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4350.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,-2,0,0,-2,0,12,0,0,10,0,2,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.7349248793\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 174)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4350.349
Dual form 4350.2.e.j.349.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +5.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} +6.00000 q^{11} +1.00000i q^{12} +4.00000i q^{13} +5.00000 q^{14} +1.00000 q^{16} +3.00000i q^{17} +1.00000i q^{18} +1.00000 q^{19} +5.00000 q^{21} -6.00000i q^{22} +1.00000 q^{24} +4.00000 q^{26} +1.00000i q^{27} -5.00000i q^{28} +1.00000 q^{29} -4.00000 q^{31} -1.00000i q^{32} -6.00000i q^{33} +3.00000 q^{34} +1.00000 q^{36} -1.00000i q^{37} -1.00000i q^{38} +4.00000 q^{39} -9.00000 q^{41} -5.00000i q^{42} +7.00000i q^{43} -6.00000 q^{44} -3.00000i q^{47} -1.00000i q^{48} -18.0000 q^{49} +3.00000 q^{51} -4.00000i q^{52} +6.00000i q^{53} +1.00000 q^{54} -5.00000 q^{56} -1.00000i q^{57} -1.00000i q^{58} -3.00000 q^{59} -10.0000 q^{61} +4.00000i q^{62} -5.00000i q^{63} -1.00000 q^{64} -6.00000 q^{66} -4.00000i q^{67} -3.00000i q^{68} +12.0000 q^{71} -1.00000i q^{72} -2.00000i q^{73} -1.00000 q^{74} -1.00000 q^{76} +30.0000i q^{77} -4.00000i q^{78} -14.0000 q^{79} +1.00000 q^{81} +9.00000i q^{82} -5.00000 q^{84} +7.00000 q^{86} -1.00000i q^{87} +6.00000i q^{88} +6.00000 q^{89} -20.0000 q^{91} +4.00000i q^{93} -3.00000 q^{94} -1.00000 q^{96} +8.00000i q^{97} +18.0000i q^{98} -6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 12 q^{11} + 10 q^{14} + 2 q^{16} + 2 q^{19} + 10 q^{21} + 2 q^{24} + 8 q^{26} + 2 q^{29} - 8 q^{31} + 6 q^{34} + 2 q^{36} + 8 q^{39} - 18 q^{41} - 12 q^{44} - 36 q^{49}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4350\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(4177\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 5.00000i 1.88982i 0.327327 + 0.944911i \(0.393852\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 5.00000 1.33631
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.00000 0.229416 0.114708 0.993399i \(-0.463407\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) − 6.00000i − 1.27920i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 1.00000i 0.192450i
\(28\) − 5.00000i − 0.944911i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) − 6.00000i − 1.04447i
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 1.00000i − 0.164399i −0.996616 0.0821995i \(-0.973806\pi\)
0.996616 0.0821995i \(-0.0261945\pi\)
\(38\) − 1.00000i − 0.162221i
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) − 5.00000i − 0.771517i
\(43\) 7.00000i 1.06749i 0.845645 + 0.533745i \(0.179216\pi\)
−0.845645 + 0.533745i \(0.820784\pi\)
\(44\) −6.00000 −0.904534
\(45\) 0 0
\(46\) 0 0
\(47\) − 3.00000i − 0.437595i −0.975770 0.218797i \(-0.929787\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −18.0000 −2.57143
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) − 4.00000i − 0.554700i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −5.00000 −0.668153
\(57\) − 1.00000i − 0.132453i
\(58\) − 1.00000i − 0.131306i
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000i 0.508001i
\(63\) − 5.00000i − 0.629941i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) − 4.00000i − 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) − 3.00000i − 0.363803i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 30.0000i 3.41882i
\(78\) − 4.00000i − 0.452911i
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 9.00000i 0.993884i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −5.00000 −0.545545
\(85\) 0 0
\(86\) 7.00000 0.754829
\(87\) − 1.00000i − 0.107211i
\(88\) 6.00000i 0.639602i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −20.0000 −2.09657
\(92\) 0 0
\(93\) 4.00000i 0.414781i
\(94\) −3.00000 −0.309426
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 18.0000i 1.81827i
\(99\) −6.00000 −0.603023
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) − 3.00000i − 0.297044i
\(103\) 13.0000i 1.28093i 0.767988 + 0.640464i \(0.221258\pi\)
−0.767988 + 0.640464i \(0.778742\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) − 9.00000i − 0.870063i −0.900415 0.435031i \(-0.856737\pi\)
0.900415 0.435031i \(-0.143263\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 5.00000i 0.472456i
\(113\) 3.00000i 0.282216i 0.989994 + 0.141108i \(0.0450665\pi\)
−0.989994 + 0.141108i \(0.954933\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) − 4.00000i − 0.369800i
\(118\) 3.00000i 0.276172i
\(119\) −15.0000 −1.37505
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 10.0000i 0.905357i
\(123\) 9.00000i 0.811503i
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) −5.00000 −0.445435
\(127\) − 22.0000i − 1.95218i −0.217357 0.976092i \(-0.569744\pi\)
0.217357 0.976092i \(-0.430256\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 7.00000 0.616316
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 5.00000i 0.433555i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) − 12.0000i − 1.00702i
\(143\) 24.0000i 2.00698i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 18.0000i 1.48461i
\(148\) 1.00000i 0.0821995i
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) 17.0000 1.38344 0.691720 0.722166i \(-0.256853\pi\)
0.691720 + 0.722166i \(0.256853\pi\)
\(152\) 1.00000i 0.0811107i
\(153\) − 3.00000i − 0.242536i
\(154\) 30.0000 2.41747
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) − 13.0000i − 1.03751i −0.854922 0.518756i \(-0.826395\pi\)
0.854922 0.518756i \(-0.173605\pi\)
\(158\) 14.0000i 1.11378i
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.00000i − 0.0785674i
\(163\) − 5.00000i − 0.391630i −0.980641 0.195815i \(-0.937265\pi\)
0.980641 0.195815i \(-0.0627352\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 5.00000i 0.385758i
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) − 7.00000i − 0.533745i
\(173\) 21.0000i 1.59660i 0.602260 + 0.798300i \(0.294267\pi\)
−0.602260 + 0.798300i \(0.705733\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 0 0
\(176\) 6.00000 0.452267
\(177\) 3.00000i 0.225494i
\(178\) − 6.00000i − 0.449719i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 20.0000i 1.48250i
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 18.0000i 1.31629i
\(188\) 3.00000i 0.218797i
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −21.0000 −1.51951 −0.759753 0.650211i \(-0.774680\pi\)
−0.759753 + 0.650211i \(0.774680\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 9.00000i 0.641223i 0.947211 + 0.320612i \(0.103888\pi\)
−0.947211 + 0.320612i \(0.896112\pi\)
\(198\) 6.00000i 0.426401i
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 6.00000i 0.422159i
\(203\) 5.00000i 0.350931i
\(204\) −3.00000 −0.210042
\(205\) 0 0
\(206\) 13.0000 0.905753
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) 6.00000 0.415029
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) − 12.0000i − 0.822226i
\(214\) −9.00000 −0.615227
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 20.0000i − 1.35769i
\(218\) 8.00000i 0.541828i
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 1.00000i 0.0671156i
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) 5.00000 0.334077
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 1.00000i 0.0662266i
\(229\) 7.00000 0.462573 0.231287 0.972886i \(-0.425707\pi\)
0.231287 + 0.972886i \(0.425707\pi\)
\(230\) 0 0
\(231\) 30.0000 1.97386
\(232\) 1.00000i 0.0656532i
\(233\) − 24.0000i − 1.57229i −0.618041 0.786146i \(-0.712073\pi\)
0.618041 0.786146i \(-0.287927\pi\)
\(234\) −4.00000 −0.261488
\(235\) 0 0
\(236\) 3.00000 0.195283
\(237\) 14.0000i 0.909398i
\(238\) 15.0000i 0.972306i
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) 17.0000 1.09507 0.547533 0.836784i \(-0.315567\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) − 25.0000i − 1.60706i
\(243\) − 1.00000i − 0.0641500i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 9.00000 0.573819
\(247\) 4.00000i 0.254514i
\(248\) − 4.00000i − 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 5.00000i 0.314970i
\(253\) 0 0
\(254\) −22.0000 −1.38040
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) − 7.00000i − 0.435801i
\(259\) 5.00000 0.310685
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) − 12.0000i − 0.741362i
\(263\) 3.00000i 0.184988i 0.995713 + 0.0924940i \(0.0294839\pi\)
−0.995713 + 0.0924940i \(0.970516\pi\)
\(264\) 6.00000 0.369274
\(265\) 0 0
\(266\) 5.00000 0.306570
\(267\) − 6.00000i − 0.367194i
\(268\) 4.00000i 0.244339i
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 3.00000i 0.181902i
\(273\) 20.0000i 1.21046i
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 14.0000i 0.841178i 0.907251 + 0.420589i \(0.138177\pi\)
−0.907251 + 0.420589i \(0.861823\pi\)
\(278\) 14.0000i 0.839664i
\(279\) 4.00000 0.239474
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 3.00000i 0.178647i
\(283\) − 14.0000i − 0.832214i −0.909316 0.416107i \(-0.863394\pi\)
0.909316 0.416107i \(-0.136606\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 24.0000 1.41915
\(287\) − 45.0000i − 2.65627i
\(288\) 1.00000i 0.0589256i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 2.00000i 0.117041i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 18.0000 1.04978
\(295\) 0 0
\(296\) 1.00000 0.0581238
\(297\) 6.00000i 0.348155i
\(298\) 3.00000i 0.173785i
\(299\) 0 0
\(300\) 0 0
\(301\) −35.0000 −2.01737
\(302\) − 17.0000i − 0.978240i
\(303\) 6.00000i 0.344691i
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) −3.00000 −0.171499
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) − 30.0000i − 1.70941i
\(309\) 13.0000 0.739544
\(310\) 0 0
\(311\) 21.0000 1.19080 0.595400 0.803429i \(-0.296993\pi\)
0.595400 + 0.803429i \(0.296993\pi\)
\(312\) 4.00000i 0.226455i
\(313\) − 11.0000i − 0.621757i −0.950450 0.310878i \(-0.899377\pi\)
0.950450 0.310878i \(-0.100623\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) − 6.00000i − 0.336463i
\(319\) 6.00000 0.335936
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) 3.00000i 0.166924i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −5.00000 −0.276924
\(327\) 8.00000i 0.442401i
\(328\) − 9.00000i − 0.496942i
\(329\) 15.0000 0.826977
\(330\) 0 0
\(331\) 17.0000 0.934405 0.467202 0.884150i \(-0.345262\pi\)
0.467202 + 0.884150i \(0.345262\pi\)
\(332\) 0 0
\(333\) 1.00000i 0.0547997i
\(334\) 6.00000 0.328305
\(335\) 0 0
\(336\) 5.00000 0.272772
\(337\) − 10.0000i − 0.544735i −0.962193 0.272367i \(-0.912193\pi\)
0.962193 0.272367i \(-0.0878066\pi\)
\(338\) 3.00000i 0.163178i
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 1.00000i 0.0540738i
\(343\) − 55.0000i − 2.96972i
\(344\) −7.00000 −0.377415
\(345\) 0 0
\(346\) 21.0000 1.12897
\(347\) − 3.00000i − 0.161048i −0.996753 0.0805242i \(-0.974341\pi\)
0.996753 0.0805242i \(-0.0256594\pi\)
\(348\) 1.00000i 0.0536056i
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) − 6.00000i − 0.319801i
\(353\) 30.0000i 1.59674i 0.602168 + 0.798369i \(0.294304\pi\)
−0.602168 + 0.798369i \(0.705696\pi\)
\(354\) 3.00000 0.159448
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 15.0000i 0.793884i
\(358\) 0 0
\(359\) −9.00000 −0.475002 −0.237501 0.971387i \(-0.576328\pi\)
−0.237501 + 0.971387i \(0.576328\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) − 8.00000i − 0.420471i
\(363\) − 25.0000i − 1.31216i
\(364\) 20.0000 1.04828
\(365\) 0 0
\(366\) 10.0000 0.522708
\(367\) 26.0000i 1.35719i 0.734513 + 0.678594i \(0.237411\pi\)
−0.734513 + 0.678594i \(0.762589\pi\)
\(368\) 0 0
\(369\) 9.00000 0.468521
\(370\) 0 0
\(371\) −30.0000 −1.55752
\(372\) − 4.00000i − 0.207390i
\(373\) − 20.0000i − 1.03556i −0.855514 0.517780i \(-0.826758\pi\)
0.855514 0.517780i \(-0.173242\pi\)
\(374\) 18.0000 0.930758
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 4.00000i 0.206010i
\(378\) 5.00000i 0.257172i
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) −22.0000 −1.12709
\(382\) 21.0000i 1.07445i
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) − 7.00000i − 0.355830i
\(388\) − 8.00000i − 0.406138i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 18.0000i − 0.909137i
\(393\) − 12.0000i − 0.605320i
\(394\) 9.00000 0.453413
\(395\) 0 0
\(396\) 6.00000 0.301511
\(397\) 26.0000i 1.30490i 0.757831 + 0.652451i \(0.226259\pi\)
−0.757831 + 0.652451i \(0.773741\pi\)
\(398\) − 16.0000i − 0.802008i
\(399\) 5.00000 0.250313
\(400\) 0 0
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 4.00000i 0.199502i
\(403\) − 16.0000i − 0.797017i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 5.00000 0.248146
\(407\) − 6.00000i − 0.297409i
\(408\) 3.00000i 0.148522i
\(409\) −8.00000 −0.395575 −0.197787 0.980245i \(-0.563376\pi\)
−0.197787 + 0.980245i \(0.563376\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) − 13.0000i − 0.640464i
\(413\) − 15.0000i − 0.738102i
\(414\) 0 0
\(415\) 0 0
\(416\) 4.00000 0.196116
\(417\) 14.0000i 0.685583i
\(418\) − 6.00000i − 0.293470i
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 25.0000i 1.21698i
\(423\) 3.00000i 0.145865i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) − 50.0000i − 2.41967i
\(428\) 9.00000i 0.435031i
\(429\) 24.0000 1.15873
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) − 26.0000i − 1.24948i −0.780833 0.624740i \(-0.785205\pi\)
0.780833 0.624740i \(-0.214795\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) 0 0
\(438\) 2.00000i 0.0955637i
\(439\) 1.00000 0.0477274 0.0238637 0.999715i \(-0.492403\pi\)
0.0238637 + 0.999715i \(0.492403\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 12.0000i 0.570782i
\(443\) − 12.0000i − 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 1.00000 0.0474579
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 3.00000i 0.141895i
\(448\) − 5.00000i − 0.236228i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) −54.0000 −2.54276
\(452\) − 3.00000i − 0.141108i
\(453\) − 17.0000i − 0.798730i
\(454\) 3.00000 0.140797
\(455\) 0 0
\(456\) 1.00000 0.0468293
\(457\) 11.0000i 0.514558i 0.966337 + 0.257279i \(0.0828260\pi\)
−0.966337 + 0.257279i \(0.917174\pi\)
\(458\) − 7.00000i − 0.327089i
\(459\) −3.00000 −0.140028
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) − 30.0000i − 1.39573i
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 1.00000 0.0464238
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) − 12.0000i − 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 20.0000 0.923514
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) − 3.00000i − 0.138086i
\(473\) 42.0000i 1.93116i
\(474\) 14.0000 0.643041
\(475\) 0 0
\(476\) 15.0000 0.687524
\(477\) − 6.00000i − 0.274721i
\(478\) 6.00000i 0.274434i
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) − 17.0000i − 0.774329i
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 23.0000i 1.04223i 0.853487 + 0.521115i \(0.174484\pi\)
−0.853487 + 0.521115i \(0.825516\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) −5.00000 −0.226108
\(490\) 0 0
\(491\) −30.0000 −1.35388 −0.676941 0.736038i \(-0.736695\pi\)
−0.676941 + 0.736038i \(0.736695\pi\)
\(492\) − 9.00000i − 0.405751i
\(493\) 3.00000i 0.135113i
\(494\) 4.00000 0.179969
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 60.0000i 2.69137i
\(498\) 0 0
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) 0 0
\(501\) 6.00000 0.268060
\(502\) 0 0
\(503\) 33.0000i 1.47140i 0.677309 + 0.735699i \(0.263146\pi\)
−0.677309 + 0.735699i \(0.736854\pi\)
\(504\) 5.00000 0.222718
\(505\) 0 0
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 22.0000i 0.976092i
\(509\) 21.0000 0.930809 0.465404 0.885098i \(-0.345909\pi\)
0.465404 + 0.885098i \(0.345909\pi\)
\(510\) 0 0
\(511\) 10.0000 0.442374
\(512\) − 1.00000i − 0.0441942i
\(513\) 1.00000i 0.0441511i
\(514\) 0 0
\(515\) 0 0
\(516\) −7.00000 −0.308158
\(517\) − 18.0000i − 0.791639i
\(518\) − 5.00000i − 0.219687i
\(519\) 21.0000 0.921798
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 1.00000i 0.0437688i
\(523\) − 2.00000i − 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 3.00000 0.130806
\(527\) − 12.0000i − 0.522728i
\(528\) − 6.00000i − 0.261116i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) 3.00000 0.130189
\(532\) − 5.00000i − 0.216777i
\(533\) − 36.0000i − 1.55933i
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 6.00000i 0.258678i
\(539\) −108.000 −4.65189
\(540\) 0 0
\(541\) −1.00000 −0.0429934 −0.0214967 0.999769i \(-0.506843\pi\)
−0.0214967 + 0.999769i \(0.506843\pi\)
\(542\) − 20.0000i − 0.859074i
\(543\) − 8.00000i − 0.343313i
\(544\) 3.00000 0.128624
\(545\) 0 0
\(546\) 20.0000 0.855921
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) 6.00000i 0.256307i
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 1.00000 0.0426014
\(552\) 0 0
\(553\) − 70.0000i − 2.97670i
\(554\) 14.0000 0.594803
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) 45.0000i 1.90671i 0.301849 + 0.953356i \(0.402396\pi\)
−0.301849 + 0.953356i \(0.597604\pi\)
\(558\) − 4.00000i − 0.169334i
\(559\) −28.0000 −1.18427
\(560\) 0 0
\(561\) 18.0000 0.759961
\(562\) 6.00000i 0.253095i
\(563\) 30.0000i 1.26435i 0.774826 + 0.632175i \(0.217837\pi\)
−0.774826 + 0.632175i \(0.782163\pi\)
\(564\) 3.00000 0.126323
\(565\) 0 0
\(566\) −14.0000 −0.588464
\(567\) 5.00000i 0.209980i
\(568\) 12.0000i 0.503509i
\(569\) −33.0000 −1.38343 −0.691716 0.722170i \(-0.743145\pi\)
−0.691716 + 0.722170i \(0.743145\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) − 24.0000i − 1.00349i
\(573\) 21.0000i 0.877288i
\(574\) −45.0000 −1.87826
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 16.0000i − 0.666089i −0.942911 0.333044i \(-0.891924\pi\)
0.942911 0.333044i \(-0.108076\pi\)
\(578\) − 8.00000i − 0.332756i
\(579\) 4.00000 0.166234
\(580\) 0 0
\(581\) 0 0
\(582\) − 8.00000i − 0.331611i
\(583\) 36.0000i 1.49097i
\(584\) 2.00000 0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 21.0000i 0.866763i 0.901211 + 0.433381i \(0.142680\pi\)
−0.901211 + 0.433381i \(0.857320\pi\)
\(588\) − 18.0000i − 0.742307i
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 9.00000 0.370211
\(592\) − 1.00000i − 0.0410997i
\(593\) 24.0000i 0.985562i 0.870153 + 0.492781i \(0.164020\pi\)
−0.870153 + 0.492781i \(0.835980\pi\)
\(594\) 6.00000 0.246183
\(595\) 0 0
\(596\) 3.00000 0.122885
\(597\) − 16.0000i − 0.654836i
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 32.0000 1.30531 0.652654 0.757656i \(-0.273656\pi\)
0.652654 + 0.757656i \(0.273656\pi\)
\(602\) 35.0000i 1.42649i
\(603\) 4.00000i 0.162893i
\(604\) −17.0000 −0.691720
\(605\) 0 0
\(606\) 6.00000 0.243733
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) − 1.00000i − 0.0405554i
\(609\) 5.00000 0.202610
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 3.00000i 0.121268i
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 20.0000 0.807134
\(615\) 0 0
\(616\) −30.0000 −1.20873
\(617\) 33.0000i 1.32853i 0.747497 + 0.664265i \(0.231255\pi\)
−0.747497 + 0.664265i \(0.768745\pi\)
\(618\) − 13.0000i − 0.522937i
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 21.0000i − 0.842023i
\(623\) 30.0000i 1.20192i
\(624\) 4.00000 0.160128
\(625\) 0 0
\(626\) −11.0000 −0.439648
\(627\) − 6.00000i − 0.239617i
\(628\) 13.0000i 0.518756i
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −13.0000 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(632\) − 14.0000i − 0.556890i
\(633\) 25.0000i 0.993661i
\(634\) 0 0
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) − 72.0000i − 2.85274i
\(638\) − 6.00000i − 0.237542i
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −27.0000 −1.06644 −0.533218 0.845978i \(-0.679017\pi\)
−0.533218 + 0.845978i \(0.679017\pi\)
\(642\) 9.00000i 0.355202i
\(643\) 40.0000i 1.57745i 0.614749 + 0.788723i \(0.289257\pi\)
−0.614749 + 0.788723i \(0.710743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 3.00000 0.118033
\(647\) − 6.00000i − 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 5.00000i 0.195815i
\(653\) − 42.0000i − 1.64359i −0.569785 0.821794i \(-0.692974\pi\)
0.569785 0.821794i \(-0.307026\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 2.00000i 0.0780274i
\(658\) − 15.0000i − 0.584761i
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 32.0000 1.24466 0.622328 0.782757i \(-0.286187\pi\)
0.622328 + 0.782757i \(0.286187\pi\)
\(662\) − 17.0000i − 0.660724i
\(663\) 12.0000i 0.466041i
\(664\) 0 0
\(665\) 0 0
\(666\) 1.00000 0.0387492
\(667\) 0 0
\(668\) − 6.00000i − 0.232147i
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) −60.0000 −2.31627
\(672\) − 5.00000i − 0.192879i
\(673\) 13.0000i 0.501113i 0.968102 + 0.250557i \(0.0806136\pi\)
−0.968102 + 0.250557i \(0.919386\pi\)
\(674\) −10.0000 −0.385186
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) − 18.0000i − 0.691796i −0.938272 0.345898i \(-0.887574\pi\)
0.938272 0.345898i \(-0.112426\pi\)
\(678\) − 3.00000i − 0.115214i
\(679\) −40.0000 −1.53506
\(680\) 0 0
\(681\) 3.00000 0.114960
\(682\) 24.0000i 0.919007i
\(683\) 9.00000i 0.344375i 0.985064 + 0.172188i \(0.0550836\pi\)
−0.985064 + 0.172188i \(0.944916\pi\)
\(684\) 1.00000 0.0382360
\(685\) 0 0
\(686\) −55.0000 −2.09991
\(687\) − 7.00000i − 0.267067i
\(688\) 7.00000i 0.266872i
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) −52.0000 −1.97817 −0.989087 0.147335i \(-0.952930\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(692\) − 21.0000i − 0.798300i
\(693\) − 30.0000i − 1.13961i
\(694\) −3.00000 −0.113878
\(695\) 0 0
\(696\) 1.00000 0.0379049
\(697\) − 27.0000i − 1.02270i
\(698\) 2.00000i 0.0757011i
\(699\) −24.0000 −0.907763
\(700\) 0 0
\(701\) 45.0000 1.69963 0.849813 0.527084i \(-0.176715\pi\)
0.849813 + 0.527084i \(0.176715\pi\)
\(702\) 4.00000i 0.150970i
\(703\) − 1.00000i − 0.0377157i
\(704\) −6.00000 −0.226134
\(705\) 0 0
\(706\) 30.0000 1.12906
\(707\) − 30.0000i − 1.12827i
\(708\) − 3.00000i − 0.112747i
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 6.00000i 0.224860i
\(713\) 0 0
\(714\) 15.0000 0.561361
\(715\) 0 0
\(716\) 0 0
\(717\) 6.00000i 0.224074i
\(718\) 9.00000i 0.335877i
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) −65.0000 −2.42073
\(722\) 18.0000i 0.669891i
\(723\) − 17.0000i − 0.632237i
\(724\) −8.00000 −0.297318
\(725\) 0 0
\(726\) −25.0000 −0.927837
\(727\) − 10.0000i − 0.370879i −0.982656 0.185440i \(-0.940629\pi\)
0.982656 0.185440i \(-0.0593710\pi\)
\(728\) − 20.0000i − 0.741249i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −21.0000 −0.776713
\(732\) − 10.0000i − 0.369611i
\(733\) − 50.0000i − 1.84679i −0.383849 0.923396i \(-0.625402\pi\)
0.383849 0.923396i \(-0.374598\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) 0 0
\(737\) − 24.0000i − 0.884051i
\(738\) − 9.00000i − 0.331295i
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 30.0000i 1.10133i
\(743\) 21.0000i 0.770415i 0.922830 + 0.385208i \(0.125870\pi\)
−0.922830 + 0.385208i \(0.874130\pi\)
\(744\) −4.00000 −0.146647
\(745\) 0 0
\(746\) −20.0000 −0.732252
\(747\) 0 0
\(748\) − 18.0000i − 0.658145i
\(749\) 45.0000 1.64426
\(750\) 0 0
\(751\) −10.0000 −0.364905 −0.182453 0.983215i \(-0.558404\pi\)
−0.182453 + 0.983215i \(0.558404\pi\)
\(752\) − 3.00000i − 0.109399i
\(753\) 0 0
\(754\) 4.00000 0.145671
\(755\) 0 0
\(756\) 5.00000 0.181848
\(757\) − 7.00000i − 0.254419i −0.991876 0.127210i \(-0.959398\pi\)
0.991876 0.127210i \(-0.0406021\pi\)
\(758\) − 28.0000i − 1.01701i
\(759\) 0 0
\(760\) 0 0
\(761\) −36.0000 −1.30500 −0.652499 0.757789i \(-0.726280\pi\)
−0.652499 + 0.757789i \(0.726280\pi\)
\(762\) 22.0000i 0.796976i
\(763\) − 40.0000i − 1.44810i
\(764\) 21.0000 0.759753
\(765\) 0 0
\(766\) 6.00000 0.216789
\(767\) − 12.0000i − 0.433295i
\(768\) − 1.00000i − 0.0360844i
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 4.00000i − 0.143963i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) −7.00000 −0.251610
\(775\) 0 0
\(776\) −8.00000 −0.287183
\(777\) − 5.00000i − 0.179374i
\(778\) − 12.0000i − 0.430221i
\(779\) −9.00000 −0.322458
\(780\) 0 0
\(781\) 72.0000 2.57636
\(782\) 0 0
\(783\) 1.00000i 0.0357371i
\(784\) −18.0000 −0.642857
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) 32.0000i 1.14068i 0.821410 + 0.570338i \(0.193188\pi\)
−0.821410 + 0.570338i \(0.806812\pi\)
\(788\) − 9.00000i − 0.320612i
\(789\) 3.00000 0.106803
\(790\) 0 0
\(791\) −15.0000 −0.533339
\(792\) − 6.00000i − 0.213201i
\(793\) − 40.0000i − 1.42044i
\(794\) 26.0000 0.922705
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) 12.0000i 0.425062i 0.977154 + 0.212531i \(0.0681706\pi\)
−0.977154 + 0.212531i \(0.931829\pi\)
\(798\) − 5.00000i − 0.176998i
\(799\) 9.00000 0.318397
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) − 30.0000i − 1.05934i
\(803\) − 12.0000i − 0.423471i
\(804\) 4.00000 0.141069
\(805\) 0 0
\(806\) −16.0000 −0.563576
\(807\) 6.00000i 0.211210i
\(808\) − 6.00000i − 0.211079i
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) − 5.00000i − 0.175466i
\(813\) − 20.0000i − 0.701431i
\(814\) −6.00000 −0.210300
\(815\) 0 0
\(816\) 3.00000 0.105021
\(817\) 7.00000i 0.244899i
\(818\) 8.00000i 0.279713i
\(819\) 20.0000 0.698857
\(820\) 0 0
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 6.00000i 0.209274i
\(823\) − 26.0000i − 0.906303i −0.891434 0.453152i \(-0.850300\pi\)
0.891434 0.453152i \(-0.149700\pi\)
\(824\) −13.0000 −0.452876
\(825\) 0 0
\(826\) −15.0000 −0.521917
\(827\) − 12.0000i − 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) 49.0000 1.70184 0.850920 0.525295i \(-0.176045\pi\)
0.850920 + 0.525295i \(0.176045\pi\)
\(830\) 0 0
\(831\) 14.0000 0.485655
\(832\) − 4.00000i − 0.138675i
\(833\) − 54.0000i − 1.87099i
\(834\) 14.0000 0.484780
\(835\) 0 0
\(836\) −6.00000 −0.207514
\(837\) − 4.00000i − 0.138260i
\(838\) 21.0000i 0.725433i
\(839\) 3.00000 0.103572 0.0517858 0.998658i \(-0.483509\pi\)
0.0517858 + 0.998658i \(0.483509\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) − 14.0000i − 0.482472i
\(843\) 6.00000i 0.206651i
\(844\) 25.0000 0.860535
\(845\) 0 0
\(846\) 3.00000 0.103142
\(847\) 125.000i 4.29505i
\(848\) 6.00000i 0.206041i
\(849\) −14.0000 −0.480479
\(850\) 0 0
\(851\) 0 0
\(852\) 12.0000i 0.411113i
\(853\) 19.0000i 0.650548i 0.945620 + 0.325274i \(0.105456\pi\)
−0.945620 + 0.325274i \(0.894544\pi\)
\(854\) −50.0000 −1.71096
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) − 18.0000i − 0.614868i −0.951569 0.307434i \(-0.900530\pi\)
0.951569 0.307434i \(-0.0994704\pi\)
\(858\) − 24.0000i − 0.819346i
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 0 0
\(861\) −45.0000 −1.53360
\(862\) − 36.0000i − 1.22616i
\(863\) 36.0000i 1.22545i 0.790295 + 0.612727i \(0.209928\pi\)
−0.790295 + 0.612727i \(0.790072\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −26.0000 −0.883516
\(867\) − 8.00000i − 0.271694i
\(868\) 20.0000i 0.678844i
\(869\) −84.0000 −2.84950
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) − 8.00000i − 0.270914i
\(873\) − 8.00000i − 0.270759i
\(874\) 0 0
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) − 16.0000i − 0.540282i −0.962821 0.270141i \(-0.912930\pi\)
0.962821 0.270141i \(-0.0870703\pi\)
\(878\) − 1.00000i − 0.0337484i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) − 18.0000i − 0.606092i
\(883\) − 56.0000i − 1.88455i −0.334840 0.942275i \(-0.608682\pi\)
0.334840 0.942275i \(-0.391318\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −12.0000 −0.403148
\(887\) 48.0000i 1.61168i 0.592132 + 0.805841i \(0.298286\pi\)
−0.592132 + 0.805841i \(0.701714\pi\)
\(888\) − 1.00000i − 0.0335578i
\(889\) 110.000 3.68928
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) − 16.0000i − 0.535720i
\(893\) − 3.00000i − 0.100391i
\(894\) 3.00000 0.100335
\(895\) 0 0
\(896\) −5.00000 −0.167038
\(897\) 0 0
\(898\) 15.0000i 0.500556i
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 54.0000i 1.79800i
\(903\) 35.0000i 1.16473i
\(904\) −3.00000 −0.0997785
\(905\) 0 0
\(906\) −17.0000 −0.564787
\(907\) − 28.0000i − 0.929725i −0.885383 0.464862i \(-0.846104\pi\)
0.885383 0.464862i \(-0.153896\pi\)
\(908\) − 3.00000i − 0.0995585i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) − 1.00000i − 0.0331133i
\(913\) 0 0
\(914\) 11.0000 0.363848
\(915\) 0 0
\(916\) −7.00000 −0.231287
\(917\) 60.0000i 1.98137i
\(918\) 3.00000i 0.0990148i
\(919\) −29.0000 −0.956622 −0.478311 0.878191i \(-0.658751\pi\)
−0.478311 + 0.878191i \(0.658751\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) − 12.0000i − 0.395199i
\(923\) 48.0000i 1.57994i
\(924\) −30.0000 −0.986928
\(925\) 0 0
\(926\) 16.0000 0.525793
\(927\) − 13.0000i − 0.426976i
\(928\) − 1.00000i − 0.0328266i
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 24.0000i 0.786146i
\(933\) − 21.0000i − 0.687509i
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 4.00000 0.130744
\(937\) − 49.0000i − 1.60076i −0.599493 0.800380i \(-0.704631\pi\)
0.599493 0.800380i \(-0.295369\pi\)
\(938\) − 20.0000i − 0.653023i
\(939\) −11.0000 −0.358971
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 13.0000i 0.423563i
\(943\) 0 0
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 42.0000 1.36554
\(947\) − 12.0000i − 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) − 14.0000i − 0.454699i
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 0 0
\(952\) − 15.0000i − 0.486153i
\(953\) − 36.0000i − 1.16615i −0.812417 0.583077i \(-0.801849\pi\)
0.812417 0.583077i \(-0.198151\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 6.00000 0.194054
\(957\) − 6.00000i − 0.193952i
\(958\) 24.0000i 0.775405i
\(959\) 30.0000 0.968751
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 4.00000i − 0.128965i
\(963\) 9.00000i 0.290021i
\(964\) −17.0000 −0.547533
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.00000i − 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 25.0000i 0.803530i
\(969\) 3.00000 0.0963739
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 70.0000i − 2.24410i
\(974\) 23.0000 0.736968
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) − 12.0000i − 0.383914i −0.981403 0.191957i \(-0.938517\pi\)
0.981403 0.191957i \(-0.0614834\pi\)
\(978\) 5.00000i 0.159882i
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 30.0000i 0.957338i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) −9.00000 −0.286910
\(985\) 0 0
\(986\) 3.00000 0.0955395
\(987\) − 15.0000i − 0.477455i
\(988\) − 4.00000i − 0.127257i
\(989\) 0 0
\(990\) 0 0
\(991\) 47.0000 1.49300 0.746502 0.665383i \(-0.231732\pi\)
0.746502 + 0.665383i \(0.231732\pi\)
\(992\) 4.00000i 0.127000i
\(993\) − 17.0000i − 0.539479i
\(994\) 60.0000 1.90308
\(995\) 0 0
\(996\) 0 0
\(997\) − 19.0000i − 0.601736i −0.953666 0.300868i \(-0.902724\pi\)
0.953666 0.300868i \(-0.0972764\pi\)
\(998\) − 22.0000i − 0.696398i
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4350.2.e.j.349.1 2
5.2 odd 4 4350.2.a.o.1.1 1
5.3 odd 4 174.2.a.b.1.1 1
5.4 even 2 inner 4350.2.e.j.349.2 2
15.8 even 4 522.2.a.m.1.1 1
20.3 even 4 1392.2.a.b.1.1 1
35.13 even 4 8526.2.a.f.1.1 1
40.3 even 4 5568.2.a.bh.1.1 1
40.13 odd 4 5568.2.a.q.1.1 1
60.23 odd 4 4176.2.a.bd.1.1 1
145.28 odd 4 5046.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
174.2.a.b.1.1 1 5.3 odd 4
522.2.a.m.1.1 1 15.8 even 4
1392.2.a.b.1.1 1 20.3 even 4
4176.2.a.bd.1.1 1 60.23 odd 4
4350.2.a.o.1.1 1 5.2 odd 4
4350.2.e.j.349.1 2 1.1 even 1 trivial
4350.2.e.j.349.2 2 5.4 even 2 inner
5046.2.a.i.1.1 1 145.28 odd 4
5568.2.a.q.1.1 1 40.13 odd 4
5568.2.a.bh.1.1 1 40.3 even 4
8526.2.a.f.1.1 1 35.13 even 4