Properties

Label 4320.2.q.h.1441.1
Level $4320$
Weight $2$
Character 4320.1441
Analytic conductor $34.495$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(1441,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.1441"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,1,0,3,0,0,0,4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1440)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1441.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 4320.1441
Dual form 4320.2.q.h.2881.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{7} +(2.00000 + 3.46410i) q^{11} +(2.00000 - 3.46410i) q^{13} -2.00000 q^{17} -2.00000 q^{19} +(3.50000 - 6.06218i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-4.50000 - 7.79423i) q^{29} +(3.00000 - 5.19615i) q^{31} +3.00000 q^{35} +2.00000 q^{37} +(4.50000 - 7.79423i) q^{41} +(2.00000 + 3.46410i) q^{43} +(1.50000 + 2.59808i) q^{47} +(-1.00000 + 1.73205i) q^{49} -6.00000 q^{53} +4.00000 q^{55} +(3.00000 - 5.19615i) q^{59} +(6.50000 + 11.2583i) q^{61} +(-2.00000 - 3.46410i) q^{65} +(1.50000 - 2.59808i) q^{67} +8.00000 q^{73} +(-6.00000 + 10.3923i) q^{77} +(5.00000 + 8.66025i) q^{79} +(-3.50000 - 6.06218i) q^{83} +(-1.00000 + 1.73205i) q^{85} -1.00000 q^{89} +12.0000 q^{91} +(-1.00000 + 1.73205i) q^{95} +(7.00000 + 12.1244i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{5} + 3 q^{7} + 4 q^{11} + 4 q^{13} - 4 q^{17} - 4 q^{19} + 7 q^{23} - q^{25} - 9 q^{29} + 6 q^{31} + 6 q^{35} + 4 q^{37} + 9 q^{41} + 4 q^{43} + 3 q^{47} - 2 q^{49} - 12 q^{53} + 8 q^{55} + 6 q^{59}+ \cdots + 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 1.50000 + 2.59808i 0.566947 + 0.981981i 0.996866 + 0.0791130i \(0.0252088\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.50000 6.06218i 0.729800 1.26405i −0.227167 0.973856i \(-0.572946\pi\)
0.956967 0.290196i \(-0.0937204\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 3.00000 5.19615i 0.538816 0.933257i −0.460152 0.887840i \(-0.652205\pi\)
0.998968 0.0454165i \(-0.0144615\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.50000 7.79423i 0.702782 1.21725i −0.264704 0.964330i \(-0.585274\pi\)
0.967486 0.252924i \(-0.0813924\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.50000 + 2.59808i 0.218797 + 0.378968i 0.954441 0.298401i \(-0.0964533\pi\)
−0.735643 + 0.677369i \(0.763120\pi\)
\(48\) 0 0
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.00000 5.19615i 0.390567 0.676481i −0.601958 0.798528i \(-0.705612\pi\)
0.992524 + 0.122047i \(0.0389457\pi\)
\(60\) 0 0
\(61\) 6.50000 + 11.2583i 0.832240 + 1.44148i 0.896258 + 0.443533i \(0.146275\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 1.50000 2.59808i 0.183254 0.317406i −0.759733 0.650236i \(-0.774670\pi\)
0.942987 + 0.332830i \(0.108004\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.00000 + 10.3923i −0.683763 + 1.18431i
\(78\) 0 0
\(79\) 5.00000 + 8.66025i 0.562544 + 0.974355i 0.997274 + 0.0737937i \(0.0235106\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.50000 6.06218i −0.384175 0.665410i 0.607479 0.794335i \(-0.292181\pi\)
−0.991654 + 0.128925i \(0.958847\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 7.00000 + 12.1244i 0.710742 + 1.23104i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.00000 + 12.1244i 0.696526 + 1.20642i 0.969664 + 0.244443i \(0.0786053\pi\)
−0.273138 + 0.961975i \(0.588061\pi\)
\(102\) 0 0
\(103\) 4.00000 6.92820i 0.394132 0.682656i −0.598858 0.800855i \(-0.704379\pi\)
0.992990 + 0.118199i \(0.0377120\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.0000 −1.45010 −0.725052 0.688694i \(-0.758184\pi\)
−0.725052 + 0.688694i \(0.758184\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 + 10.3923i −0.564433 + 0.977626i 0.432670 + 0.901553i \(0.357572\pi\)
−0.997102 + 0.0760733i \(0.975762\pi\)
\(114\) 0 0
\(115\) −3.50000 6.06218i −0.326377 0.565301i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.00000 5.19615i −0.275010 0.476331i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 19.0000 1.68598 0.842989 0.537931i \(-0.180794\pi\)
0.842989 + 0.537931i \(0.180794\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0000 19.0526i 0.961074 1.66463i 0.241264 0.970460i \(-0.422438\pi\)
0.719811 0.694170i \(-0.244228\pi\)
\(132\) 0 0
\(133\) −3.00000 5.19615i −0.260133 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.00000 13.8564i −0.683486 1.18383i −0.973910 0.226935i \(-0.927130\pi\)
0.290424 0.956898i \(-0.406204\pi\)
\(138\) 0 0
\(139\) −4.00000 + 6.92820i −0.339276 + 0.587643i −0.984297 0.176522i \(-0.943515\pi\)
0.645021 + 0.764165i \(0.276849\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.0000 1.33799
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) 10.0000 + 17.3205i 0.813788 + 1.40952i 0.910195 + 0.414181i \(0.135932\pi\)
−0.0964061 + 0.995342i \(0.530735\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 0 0
\(157\) 7.00000 12.1244i 0.558661 0.967629i −0.438948 0.898513i \(-0.644649\pi\)
0.997609 0.0691164i \(-0.0220180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21.0000 1.65503
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.50000 2.59808i 0.116073 0.201045i −0.802135 0.597143i \(-0.796303\pi\)
0.918208 + 0.396098i \(0.129636\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.00000 3.46410i −0.152057 0.263371i 0.779926 0.625871i \(-0.215256\pi\)
−0.931984 + 0.362500i \(0.881923\pi\)
\(174\) 0 0
\(175\) 1.50000 2.59808i 0.113389 0.196396i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −23.0000 −1.70958 −0.854788 0.518977i \(-0.826313\pi\)
−0.854788 + 0.518977i \(0.826313\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 1.73205i 0.0735215 0.127343i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.00000 + 8.66025i 0.361787 + 0.626634i 0.988255 0.152813i \(-0.0488333\pi\)
−0.626468 + 0.779447i \(0.715500\pi\)
\(192\) 0 0
\(193\) −10.0000 + 17.3205i −0.719816 + 1.24676i 0.241257 + 0.970461i \(0.422440\pi\)
−0.961073 + 0.276296i \(0.910893\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.0000 1.42494 0.712470 0.701702i \(-0.247576\pi\)
0.712470 + 0.701702i \(0.247576\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13.5000 23.3827i 0.947514 1.64114i
\(204\) 0 0
\(205\) −4.50000 7.79423i −0.314294 0.544373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.00000 6.92820i −0.276686 0.479234i
\(210\) 0 0
\(211\) −10.0000 + 17.3205i −0.688428 + 1.19239i 0.283918 + 0.958849i \(0.408366\pi\)
−0.972346 + 0.233544i \(0.924968\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) 18.0000 1.22192
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 + 6.92820i −0.269069 + 0.466041i
\(222\) 0 0
\(223\) −4.50000 7.79423i −0.301342 0.521940i 0.675098 0.737728i \(-0.264101\pi\)
−0.976440 + 0.215788i \(0.930768\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.00000 3.46410i −0.132745 0.229920i 0.791989 0.610535i \(-0.209046\pi\)
−0.924734 + 0.380615i \(0.875712\pi\)
\(228\) 0 0
\(229\) 10.5000 18.1865i 0.693860 1.20180i −0.276704 0.960955i \(-0.589242\pi\)
0.970564 0.240845i \(-0.0774245\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 3.46410i 0.129369 0.224074i −0.794063 0.607835i \(-0.792038\pi\)
0.923432 + 0.383761i \(0.125371\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.00000 + 1.73205i 0.0638877 + 0.110657i
\(246\) 0 0
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 28.0000 1.76034
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) 3.00000 + 5.19615i 0.186411 + 0.322873i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000 + 6.92820i 0.246651 + 0.427211i 0.962594 0.270947i \(-0.0873367\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(264\) 0 0
\(265\) −3.00000 + 5.19615i −0.184289 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.00000 −0.304855 −0.152428 0.988315i \(-0.548709\pi\)
−0.152428 + 0.988315i \(0.548709\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) −9.00000 15.5885i −0.540758 0.936620i −0.998861 0.0477206i \(-0.984804\pi\)
0.458103 0.888899i \(-0.348529\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −11.5000 19.9186i −0.686032 1.18824i −0.973111 0.230336i \(-0.926017\pi\)
0.287079 0.957907i \(-0.407316\pi\)
\(282\) 0 0
\(283\) 11.5000 19.9186i 0.683604 1.18404i −0.290269 0.956945i \(-0.593745\pi\)
0.973873 0.227092i \(-0.0729218\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 27.0000 1.59376
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.00000 + 1.73205i −0.0584206 + 0.101187i −0.893757 0.448552i \(-0.851940\pi\)
0.835336 + 0.549740i \(0.185273\pi\)
\(294\) 0 0
\(295\) −3.00000 5.19615i −0.174667 0.302532i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.0000 24.2487i −0.809641 1.40234i
\(300\) 0 0
\(301\) −6.00000 + 10.3923i −0.345834 + 0.599002i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13.0000 0.744378
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.0000 + 25.9808i −0.850572 + 1.47323i 0.0301210 + 0.999546i \(0.490411\pi\)
−0.880693 + 0.473688i \(0.842923\pi\)
\(312\) 0 0
\(313\) −8.00000 13.8564i −0.452187 0.783210i 0.546335 0.837567i \(-0.316023\pi\)
−0.998522 + 0.0543564i \(0.982689\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 18.0000 31.1769i 1.00781 1.74557i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) −4.00000 −0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.50000 + 7.79423i −0.248093 + 0.429710i
\(330\) 0 0
\(331\) 3.00000 + 5.19615i 0.164895 + 0.285606i 0.936618 0.350352i \(-0.113938\pi\)
−0.771723 + 0.635959i \(0.780605\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.50000 2.59808i −0.0819538 0.141948i
\(336\) 0 0
\(337\) 8.00000 13.8564i 0.435788 0.754807i −0.561572 0.827428i \(-0.689803\pi\)
0.997360 + 0.0726214i \(0.0231365\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.0000 1.29967
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000 6.92820i 0.214731 0.371925i −0.738458 0.674299i \(-0.764446\pi\)
0.953189 + 0.302374i \(0.0977791\pi\)
\(348\) 0 0
\(349\) 14.5000 + 25.1147i 0.776167 + 1.34436i 0.934136 + 0.356917i \(0.116172\pi\)
−0.157969 + 0.987444i \(0.550495\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.00000 + 13.8564i 0.425797 + 0.737502i 0.996495 0.0836583i \(-0.0266604\pi\)
−0.570697 + 0.821160i \(0.693327\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.00000 −0.105556 −0.0527780 0.998606i \(-0.516808\pi\)
−0.0527780 + 0.998606i \(0.516808\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.00000 6.92820i 0.209370 0.362639i
\(366\) 0 0
\(367\) 12.0000 + 20.7846i 0.626395 + 1.08495i 0.988269 + 0.152721i \(0.0488036\pi\)
−0.361874 + 0.932227i \(0.617863\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.00000 15.5885i −0.467257 0.809312i
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.0000 −1.85409
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.00000 13.8564i 0.408781 0.708029i −0.585973 0.810331i \(-0.699287\pi\)
0.994753 + 0.102302i \(0.0326207\pi\)
\(384\) 0 0
\(385\) 6.00000 + 10.3923i 0.305788 + 0.529641i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.50000 2.59808i −0.0760530 0.131728i 0.825491 0.564416i \(-0.190898\pi\)
−0.901544 + 0.432688i \(0.857565\pi\)
\(390\) 0 0
\(391\) −7.00000 + 12.1244i −0.354005 + 0.613155i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.00000 + 8.66025i −0.249688 + 0.432472i −0.963439 0.267927i \(-0.913661\pi\)
0.713751 + 0.700399i \(0.246995\pi\)
\(402\) 0 0
\(403\) −12.0000 20.7846i −0.597763 1.03536i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 + 6.92820i 0.198273 + 0.343418i
\(408\) 0 0
\(409\) 5.00000 8.66025i 0.247234 0.428222i −0.715523 0.698589i \(-0.753812\pi\)
0.962757 + 0.270367i \(0.0871450\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 18.0000 0.885722
\(414\) 0 0
\(415\) −7.00000 −0.343616
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 + 31.1769i −0.879358 + 1.52309i −0.0273103 + 0.999627i \(0.508694\pi\)
−0.852047 + 0.523465i \(0.824639\pi\)
\(420\) 0 0
\(421\) −5.00000 8.66025i −0.243685 0.422075i 0.718076 0.695965i \(-0.245023\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.00000 + 1.73205i 0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) −19.5000 + 33.7750i −0.943671 + 1.63449i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 0 0
\(433\) −10.0000 −0.480569 −0.240285 0.970702i \(-0.577241\pi\)
−0.240285 + 0.970702i \(0.577241\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.00000 + 12.1244i −0.334855 + 0.579987i
\(438\) 0 0
\(439\) 14.0000 + 24.2487i 0.668184 + 1.15733i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.50000 11.2583i −0.308824 0.534899i 0.669281 0.743009i \(-0.266602\pi\)
−0.978105 + 0.208110i \(0.933269\pi\)
\(444\) 0 0
\(445\) −0.500000 + 0.866025i −0.0237023 + 0.0410535i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 10.3923i 0.281284 0.487199i
\(456\) 0 0
\(457\) −1.00000 1.73205i −0.0467780 0.0810219i 0.841688 0.539964i \(-0.181562\pi\)
−0.888466 + 0.458942i \(0.848229\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −9.50000 16.4545i −0.442459 0.766362i 0.555412 0.831575i \(-0.312560\pi\)
−0.997871 + 0.0652135i \(0.979227\pi\)
\(462\) 0 0
\(463\) 2.00000 3.46410i 0.0929479 0.160990i −0.815802 0.578331i \(-0.803704\pi\)
0.908750 + 0.417340i \(0.137038\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 9.00000 0.415581
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.00000 + 13.8564i −0.367840 + 0.637118i
\(474\) 0 0
\(475\) 1.00000 + 1.73205i 0.0458831 + 0.0794719i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.0000 + 22.5167i 0.593985 + 1.02881i 0.993689 + 0.112168i \(0.0357796\pi\)
−0.399704 + 0.916644i \(0.630887\pi\)
\(480\) 0 0
\(481\) 4.00000 6.92820i 0.182384 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.0000 0.635707
\(486\) 0 0
\(487\) 40.0000 1.81257 0.906287 0.422664i \(-0.138905\pi\)
0.906287 + 0.422664i \(0.138905\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.0000 + 31.1769i −0.812329 + 1.40699i 0.0989017 + 0.995097i \(0.468467\pi\)
−0.911230 + 0.411897i \(0.864866\pi\)
\(492\) 0 0
\(493\) 9.00000 + 15.5885i 0.405340 + 0.702069i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.0000 27.7128i 0.716258 1.24060i −0.246214 0.969216i \(-0.579187\pi\)
0.962472 0.271380i \(-0.0874801\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 7.00000 0.312115 0.156057 0.987748i \(-0.450122\pi\)
0.156057 + 0.987748i \(0.450122\pi\)
\(504\) 0 0
\(505\) 14.0000 0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.50000 + 11.2583i −0.288107 + 0.499017i −0.973358 0.229291i \(-0.926359\pi\)
0.685251 + 0.728307i \(0.259693\pi\)
\(510\) 0 0
\(511\) 12.0000 + 20.7846i 0.530849 + 0.919457i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.0000 0.920027 0.460013 0.887912i \(-0.347845\pi\)
0.460013 + 0.887912i \(0.347845\pi\)
\(522\) 0 0
\(523\) −41.0000 −1.79280 −0.896402 0.443241i \(-0.853829\pi\)
−0.896402 + 0.443241i \(0.853829\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −18.0000 31.1769i −0.779667 1.35042i
\(534\) 0 0
\(535\) −7.50000 + 12.9904i −0.324253 + 0.561623i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.00000 −0.344584
\(540\) 0 0
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.50000 + 6.06218i −0.149924 + 0.259675i
\(546\) 0 0
\(547\) −11.5000 19.9186i −0.491704 0.851657i 0.508250 0.861210i \(-0.330293\pi\)
−0.999954 + 0.00955248i \(0.996959\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.00000 + 15.5885i 0.383413 + 0.664091i
\(552\) 0 0
\(553\) −15.0000 + 25.9808i −0.637865 + 1.10481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.5000 33.7750i 0.821827 1.42345i −0.0824933 0.996592i \(-0.526288\pi\)
0.904320 0.426855i \(-0.140378\pi\)
\(564\) 0 0
\(565\) 6.00000 + 10.3923i 0.252422 + 0.437208i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 19.0000 + 32.9090i 0.796521 + 1.37962i 0.921869 + 0.387503i \(0.126662\pi\)
−0.125347 + 0.992113i \(0.540004\pi\)
\(570\) 0 0
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.00000 −0.291920
\(576\) 0 0
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.5000 18.1865i 0.435613 0.754505i
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.50000 + 2.59808i 0.0619116 + 0.107234i 0.895320 0.445424i \(-0.146947\pi\)
−0.833408 + 0.552658i \(0.813614\pi\)
\(588\) 0 0
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) −6.00000 −0.245976
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.00000 + 12.1244i −0.286012 + 0.495388i −0.972854 0.231419i \(-0.925663\pi\)
0.686842 + 0.726807i \(0.258996\pi\)
\(600\) 0 0
\(601\) −5.00000 8.66025i −0.203954 0.353259i 0.745845 0.666120i \(-0.232046\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.50000 + 4.33013i 0.101639 + 0.176045i
\(606\) 0 0
\(607\) 2.50000 4.33013i 0.101472 0.175754i −0.810819 0.585296i \(-0.800978\pi\)
0.912291 + 0.409542i \(0.134311\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 10.3923i 0.241551 0.418378i −0.719605 0.694383i \(-0.755677\pi\)
0.961156 + 0.276005i \(0.0890106\pi\)
\(618\) 0 0
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.50000 2.59808i −0.0600962 0.104090i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.50000 16.4545i 0.376996 0.652976i
\(636\) 0 0
\(637\) 4.00000 + 6.92820i 0.158486 + 0.274505i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.50000 9.52628i −0.217237 0.376265i 0.736725 0.676192i \(-0.236371\pi\)
−0.953962 + 0.299927i \(0.903038\pi\)
\(642\) 0 0
\(643\) 16.5000 28.5788i 0.650696 1.12704i −0.332258 0.943189i \(-0.607810\pi\)
0.982954 0.183851i \(-0.0588563\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −35.0000 −1.37599 −0.687996 0.725714i \(-0.741509\pi\)
−0.687996 + 0.725714i \(0.741509\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 12.1244i 0.273931 0.474463i −0.695934 0.718106i \(-0.745009\pi\)
0.969865 + 0.243643i \(0.0783426\pi\)
\(654\) 0 0
\(655\) −11.0000 19.0526i −0.429806 0.744445i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.00000 3.46410i −0.0779089 0.134942i 0.824439 0.565951i \(-0.191491\pi\)
−0.902348 + 0.431009i \(0.858158\pi\)
\(660\) 0 0
\(661\) −11.0000 + 19.0526i −0.427850 + 0.741059i −0.996682 0.0813955i \(-0.974062\pi\)
0.568831 + 0.822454i \(0.307396\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −6.00000 −0.232670
\(666\) 0 0
\(667\) −63.0000 −2.43937
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −26.0000 + 45.0333i −1.00372 + 1.73849i
\(672\) 0 0
\(673\) −18.0000 31.1769i −0.693849 1.20178i −0.970567 0.240831i \(-0.922580\pi\)
0.276718 0.960951i \(-0.410753\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(678\) 0 0
\(679\) −21.0000 + 36.3731i −0.805906 + 1.39587i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) −16.0000 −0.611329
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.0000 + 20.7846i −0.457164 + 0.791831i
\(690\) 0 0
\(691\) 17.0000 + 29.4449i 0.646710 + 1.12014i 0.983904 + 0.178700i \(0.0571891\pi\)
−0.337193 + 0.941435i \(0.609478\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 + 6.92820i 0.151729 + 0.262802i
\(696\) 0 0
\(697\) −9.00000 + 15.5885i −0.340899 + 0.590455i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.00000 0.0377695 0.0188847 0.999822i \(-0.493988\pi\)
0.0188847 + 0.999822i \(0.493988\pi\)
\(702\) 0 0
\(703\) −4.00000 −0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −21.0000 + 36.3731i −0.789786 + 1.36795i
\(708\) 0 0
\(709\) 20.5000 + 35.5070i 0.769894 + 1.33349i 0.937620 + 0.347661i \(0.113024\pi\)
−0.167727 + 0.985834i \(0.553643\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.0000 36.3731i −0.786456 1.36218i
\(714\) 0 0
\(715\) 8.00000 13.8564i 0.299183 0.518200i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.00000 −0.0745874 −0.0372937 0.999304i \(-0.511874\pi\)
−0.0372937 + 0.999304i \(0.511874\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) 0 0
\(727\) −11.5000 19.9186i −0.426511 0.738739i 0.570049 0.821611i \(-0.306924\pi\)
−0.996560 + 0.0828714i \(0.973591\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 6.92820i −0.147945 0.256249i
\(732\) 0 0
\(733\) −17.0000 + 29.4449i −0.627909 + 1.08757i 0.360061 + 0.932929i \(0.382756\pi\)
−0.987971 + 0.154642i \(0.950578\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.0000 0.442026
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.5000 23.3827i 0.495267 0.857828i −0.504718 0.863284i \(-0.668404\pi\)
0.999985 + 0.00545664i \(0.00173691\pi\)
\(744\) 0 0
\(745\) 1.50000 + 2.59808i 0.0549557 + 0.0951861i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.5000 38.9711i −0.822132 1.42397i
\(750\) 0 0
\(751\) 4.00000 6.92820i 0.145962 0.252814i −0.783769 0.621052i \(-0.786706\pi\)
0.929731 + 0.368238i \(0.120039\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.5000 + 18.1865i −0.380625 + 0.659261i −0.991152 0.132734i \(-0.957624\pi\)
0.610527 + 0.791995i \(0.290958\pi\)
\(762\) 0 0
\(763\) −10.5000 18.1865i −0.380126 0.658397i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.0000 20.7846i −0.433295 0.750489i
\(768\) 0 0
\(769\) 23.5000 40.7032i 0.847432 1.46779i −0.0360609 0.999350i \(-0.511481\pi\)
0.883493 0.468445i \(-0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −44.0000 −1.58257 −0.791285 0.611448i \(-0.790588\pi\)
−0.791285 + 0.611448i \(0.790588\pi\)
\(774\) 0 0
\(775\) −6.00000 −0.215526
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.00000 + 15.5885i −0.322458 + 0.558514i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 12.1244i −0.249841 0.432737i
\(786\) 0 0
\(787\) −20.0000 + 34.6410i −0.712923 + 1.23482i 0.250832 + 0.968031i \(0.419296\pi\)
−0.963755 + 0.266788i \(0.914038\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) 0 0
\(793\) 52.0000 1.84657
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.0000 + 24.2487i −0.495905 + 0.858933i −0.999989 0.00472155i \(-0.998497\pi\)
0.504083 + 0.863655i \(0.331830\pi\)
\(798\) 0 0
\(799\) −3.00000 5.19615i −0.106132 0.183827i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.0000 + 27.7128i 0.564628 + 0.977964i
\(804\) 0 0
\(805\) 10.5000 18.1865i 0.370076 0.640991i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.0000 1.33601 0.668004 0.744157i \(-0.267149\pi\)
0.668004 + 0.744157i \(0.267149\pi\)
\(810\) 0 0
\(811\) −30.0000 −1.05344 −0.526721 0.850038i \(-0.676579\pi\)
−0.526721 + 0.850038i \(0.676579\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.00000 + 3.46410i −0.0700569 + 0.121342i
\(816\) 0 0
\(817\) −4.00000 6.92820i −0.139942 0.242387i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.5000 28.5788i −0.575854 0.997408i −0.995948 0.0899279i \(-0.971336\pi\)
0.420094 0.907480i \(-0.361997\pi\)
\(822\) 0 0
\(823\) 9.50000 16.4545i 0.331149 0.573567i −0.651588 0.758573i \(-0.725897\pi\)
0.982737 + 0.185006i \(0.0592303\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −45.0000 −1.56480 −0.782402 0.622774i \(-0.786006\pi\)
−0.782402 + 0.622774i \(0.786006\pi\)
\(828\) 0 0
\(829\) 21.0000 0.729360 0.364680 0.931133i \(-0.381178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.00000 3.46410i 0.0692959 0.120024i
\(834\) 0 0
\(835\) −1.50000 2.59808i −0.0519096 0.0899101i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.0000 + 36.3731i 0.725001 + 1.25574i 0.958974 + 0.283495i \(0.0914938\pi\)
−0.233973 + 0.972243i \(0.575173\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −15.0000 −0.515406
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.00000 12.1244i 0.239957 0.415618i
\(852\) 0 0
\(853\) 6.00000 + 10.3923i 0.205436 + 0.355826i 0.950272 0.311422i \(-0.100805\pi\)
−0.744836 + 0.667248i \(0.767472\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −16.0000 27.7128i −0.546550 0.946652i −0.998508 0.0546125i \(-0.982608\pi\)
0.451958 0.892039i \(-0.350726\pi\)
\(858\) 0 0
\(859\) −10.0000 + 17.3205i −0.341196 + 0.590968i −0.984655 0.174512i \(-0.944165\pi\)
0.643459 + 0.765480i \(0.277499\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 35.0000 1.19141 0.595707 0.803202i \(-0.296872\pi\)
0.595707 + 0.803202i \(0.296872\pi\)
\(864\) 0 0
\(865\) −4.00000 −0.136004
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20.0000 + 34.6410i −0.678454 + 1.17512i
\(870\) 0 0
\(871\) −6.00000 10.3923i −0.203302 0.352130i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.50000 2.59808i −0.0507093 0.0878310i
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.0000 −1.11180 −0.555899 0.831250i \(-0.687626\pi\)
−0.555899 + 0.831250i \(0.687626\pi\)
\(882\) 0 0
\(883\) −29.0000 −0.975928 −0.487964 0.872864i \(-0.662260\pi\)
−0.487964 + 0.872864i \(0.662260\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.00000 + 6.92820i −0.134307 + 0.232626i −0.925332 0.379157i \(-0.876214\pi\)
0.791026 + 0.611783i \(0.209547\pi\)
\(888\) 0 0
\(889\) 28.5000 + 49.3634i 0.955859 + 1.65560i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.00000 5.19615i −0.100391 0.173883i
\(894\) 0 0
\(895\) 12.0000 20.7846i 0.401116 0.694753i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −54.0000 −1.80100
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.5000 + 19.9186i −0.382273 + 0.662116i
\(906\) 0 0
\(907\) 19.5000 + 33.7750i 0.647487 + 1.12148i 0.983721 + 0.179702i \(0.0575133\pi\)
−0.336234 + 0.941778i \(0.609153\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.0000 + 29.4449i 0.563235 + 0.975552i 0.997211 + 0.0746276i \(0.0237768\pi\)
−0.433976 + 0.900924i \(0.642890\pi\)
\(912\) 0 0
\(913\) 14.0000 24.2487i 0.463332 0.802515i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 66.0000 2.17951
\(918\) 0 0
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.00000 1.73205i −0.0328798 0.0569495i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9.00000 15.5885i −0.295280 0.511441i 0.679770 0.733426i \(-0.262080\pi\)
−0.975050 + 0.221985i \(0.928746\pi\)
\(930\) 0 0
\(931\) 2.00000 3.46410i 0.0655474 0.113531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.50000 + 6.06218i −0.114097 + 0.197621i −0.917418 0.397924i \(-0.869731\pi\)
0.803322 + 0.595545i \(0.203064\pi\)
\(942\) 0 0
\(943\) −31.5000 54.5596i −1.02578 1.77671i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.50000 + 14.7224i 0.276213 + 0.478415i 0.970440 0.241341i \(-0.0775872\pi\)
−0.694228 + 0.719756i \(0.744254\pi\)
\(948\) 0 0
\(949\) 16.0000 27.7128i 0.519382 0.899596i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) 0 0
\(955\) 10.0000 0.323592
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.0000 41.5692i 0.775000 1.34234i
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.0000 + 17.3205i 0.321911 + 0.557567i
\(966\) 0 0
\(967\) −14.5000 + 25.1147i −0.466289 + 0.807635i −0.999259 0.0384986i \(-0.987742\pi\)
0.532970 + 0.846134i \(0.321076\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −10.0000 −0.320915 −0.160458 0.987043i \(-0.551297\pi\)
−0.160458 + 0.987043i \(0.551297\pi\)
\(972\) 0 0
\(973\) −24.0000 −0.769405
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.0000 41.5692i 0.767828 1.32992i −0.170910 0.985287i \(-0.554671\pi\)
0.938738 0.344631i \(-0.111996\pi\)
\(978\) 0 0
\(979\) −2.00000 3.46410i −0.0639203 0.110713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30.5000 52.8275i −0.972799 1.68494i −0.687015 0.726643i \(-0.741079\pi\)
−0.285784 0.958294i \(-0.592254\pi\)
\(984\) 0 0
\(985\) 10.0000 17.3205i 0.318626 0.551877i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 28.0000 0.890348
\(990\) 0 0
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.00000 12.1244i 0.221915 0.384368i
\(996\) 0 0
\(997\) 21.0000 + 36.3731i 0.665077 + 1.15195i 0.979265 + 0.202586i \(0.0649345\pi\)
−0.314188 + 0.949361i \(0.601732\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.q.h.1441.1 2
3.2 odd 2 1440.2.q.a.481.1 2
4.3 odd 2 4320.2.q.g.1441.1 2
9.2 odd 6 1440.2.q.a.961.1 yes 2
9.7 even 3 inner 4320.2.q.h.2881.1 2
12.11 even 2 1440.2.q.e.481.1 yes 2
36.7 odd 6 4320.2.q.g.2881.1 2
36.11 even 6 1440.2.q.e.961.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.2.q.a.481.1 2 3.2 odd 2
1440.2.q.a.961.1 yes 2 9.2 odd 6
1440.2.q.e.481.1 yes 2 12.11 even 2
1440.2.q.e.961.1 yes 2 36.11 even 6
4320.2.q.g.1441.1 2 4.3 odd 2
4320.2.q.g.2881.1 2 36.7 odd 6
4320.2.q.h.1441.1 2 1.1 even 1 trivial
4320.2.q.h.2881.1 2 9.7 even 3 inner