Properties

Label 4320.2.h.c.2591.6
Level $4320$
Weight $2$
Character 4320.2591
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(2591,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 523 x^{12} - 1120 x^{11} + 2214 x^{10} - 3524 x^{9} + \cdots + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.6
Root \(-1.60613 + 1.23243i\) of defining polynomial
Character \(\chi\) \(=\) 4320.2591
Dual form 4320.2.h.c.2591.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} +1.44838i q^{7} +0.989142 q^{11} -4.22656 q^{13} +6.64295i q^{17} +6.97614i q^{19} -5.18043 q^{23} -1.00000 q^{25} -4.27342i q^{29} -6.73826i q^{31} +1.44838 q^{35} -5.91809 q^{37} -9.85940i q^{41} -10.1760i q^{43} +8.13408 q^{47} +4.90221 q^{49} -9.06019i q^{53} -0.989142i q^{55} +0.602718 q^{59} -4.48694 q^{61} +4.22656i q^{65} -11.1758i q^{67} +11.7911 q^{71} -10.2031 q^{73} +1.43265i q^{77} -8.57174i q^{79} -8.49507 q^{83} +6.64295 q^{85} +9.79200i q^{89} -6.12165i q^{91} +6.97614 q^{95} -13.7017 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} - 8 q^{13} - 32 q^{23} - 16 q^{25} + 8 q^{37} - 16 q^{47} - 8 q^{49} + 32 q^{59} + 8 q^{61} + 32 q^{71} - 8 q^{73} + 32 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) 1.44838i 0.547434i 0.961810 + 0.273717i \(0.0882532\pi\)
−0.961810 + 0.273717i \(0.911747\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.989142 0.298238 0.149119 0.988819i \(-0.452356\pi\)
0.149119 + 0.988819i \(0.452356\pi\)
\(12\) 0 0
\(13\) −4.22656 −1.17224 −0.586118 0.810225i \(-0.699345\pi\)
−0.586118 + 0.810225i \(0.699345\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.64295i 1.61115i 0.592492 + 0.805576i \(0.298144\pi\)
−0.592492 + 0.805576i \(0.701856\pi\)
\(18\) 0 0
\(19\) 6.97614i 1.60044i 0.599708 + 0.800219i \(0.295283\pi\)
−0.599708 + 0.800219i \(0.704717\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.18043 −1.08019 −0.540097 0.841603i \(-0.681612\pi\)
−0.540097 + 0.841603i \(0.681612\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 4.27342i − 0.793554i −0.917915 0.396777i \(-0.870129\pi\)
0.917915 0.396777i \(-0.129871\pi\)
\(30\) 0 0
\(31\) − 6.73826i − 1.21023i −0.796139 0.605114i \(-0.793128\pi\)
0.796139 0.605114i \(-0.206872\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.44838 0.244820
\(36\) 0 0
\(37\) −5.91809 −0.972928 −0.486464 0.873701i \(-0.661713\pi\)
−0.486464 + 0.873701i \(0.661713\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 9.85940i − 1.53978i −0.638177 0.769890i \(-0.720311\pi\)
0.638177 0.769890i \(-0.279689\pi\)
\(42\) 0 0
\(43\) − 10.1760i − 1.55183i −0.630837 0.775915i \(-0.717289\pi\)
0.630837 0.775915i \(-0.282711\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.13408 1.18648 0.593239 0.805027i \(-0.297849\pi\)
0.593239 + 0.805027i \(0.297849\pi\)
\(48\) 0 0
\(49\) 4.90221 0.700316
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 9.06019i − 1.24451i −0.782813 0.622257i \(-0.786216\pi\)
0.782813 0.622257i \(-0.213784\pi\)
\(54\) 0 0
\(55\) − 0.989142i − 0.133376i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.602718 0.0784672 0.0392336 0.999230i \(-0.487508\pi\)
0.0392336 + 0.999230i \(0.487508\pi\)
\(60\) 0 0
\(61\) −4.48694 −0.574494 −0.287247 0.957857i \(-0.592740\pi\)
−0.287247 + 0.957857i \(0.592740\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.22656i 0.524240i
\(66\) 0 0
\(67\) − 11.1758i − 1.36534i −0.730727 0.682670i \(-0.760819\pi\)
0.730727 0.682670i \(-0.239181\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.7911 1.39934 0.699672 0.714465i \(-0.253330\pi\)
0.699672 + 0.714465i \(0.253330\pi\)
\(72\) 0 0
\(73\) −10.2031 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.43265i 0.163266i
\(78\) 0 0
\(79\) − 8.57174i − 0.964396i −0.876062 0.482198i \(-0.839839\pi\)
0.876062 0.482198i \(-0.160161\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.49507 −0.932455 −0.466228 0.884665i \(-0.654387\pi\)
−0.466228 + 0.884665i \(0.654387\pi\)
\(84\) 0 0
\(85\) 6.64295 0.720529
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.79200i 1.03795i 0.854790 + 0.518975i \(0.173686\pi\)
−0.854790 + 0.518975i \(0.826314\pi\)
\(90\) 0 0
\(91\) − 6.12165i − 0.641723i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.97614 0.715737
\(96\) 0 0
\(97\) −13.7017 −1.39119 −0.695597 0.718432i \(-0.744860\pi\)
−0.695597 + 0.718432i \(0.744860\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.93373i − 0.192413i −0.995361 0.0962065i \(-0.969329\pi\)
0.995361 0.0962065i \(-0.0306709\pi\)
\(102\) 0 0
\(103\) 4.73829i 0.466877i 0.972372 + 0.233439i \(0.0749978\pi\)
−0.972372 + 0.233439i \(0.925002\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.16495 −0.789335 −0.394668 0.918824i \(-0.629140\pi\)
−0.394668 + 0.918824i \(0.629140\pi\)
\(108\) 0 0
\(109\) −12.5251 −1.19969 −0.599845 0.800117i \(-0.704771\pi\)
−0.599845 + 0.800117i \(0.704771\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.7076i 1.85394i 0.375141 + 0.926968i \(0.377594\pi\)
−0.375141 + 0.926968i \(0.622406\pi\)
\(114\) 0 0
\(115\) 5.18043i 0.483077i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.62149 −0.882000
\(120\) 0 0
\(121\) −10.0216 −0.911054
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) − 5.05957i − 0.448964i −0.974478 0.224482i \(-0.927931\pi\)
0.974478 0.224482i \(-0.0720691\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.84767 0.336173 0.168086 0.985772i \(-0.446241\pi\)
0.168086 + 0.985772i \(0.446241\pi\)
\(132\) 0 0
\(133\) −10.1041 −0.876134
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 8.44997i − 0.721930i −0.932579 0.360965i \(-0.882447\pi\)
0.932579 0.360965i \(-0.117553\pi\)
\(138\) 0 0
\(139\) − 10.5386i − 0.893873i −0.894566 0.446936i \(-0.852515\pi\)
0.894566 0.446936i \(-0.147485\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.18067 −0.349605
\(144\) 0 0
\(145\) −4.27342 −0.354888
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.83806i 0.478272i 0.970986 + 0.239136i \(0.0768643\pi\)
−0.970986 + 0.239136i \(0.923136\pi\)
\(150\) 0 0
\(151\) − 9.48344i − 0.771751i −0.922551 0.385876i \(-0.873899\pi\)
0.922551 0.385876i \(-0.126101\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.73826 −0.541230
\(156\) 0 0
\(157\) 16.3612 1.30577 0.652885 0.757457i \(-0.273559\pi\)
0.652885 + 0.757457i \(0.273559\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 7.50320i − 0.591335i
\(162\) 0 0
\(163\) − 6.00049i − 0.469995i −0.971996 0.234997i \(-0.924492\pi\)
0.971996 0.234997i \(-0.0755081\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −19.6377 −1.51961 −0.759807 0.650149i \(-0.774707\pi\)
−0.759807 + 0.650149i \(0.774707\pi\)
\(168\) 0 0
\(169\) 4.86381 0.374139
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 0.785648i − 0.0597317i −0.999554 0.0298659i \(-0.990492\pi\)
0.999554 0.0298659i \(-0.00950801\pi\)
\(174\) 0 0
\(175\) − 1.44838i − 0.109487i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.34957 0.698820 0.349410 0.936970i \(-0.386382\pi\)
0.349410 + 0.936970i \(0.386382\pi\)
\(180\) 0 0
\(181\) −2.03967 −0.151607 −0.0758036 0.997123i \(-0.524152\pi\)
−0.0758036 + 0.997123i \(0.524152\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.91809i 0.435107i
\(186\) 0 0
\(187\) 6.57082i 0.480506i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.55565 −0.401992 −0.200996 0.979592i \(-0.564418\pi\)
−0.200996 + 0.979592i \(0.564418\pi\)
\(192\) 0 0
\(193\) 17.3479 1.24873 0.624365 0.781133i \(-0.285358\pi\)
0.624365 + 0.781133i \(0.285358\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.66466i − 0.403590i −0.979428 0.201795i \(-0.935322\pi\)
0.979428 0.201795i \(-0.0646776\pi\)
\(198\) 0 0
\(199\) − 14.3899i − 1.02007i −0.860152 0.510037i \(-0.829632\pi\)
0.860152 0.510037i \(-0.170368\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.18952 0.434419
\(204\) 0 0
\(205\) −9.85940 −0.688610
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.90040i 0.477311i
\(210\) 0 0
\(211\) − 6.31585i − 0.434801i −0.976082 0.217400i \(-0.930242\pi\)
0.976082 0.217400i \(-0.0697578\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.1760 −0.693999
\(216\) 0 0
\(217\) 9.75954 0.662520
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 28.0768i − 1.88865i
\(222\) 0 0
\(223\) − 2.38685i − 0.159835i −0.996801 0.0799176i \(-0.974534\pi\)
0.996801 0.0799176i \(-0.0254657\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 14.2616 0.946573 0.473286 0.880909i \(-0.343068\pi\)
0.473286 + 0.880909i \(0.343068\pi\)
\(228\) 0 0
\(229\) −22.8474 −1.50980 −0.754900 0.655840i \(-0.772314\pi\)
−0.754900 + 0.655840i \(0.772314\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.0315i 1.05026i 0.851023 + 0.525128i \(0.175983\pi\)
−0.851023 + 0.525128i \(0.824017\pi\)
\(234\) 0 0
\(235\) − 8.13408i − 0.530609i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.2399 1.37390 0.686949 0.726706i \(-0.258950\pi\)
0.686949 + 0.726706i \(0.258950\pi\)
\(240\) 0 0
\(241\) −14.3874 −0.926775 −0.463387 0.886156i \(-0.653366\pi\)
−0.463387 + 0.886156i \(0.653366\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 4.90221i − 0.313191i
\(246\) 0 0
\(247\) − 29.4851i − 1.87609i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.47745 0.0932557 0.0466278 0.998912i \(-0.485153\pi\)
0.0466278 + 0.998912i \(0.485153\pi\)
\(252\) 0 0
\(253\) −5.12418 −0.322154
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 9.55243i − 0.595864i −0.954587 0.297932i \(-0.903703\pi\)
0.954587 0.297932i \(-0.0962969\pi\)
\(258\) 0 0
\(259\) − 8.57161i − 0.532614i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.70846 −0.536986 −0.268493 0.963282i \(-0.586526\pi\)
−0.268493 + 0.963282i \(0.586526\pi\)
\(264\) 0 0
\(265\) −9.06019 −0.556563
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 8.72070i − 0.531710i −0.964013 0.265855i \(-0.914346\pi\)
0.964013 0.265855i \(-0.0856543\pi\)
\(270\) 0 0
\(271\) 25.7850i 1.56633i 0.621816 + 0.783163i \(0.286395\pi\)
−0.621816 + 0.783163i \(0.713605\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.989142 −0.0596475
\(276\) 0 0
\(277\) −22.1970 −1.33369 −0.666845 0.745196i \(-0.732356\pi\)
−0.666845 + 0.745196i \(0.732356\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.4827i 1.81844i 0.416311 + 0.909222i \(0.363323\pi\)
−0.416311 + 0.909222i \(0.636677\pi\)
\(282\) 0 0
\(283\) − 25.7569i − 1.53109i −0.643383 0.765545i \(-0.722470\pi\)
0.643383 0.765545i \(-0.277530\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.2801 0.842928
\(288\) 0 0
\(289\) −27.1288 −1.59581
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.08936i 0.0636410i 0.999494 + 0.0318205i \(0.0101305\pi\)
−0.999494 + 0.0318205i \(0.989870\pi\)
\(294\) 0 0
\(295\) − 0.602718i − 0.0350916i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 21.8954 1.26624
\(300\) 0 0
\(301\) 14.7387 0.849525
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.48694i 0.256922i
\(306\) 0 0
\(307\) 11.3121i 0.645617i 0.946464 + 0.322808i \(0.104627\pi\)
−0.946464 + 0.322808i \(0.895373\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.99400 −0.510003 −0.255001 0.966941i \(-0.582076\pi\)
−0.255001 + 0.966941i \(0.582076\pi\)
\(312\) 0 0
\(313\) −9.04520 −0.511265 −0.255633 0.966774i \(-0.582284\pi\)
−0.255633 + 0.966774i \(0.582284\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 31.2803i − 1.75687i −0.477858 0.878437i \(-0.658587\pi\)
0.477858 0.878437i \(-0.341413\pi\)
\(318\) 0 0
\(319\) − 4.22702i − 0.236668i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −46.3422 −2.57855
\(324\) 0 0
\(325\) 4.22656 0.234447
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.7812i 0.649518i
\(330\) 0 0
\(331\) 20.3977i 1.12116i 0.828100 + 0.560581i \(0.189422\pi\)
−0.828100 + 0.560581i \(0.810578\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.1758 −0.610598
\(336\) 0 0
\(337\) −10.6458 −0.579913 −0.289956 0.957040i \(-0.593641\pi\)
−0.289956 + 0.957040i \(0.593641\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 6.66510i − 0.360935i
\(342\) 0 0
\(343\) 17.2389i 0.930811i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.1561 1.02836 0.514178 0.857684i \(-0.328097\pi\)
0.514178 + 0.857684i \(0.328097\pi\)
\(348\) 0 0
\(349\) −5.76577 −0.308634 −0.154317 0.988021i \(-0.549318\pi\)
−0.154317 + 0.988021i \(0.549318\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.6865i 1.63328i 0.577148 + 0.816640i \(0.304166\pi\)
−0.577148 + 0.816640i \(0.695834\pi\)
\(354\) 0 0
\(355\) − 11.7911i − 0.625805i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.5315 1.13639 0.568195 0.822894i \(-0.307642\pi\)
0.568195 + 0.822894i \(0.307642\pi\)
\(360\) 0 0
\(361\) −29.6666 −1.56140
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.2031i 0.534055i
\(366\) 0 0
\(367\) 9.83094i 0.513171i 0.966522 + 0.256586i \(0.0825975\pi\)
−0.966522 + 0.256586i \(0.917402\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.1226 0.681289
\(372\) 0 0
\(373\) 0.772880 0.0400182 0.0200091 0.999800i \(-0.493630\pi\)
0.0200091 + 0.999800i \(0.493630\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0619i 0.930233i
\(378\) 0 0
\(379\) − 10.8276i − 0.556176i −0.960556 0.278088i \(-0.910299\pi\)
0.960556 0.278088i \(-0.0897007\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −23.9657 −1.22459 −0.612295 0.790629i \(-0.709754\pi\)
−0.612295 + 0.790629i \(0.709754\pi\)
\(384\) 0 0
\(385\) 1.43265 0.0730146
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 16.8091i − 0.852254i −0.904663 0.426127i \(-0.859878\pi\)
0.904663 0.426127i \(-0.140122\pi\)
\(390\) 0 0
\(391\) − 34.4133i − 1.74036i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.57174 −0.431291
\(396\) 0 0
\(397\) −31.3550 −1.57366 −0.786832 0.617167i \(-0.788280\pi\)
−0.786832 + 0.617167i \(0.788280\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.6448i 0.581514i 0.956797 + 0.290757i \(0.0939071\pi\)
−0.956797 + 0.290757i \(0.906093\pi\)
\(402\) 0 0
\(403\) 28.4797i 1.41867i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.85383 −0.290164
\(408\) 0 0
\(409\) 16.1936 0.800720 0.400360 0.916358i \(-0.368885\pi\)
0.400360 + 0.916358i \(0.368885\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.872962i 0.0429556i
\(414\) 0 0
\(415\) 8.49507i 0.417007i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −38.6422 −1.88779 −0.943896 0.330242i \(-0.892870\pi\)
−0.943896 + 0.330242i \(0.892870\pi\)
\(420\) 0 0
\(421\) 29.5138 1.43842 0.719208 0.694795i \(-0.244505\pi\)
0.719208 + 0.694795i \(0.244505\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 6.64295i − 0.322230i
\(426\) 0 0
\(427\) − 6.49878i − 0.314498i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.9116 1.92247 0.961237 0.275725i \(-0.0889179\pi\)
0.961237 + 0.275725i \(0.0889179\pi\)
\(432\) 0 0
\(433\) −4.25927 −0.204688 −0.102344 0.994749i \(-0.532634\pi\)
−0.102344 + 0.994749i \(0.532634\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 36.1394i − 1.72878i
\(438\) 0 0
\(439\) 13.8706i 0.662009i 0.943629 + 0.331005i \(0.107388\pi\)
−0.943629 + 0.331005i \(0.892612\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.3341 0.823569 0.411784 0.911281i \(-0.364906\pi\)
0.411784 + 0.911281i \(0.364906\pi\)
\(444\) 0 0
\(445\) 9.79200 0.464185
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 14.3299i − 0.676269i −0.941098 0.338134i \(-0.890204\pi\)
0.941098 0.338134i \(-0.109796\pi\)
\(450\) 0 0
\(451\) − 9.75235i − 0.459220i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.12165 −0.286987
\(456\) 0 0
\(457\) 20.8428 0.974984 0.487492 0.873128i \(-0.337912\pi\)
0.487492 + 0.873128i \(0.337912\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 25.4393i − 1.18483i −0.805635 0.592413i \(-0.798176\pi\)
0.805635 0.592413i \(-0.201824\pi\)
\(462\) 0 0
\(463\) − 29.1907i − 1.35660i −0.734783 0.678302i \(-0.762716\pi\)
0.734783 0.678302i \(-0.237284\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.26473 0.104799 0.0523996 0.998626i \(-0.483313\pi\)
0.0523996 + 0.998626i \(0.483313\pi\)
\(468\) 0 0
\(469\) 16.1867 0.747434
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 10.0655i − 0.462814i
\(474\) 0 0
\(475\) − 6.97614i − 0.320087i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −34.2543 −1.56512 −0.782559 0.622576i \(-0.786086\pi\)
−0.782559 + 0.622576i \(0.786086\pi\)
\(480\) 0 0
\(481\) 25.0132 1.14050
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.7017i 0.622161i
\(486\) 0 0
\(487\) 0.183116i 0.00829776i 0.999991 + 0.00414888i \(0.00132063\pi\)
−0.999991 + 0.00414888i \(0.998679\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.2108 0.731582 0.365791 0.930697i \(-0.380798\pi\)
0.365791 + 0.930697i \(0.380798\pi\)
\(492\) 0 0
\(493\) 28.3881 1.27854
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.0779i 0.766049i
\(498\) 0 0
\(499\) − 2.80133i − 0.125405i −0.998032 0.0627024i \(-0.980028\pi\)
0.998032 0.0627024i \(-0.0199719\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.55379 0.292219 0.146110 0.989268i \(-0.453325\pi\)
0.146110 + 0.989268i \(0.453325\pi\)
\(504\) 0 0
\(505\) −1.93373 −0.0860497
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 10.3371i − 0.458183i −0.973405 0.229091i \(-0.926425\pi\)
0.973405 0.229091i \(-0.0735755\pi\)
\(510\) 0 0
\(511\) − 14.7779i − 0.653737i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.73829 0.208794
\(516\) 0 0
\(517\) 8.04576 0.353852
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 6.59861i − 0.289090i −0.989498 0.144545i \(-0.953828\pi\)
0.989498 0.144545i \(-0.0461719\pi\)
\(522\) 0 0
\(523\) 39.0957i 1.70954i 0.519010 + 0.854768i \(0.326301\pi\)
−0.519010 + 0.854768i \(0.673699\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.7620 1.94986
\(528\) 0 0
\(529\) 3.83681 0.166818
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.6713i 1.80499i
\(534\) 0 0
\(535\) 8.16495i 0.353001i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.84898 0.208860
\(540\) 0 0
\(541\) −12.7050 −0.546232 −0.273116 0.961981i \(-0.588054\pi\)
−0.273116 + 0.961981i \(0.588054\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.5251i 0.536517i
\(546\) 0 0
\(547\) − 15.1980i − 0.649821i −0.945745 0.324910i \(-0.894666\pi\)
0.945745 0.324910i \(-0.105334\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 29.8120 1.27003
\(552\) 0 0
\(553\) 12.4151 0.527943
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 20.0914i − 0.851300i −0.904888 0.425650i \(-0.860046\pi\)
0.904888 0.425650i \(-0.139954\pi\)
\(558\) 0 0
\(559\) 43.0096i 1.81911i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.91785 −0.0808278 −0.0404139 0.999183i \(-0.512868\pi\)
−0.0404139 + 0.999183i \(0.512868\pi\)
\(564\) 0 0
\(565\) 19.7076 0.829105
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 26.4900i − 1.11052i −0.831677 0.555260i \(-0.812619\pi\)
0.831677 0.555260i \(-0.187381\pi\)
\(570\) 0 0
\(571\) 12.4925i 0.522794i 0.965231 + 0.261397i \(0.0841832\pi\)
−0.965231 + 0.261397i \(0.915817\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 5.18043 0.216039
\(576\) 0 0
\(577\) 4.72825 0.196839 0.0984197 0.995145i \(-0.468621\pi\)
0.0984197 + 0.995145i \(0.468621\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 12.3041i − 0.510458i
\(582\) 0 0
\(583\) − 8.96182i − 0.371161i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.3987 1.04832 0.524158 0.851621i \(-0.324380\pi\)
0.524158 + 0.851621i \(0.324380\pi\)
\(588\) 0 0
\(589\) 47.0071 1.93689
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 2.17007i − 0.0891143i −0.999007 0.0445571i \(-0.985812\pi\)
0.999007 0.0445571i \(-0.0141877\pi\)
\(594\) 0 0
\(595\) 9.62149i 0.394443i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.83305 0.197473 0.0987365 0.995114i \(-0.468520\pi\)
0.0987365 + 0.995114i \(0.468520\pi\)
\(600\) 0 0
\(601\) −39.4289 −1.60834 −0.804168 0.594402i \(-0.797389\pi\)
−0.804168 + 0.594402i \(0.797389\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.0216i 0.407436i
\(606\) 0 0
\(607\) 33.0559i 1.34170i 0.741594 + 0.670849i \(0.234070\pi\)
−0.741594 + 0.670849i \(0.765930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −34.3792 −1.39083
\(612\) 0 0
\(613\) −9.94455 −0.401657 −0.200828 0.979626i \(-0.564363\pi\)
−0.200828 + 0.979626i \(0.564363\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.1535i 0.771091i 0.922689 + 0.385545i \(0.125987\pi\)
−0.922689 + 0.385545i \(0.874013\pi\)
\(618\) 0 0
\(619\) 20.7016i 0.832068i 0.909349 + 0.416034i \(0.136580\pi\)
−0.909349 + 0.416034i \(0.863420\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.1825 −0.568209
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 39.3136i − 1.56754i
\(630\) 0 0
\(631\) 8.61632i 0.343010i 0.985183 + 0.171505i \(0.0548630\pi\)
−0.985183 + 0.171505i \(0.945137\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.05957 −0.200783
\(636\) 0 0
\(637\) −20.7195 −0.820936
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 33.8782i − 1.33811i −0.743214 0.669054i \(-0.766700\pi\)
0.743214 0.669054i \(-0.233300\pi\)
\(642\) 0 0
\(643\) − 33.9371i − 1.33835i −0.743105 0.669175i \(-0.766648\pi\)
0.743105 0.669175i \(-0.233352\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0484 −0.395042 −0.197521 0.980299i \(-0.563289\pi\)
−0.197521 + 0.980299i \(0.563289\pi\)
\(648\) 0 0
\(649\) 0.596174 0.0234019
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.2773i 1.02831i 0.857697 + 0.514156i \(0.171895\pi\)
−0.857697 + 0.514156i \(0.828105\pi\)
\(654\) 0 0
\(655\) − 3.84767i − 0.150341i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −47.4000 −1.84644 −0.923221 0.384269i \(-0.874454\pi\)
−0.923221 + 0.384269i \(0.874454\pi\)
\(660\) 0 0
\(661\) 28.8243 1.12113 0.560567 0.828109i \(-0.310583\pi\)
0.560567 + 0.828109i \(0.310583\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10.1041i 0.391819i
\(666\) 0 0
\(667\) 22.1381i 0.857192i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.43823 −0.171336
\(672\) 0 0
\(673\) −25.5567 −0.985140 −0.492570 0.870273i \(-0.663942\pi\)
−0.492570 + 0.870273i \(0.663942\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 34.6608i 1.33212i 0.745897 + 0.666061i \(0.232021\pi\)
−0.745897 + 0.666061i \(0.767979\pi\)
\(678\) 0 0
\(679\) − 19.8452i − 0.761587i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −38.7355 −1.48217 −0.741087 0.671409i \(-0.765689\pi\)
−0.741087 + 0.671409i \(0.765689\pi\)
\(684\) 0 0
\(685\) −8.44997 −0.322857
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 38.2935i 1.45886i
\(690\) 0 0
\(691\) − 5.55847i − 0.211454i −0.994395 0.105727i \(-0.966283\pi\)
0.994395 0.105727i \(-0.0337170\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −10.5386 −0.399752
\(696\) 0 0
\(697\) 65.4955 2.48082
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 32.7779i − 1.23800i −0.785389 0.619002i \(-0.787537\pi\)
0.785389 0.619002i \(-0.212463\pi\)
\(702\) 0 0
\(703\) − 41.2854i − 1.55711i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.80076 0.105333
\(708\) 0 0
\(709\) −40.7368 −1.52990 −0.764952 0.644088i \(-0.777237\pi\)
−0.764952 + 0.644088i \(0.777237\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 34.9071i 1.30728i
\(714\) 0 0
\(715\) 4.18067i 0.156348i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.95735 0.0729967 0.0364984 0.999334i \(-0.488380\pi\)
0.0364984 + 0.999334i \(0.488380\pi\)
\(720\) 0 0
\(721\) −6.86282 −0.255585
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.27342i 0.158711i
\(726\) 0 0
\(727\) 22.9128i 0.849787i 0.905243 + 0.424894i \(0.139688\pi\)
−0.905243 + 0.424894i \(0.860312\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 67.5989 2.50023
\(732\) 0 0
\(733\) −4.19364 −0.154896 −0.0774479 0.996996i \(-0.524677\pi\)
−0.0774479 + 0.996996i \(0.524677\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 11.0544i − 0.407195i
\(738\) 0 0
\(739\) 24.0714i 0.885481i 0.896650 + 0.442740i \(0.145994\pi\)
−0.896650 + 0.442740i \(0.854006\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −49.3550 −1.81066 −0.905329 0.424711i \(-0.860376\pi\)
−0.905329 + 0.424711i \(0.860376\pi\)
\(744\) 0 0
\(745\) 5.83806 0.213890
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 11.8259i − 0.432109i
\(750\) 0 0
\(751\) − 4.86042i − 0.177359i −0.996060 0.0886796i \(-0.971735\pi\)
0.996060 0.0886796i \(-0.0282647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.48344 −0.345138
\(756\) 0 0
\(757\) −20.6917 −0.752052 −0.376026 0.926609i \(-0.622710\pi\)
−0.376026 + 0.926609i \(0.622710\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 26.9583i − 0.977236i −0.872498 0.488618i \(-0.837501\pi\)
0.872498 0.488618i \(-0.162499\pi\)
\(762\) 0 0
\(763\) − 18.1411i − 0.656751i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.54742 −0.0919821
\(768\) 0 0
\(769\) 39.5131 1.42488 0.712439 0.701734i \(-0.247591\pi\)
0.712439 + 0.701734i \(0.247591\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30.8685i 1.11026i 0.831763 + 0.555131i \(0.187332\pi\)
−0.831763 + 0.555131i \(0.812668\pi\)
\(774\) 0 0
\(775\) 6.73826i 0.242046i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 68.7806 2.46432
\(780\) 0 0
\(781\) 11.6630 0.417337
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 16.3612i − 0.583958i
\(786\) 0 0
\(787\) 2.08529i 0.0743325i 0.999309 + 0.0371662i \(0.0118331\pi\)
−0.999309 + 0.0371662i \(0.988167\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −28.5440 −1.01491
\(792\) 0 0
\(793\) 18.9643 0.673443
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.6863i 0.591060i 0.955333 + 0.295530i \(0.0954962\pi\)
−0.955333 + 0.295530i \(0.904504\pi\)
\(798\) 0 0
\(799\) 54.0343i 1.91160i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.0923 −0.356150
\(804\) 0 0
\(805\) −7.50320 −0.264453
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.3954i 1.13896i 0.822004 + 0.569481i \(0.192856\pi\)
−0.822004 + 0.569481i \(0.807144\pi\)
\(810\) 0 0
\(811\) 20.8288i 0.731398i 0.930733 + 0.365699i \(0.119170\pi\)
−0.930733 + 0.365699i \(0.880830\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.00049 −0.210188
\(816\) 0 0
\(817\) 70.9895 2.48361
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 48.4099i − 1.68952i −0.535149 0.844758i \(-0.679744\pi\)
0.535149 0.844758i \(-0.320256\pi\)
\(822\) 0 0
\(823\) 53.6158i 1.86893i 0.356056 + 0.934465i \(0.384121\pi\)
−0.356056 + 0.934465i \(0.615879\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33.2303 −1.15553 −0.577766 0.816203i \(-0.696075\pi\)
−0.577766 + 0.816203i \(0.696075\pi\)
\(828\) 0 0
\(829\) 3.74209 0.129968 0.0649842 0.997886i \(-0.479300\pi\)
0.0649842 + 0.997886i \(0.479300\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32.5651i 1.12832i
\(834\) 0 0
\(835\) 19.6377i 0.679592i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −30.4649 −1.05177 −0.525883 0.850557i \(-0.676265\pi\)
−0.525883 + 0.850557i \(0.676265\pi\)
\(840\) 0 0
\(841\) 10.7379 0.370272
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 4.86381i − 0.167320i
\(846\) 0 0
\(847\) − 14.5150i − 0.498743i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.6582 1.05095
\(852\) 0 0
\(853\) −12.5220 −0.428744 −0.214372 0.976752i \(-0.568770\pi\)
−0.214372 + 0.976752i \(0.568770\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.14410i − 0.0390816i −0.999809 0.0195408i \(-0.993780\pi\)
0.999809 0.0195408i \(-0.00622043\pi\)
\(858\) 0 0
\(859\) − 29.2298i − 0.997306i −0.866802 0.498653i \(-0.833828\pi\)
0.866802 0.498653i \(-0.166172\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 45.9436 1.56394 0.781970 0.623316i \(-0.214215\pi\)
0.781970 + 0.623316i \(0.214215\pi\)
\(864\) 0 0
\(865\) −0.785648 −0.0267128
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 8.47867i − 0.287619i
\(870\) 0 0
\(871\) 47.2351i 1.60050i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.44838 −0.0489640
\(876\) 0 0
\(877\) −41.5295 −1.40235 −0.701176 0.712988i \(-0.747341\pi\)
−0.701176 + 0.712988i \(0.747341\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.6899i 0.360153i 0.983653 + 0.180077i \(0.0576346\pi\)
−0.983653 + 0.180077i \(0.942365\pi\)
\(882\) 0 0
\(883\) 21.9209i 0.737696i 0.929490 + 0.368848i \(0.120248\pi\)
−0.929490 + 0.368848i \(0.879752\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.12408 −0.138473 −0.0692365 0.997600i \(-0.522056\pi\)
−0.0692365 + 0.997600i \(0.522056\pi\)
\(888\) 0 0
\(889\) 7.32816 0.245779
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 56.7445i 1.89888i
\(894\) 0 0
\(895\) − 9.34957i − 0.312522i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −28.7954 −0.960381
\(900\) 0 0
\(901\) 60.1864 2.00510
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.03967i 0.0678008i
\(906\) 0 0
\(907\) − 21.7948i − 0.723685i −0.932239 0.361842i \(-0.882148\pi\)
0.932239 0.361842i \(-0.117852\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 52.0566 1.72471 0.862357 0.506301i \(-0.168988\pi\)
0.862357 + 0.506301i \(0.168988\pi\)
\(912\) 0 0
\(913\) −8.40283 −0.278093
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.57288i 0.184033i
\(918\) 0 0
\(919\) − 11.3346i − 0.373894i −0.982370 0.186947i \(-0.940141\pi\)
0.982370 0.186947i \(-0.0598592\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −49.8357 −1.64036
\(924\) 0 0
\(925\) 5.91809 0.194586
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 19.7621i − 0.648374i −0.945993 0.324187i \(-0.894909\pi\)
0.945993 0.324187i \(-0.105091\pi\)
\(930\) 0 0
\(931\) 34.1985i 1.12081i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.57082 0.214889
\(936\) 0 0
\(937\) 13.0900 0.427631 0.213815 0.976874i \(-0.431411\pi\)
0.213815 + 0.976874i \(0.431411\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.1482i 0.330823i 0.986225 + 0.165412i \(0.0528953\pi\)
−0.986225 + 0.165412i \(0.947105\pi\)
\(942\) 0 0
\(943\) 51.0759i 1.66326i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.7982 −0.643354 −0.321677 0.946850i \(-0.604246\pi\)
−0.321677 + 0.946850i \(0.604246\pi\)
\(948\) 0 0
\(949\) 43.1241 1.39987
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.5611i 0.763219i 0.924324 + 0.381610i \(0.124630\pi\)
−0.924324 + 0.381610i \(0.875370\pi\)
\(954\) 0 0
\(955\) 5.55565i 0.179776i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.2387 0.395209
\(960\) 0 0
\(961\) −14.4042 −0.464652
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 17.3479i − 0.558449i
\(966\) 0 0
\(967\) − 12.2567i − 0.394149i −0.980389 0.197074i \(-0.936856\pi\)
0.980389 0.197074i \(-0.0631440\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.7410 1.56417 0.782086 0.623171i \(-0.214156\pi\)
0.782086 + 0.623171i \(0.214156\pi\)
\(972\) 0 0
\(973\) 15.2639 0.489337
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 37.0401i − 1.18502i −0.805564 0.592509i \(-0.798138\pi\)
0.805564 0.592509i \(-0.201862\pi\)
\(978\) 0 0
\(979\) 9.68568i 0.309556i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −24.8219 −0.791694 −0.395847 0.918316i \(-0.629549\pi\)
−0.395847 + 0.918316i \(0.629549\pi\)
\(984\) 0 0
\(985\) −5.66466 −0.180491
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 52.7162i 1.67628i
\(990\) 0 0
\(991\) 28.7539i 0.913399i 0.889621 + 0.456699i \(0.150968\pi\)
−0.889621 + 0.456699i \(0.849032\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.3899 −0.456191
\(996\) 0 0
\(997\) 14.4011 0.456087 0.228043 0.973651i \(-0.426767\pi\)
0.228043 + 0.973651i \(0.426767\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.h.c.2591.6 yes 16
3.2 odd 2 4320.2.h.b.2591.14 yes 16
4.3 odd 2 4320.2.h.b.2591.3 16
12.11 even 2 inner 4320.2.h.c.2591.11 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.h.b.2591.3 16 4.3 odd 2
4320.2.h.b.2591.14 yes 16 3.2 odd 2
4320.2.h.c.2591.6 yes 16 1.1 even 1 trivial
4320.2.h.c.2591.11 yes 16 12.11 even 2 inner