Properties

Label 4320.2.h.b.2591.4
Level $4320$
Weight $2$
Character 4320.2591
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(2591,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 523 x^{12} - 1120 x^{11} + 2214 x^{10} - 3524 x^{9} + \cdots + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.4
Root \(1.43545 - 1.87072i\) of defining polynomial
Character \(\chi\) \(=\) 4320.2591
Dual form 4320.2.h.b.2591.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} -0.236402i q^{7} +4.19327 q^{11} -6.12645 q^{13} +0.219916i q^{17} +3.97822i q^{19} +3.96845 q^{23} -1.00000 q^{25} -6.25975i q^{29} -3.53413i q^{31} -0.236402 q^{35} +11.5231 q^{37} +12.1049i q^{41} -5.59917i q^{43} -12.4661 q^{47} +6.94411 q^{49} -2.55071i q^{53} -4.19327i q^{55} -1.28245 q^{59} +7.97709 q^{61} +6.12645i q^{65} -5.49100i q^{67} +13.4061 q^{71} +12.3280 q^{73} -0.991298i q^{77} -11.7061i q^{79} -7.81237 q^{83} +0.219916 q^{85} +2.39093i q^{89} +1.44830i q^{91} +3.97822 q^{95} +1.29917 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{11} - 8 q^{13} + 32 q^{23} - 16 q^{25} + 8 q^{37} + 16 q^{47} - 8 q^{49} - 32 q^{59} + 8 q^{61} - 32 q^{71} - 8 q^{73} - 32 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 1.00000i − 0.447214i
\(6\) 0 0
\(7\) − 0.236402i − 0.0893515i −0.999002 0.0446758i \(-0.985775\pi\)
0.999002 0.0446758i \(-0.0142255\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.19327 1.26432 0.632160 0.774838i \(-0.282169\pi\)
0.632160 + 0.774838i \(0.282169\pi\)
\(12\) 0 0
\(13\) −6.12645 −1.69917 −0.849586 0.527451i \(-0.823148\pi\)
−0.849586 + 0.527451i \(0.823148\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.219916i 0.0533376i 0.999644 + 0.0266688i \(0.00848994\pi\)
−0.999644 + 0.0266688i \(0.991510\pi\)
\(18\) 0 0
\(19\) 3.97822i 0.912665i 0.889809 + 0.456333i \(0.150837\pi\)
−0.889809 + 0.456333i \(0.849163\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.96845 0.827480 0.413740 0.910395i \(-0.364222\pi\)
0.413740 + 0.910395i \(0.364222\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.25975i − 1.16241i −0.813758 0.581203i \(-0.802582\pi\)
0.813758 0.581203i \(-0.197418\pi\)
\(30\) 0 0
\(31\) − 3.53413i − 0.634749i −0.948300 0.317375i \(-0.897199\pi\)
0.948300 0.317375i \(-0.102801\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.236402 −0.0399592
\(36\) 0 0
\(37\) 11.5231 1.89438 0.947189 0.320674i \(-0.103910\pi\)
0.947189 + 0.320674i \(0.103910\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.1049i 1.89047i 0.326395 + 0.945234i \(0.394166\pi\)
−0.326395 + 0.945234i \(0.605834\pi\)
\(42\) 0 0
\(43\) − 5.59917i − 0.853866i −0.904283 0.426933i \(-0.859594\pi\)
0.904283 0.426933i \(-0.140406\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.4661 −1.81837 −0.909183 0.416396i \(-0.863293\pi\)
−0.909183 + 0.416396i \(0.863293\pi\)
\(48\) 0 0
\(49\) 6.94411 0.992016
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 2.55071i − 0.350368i −0.984536 0.175184i \(-0.943948\pi\)
0.984536 0.175184i \(-0.0560520\pi\)
\(54\) 0 0
\(55\) − 4.19327i − 0.565421i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.28245 −0.166961 −0.0834807 0.996509i \(-0.526604\pi\)
−0.0834807 + 0.996509i \(0.526604\pi\)
\(60\) 0 0
\(61\) 7.97709 1.02136 0.510681 0.859771i \(-0.329393\pi\)
0.510681 + 0.859771i \(0.329393\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.12645i 0.759893i
\(66\) 0 0
\(67\) − 5.49100i − 0.670833i −0.942070 0.335416i \(-0.891123\pi\)
0.942070 0.335416i \(-0.108877\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.4061 1.59101 0.795507 0.605944i \(-0.207204\pi\)
0.795507 + 0.605944i \(0.207204\pi\)
\(72\) 0 0
\(73\) 12.3280 1.44289 0.721443 0.692474i \(-0.243479\pi\)
0.721443 + 0.692474i \(0.243479\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.991298i − 0.112969i
\(78\) 0 0
\(79\) − 11.7061i − 1.31704i −0.752561 0.658522i \(-0.771182\pi\)
0.752561 0.658522i \(-0.228818\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.81237 −0.857519 −0.428759 0.903419i \(-0.641049\pi\)
−0.428759 + 0.903419i \(0.641049\pi\)
\(84\) 0 0
\(85\) 0.219916 0.0238533
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.39093i 0.253438i 0.991939 + 0.126719i \(0.0404447\pi\)
−0.991939 + 0.126719i \(0.959555\pi\)
\(90\) 0 0
\(91\) 1.44830i 0.151824i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.97822 0.408156
\(96\) 0 0
\(97\) 1.29917 0.131911 0.0659554 0.997823i \(-0.478990\pi\)
0.0659554 + 0.997823i \(0.478990\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.33190i 0.630048i 0.949084 + 0.315024i \(0.102013\pi\)
−0.949084 + 0.315024i \(0.897987\pi\)
\(102\) 0 0
\(103\) − 14.7827i − 1.45659i −0.685266 0.728293i \(-0.740314\pi\)
0.685266 0.728293i \(-0.259686\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.63259 0.641196 0.320598 0.947215i \(-0.396116\pi\)
0.320598 + 0.947215i \(0.396116\pi\)
\(108\) 0 0
\(109\) −6.13296 −0.587431 −0.293715 0.955893i \(-0.594892\pi\)
−0.293715 + 0.955893i \(0.594892\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 7.97294i − 0.750031i −0.927019 0.375015i \(-0.877637\pi\)
0.927019 0.375015i \(-0.122363\pi\)
\(114\) 0 0
\(115\) − 3.96845i − 0.370060i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.0519887 0.00476579
\(120\) 0 0
\(121\) 6.58354 0.598503
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.71824i 0.418677i 0.977843 + 0.209338i \(0.0671310\pi\)
−0.977843 + 0.209338i \(0.932869\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.5277 −1.00718 −0.503589 0.863943i \(-0.667988\pi\)
−0.503589 + 0.863943i \(0.667988\pi\)
\(132\) 0 0
\(133\) 0.940458 0.0815480
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1.82762i − 0.156144i −0.996948 0.0780722i \(-0.975124\pi\)
0.996948 0.0780722i \(-0.0248765\pi\)
\(138\) 0 0
\(139\) − 14.3382i − 1.21615i −0.793879 0.608075i \(-0.791942\pi\)
0.793879 0.608075i \(-0.208058\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −25.6899 −2.14830
\(144\) 0 0
\(145\) −6.25975 −0.519844
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 1.10903i − 0.0908556i −0.998968 0.0454278i \(-0.985535\pi\)
0.998968 0.0454278i \(-0.0144651\pi\)
\(150\) 0 0
\(151\) 14.8568i 1.20903i 0.796595 + 0.604513i \(0.206632\pi\)
−0.796595 + 0.604513i \(0.793368\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.53413 −0.283868
\(156\) 0 0
\(157\) −3.74387 −0.298794 −0.149397 0.988777i \(-0.547733\pi\)
−0.149397 + 0.988777i \(0.547733\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 0.938150i − 0.0739366i
\(162\) 0 0
\(163\) − 21.7665i − 1.70488i −0.522822 0.852442i \(-0.675121\pi\)
0.522822 0.852442i \(-0.324879\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.38143 0.184280 0.0921402 0.995746i \(-0.470629\pi\)
0.0921402 + 0.995746i \(0.470629\pi\)
\(168\) 0 0
\(169\) 24.5334 1.88718
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 15.1187i − 1.14945i −0.818346 0.574727i \(-0.805108\pi\)
0.818346 0.574727i \(-0.194892\pi\)
\(174\) 0 0
\(175\) 0.236402i 0.0178703i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.2389 0.989521 0.494760 0.869029i \(-0.335256\pi\)
0.494760 + 0.869029i \(0.335256\pi\)
\(180\) 0 0
\(181\) 16.4059 1.21944 0.609722 0.792616i \(-0.291281\pi\)
0.609722 + 0.792616i \(0.291281\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 11.5231i − 0.847192i
\(186\) 0 0
\(187\) 0.922169i 0.0674357i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.7066 1.57063 0.785316 0.619096i \(-0.212501\pi\)
0.785316 + 0.619096i \(0.212501\pi\)
\(192\) 0 0
\(193\) −9.74708 −0.701610 −0.350805 0.936448i \(-0.614092\pi\)
−0.350805 + 0.936448i \(0.614092\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 17.7484i − 1.26452i −0.774757 0.632260i \(-0.782128\pi\)
0.774757 0.632260i \(-0.217872\pi\)
\(198\) 0 0
\(199\) 9.39842i 0.666236i 0.942885 + 0.333118i \(0.108101\pi\)
−0.942885 + 0.333118i \(0.891899\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.47982 −0.103863
\(204\) 0 0
\(205\) 12.1049 0.845443
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.6817i 1.15390i
\(210\) 0 0
\(211\) − 15.7220i − 1.08235i −0.840910 0.541175i \(-0.817980\pi\)
0.840910 0.541175i \(-0.182020\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −5.59917 −0.381860
\(216\) 0 0
\(217\) −0.835476 −0.0567158
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 1.34731i − 0.0906296i
\(222\) 0 0
\(223\) 11.5068i 0.770552i 0.922801 + 0.385276i \(0.125894\pi\)
−0.922801 + 0.385276i \(0.874106\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.1067 1.26816 0.634078 0.773269i \(-0.281380\pi\)
0.634078 + 0.773269i \(0.281380\pi\)
\(228\) 0 0
\(229\) −3.91289 −0.258571 −0.129286 0.991607i \(-0.541268\pi\)
−0.129286 + 0.991607i \(0.541268\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.4964i 0.884178i 0.896971 + 0.442089i \(0.145762\pi\)
−0.896971 + 0.442089i \(0.854238\pi\)
\(234\) 0 0
\(235\) 12.4661i 0.813198i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.39860 −0.284522 −0.142261 0.989829i \(-0.545437\pi\)
−0.142261 + 0.989829i \(0.545437\pi\)
\(240\) 0 0
\(241\) 1.95898 0.126189 0.0630947 0.998008i \(-0.479903\pi\)
0.0630947 + 0.998008i \(0.479903\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.94411i − 0.443643i
\(246\) 0 0
\(247\) − 24.3723i − 1.55077i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.30208 0.145306 0.0726531 0.997357i \(-0.476853\pi\)
0.0726531 + 0.997357i \(0.476853\pi\)
\(252\) 0 0
\(253\) 16.6408 1.04620
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 29.1997i 1.82143i 0.413036 + 0.910714i \(0.364468\pi\)
−0.413036 + 0.910714i \(0.635532\pi\)
\(258\) 0 0
\(259\) − 2.72407i − 0.169266i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.85019 0.175750 0.0878752 0.996131i \(-0.471992\pi\)
0.0878752 + 0.996131i \(0.471992\pi\)
\(264\) 0 0
\(265\) −2.55071 −0.156689
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 16.6886i − 1.01752i −0.860908 0.508761i \(-0.830104\pi\)
0.860908 0.508761i \(-0.169896\pi\)
\(270\) 0 0
\(271\) − 28.5186i − 1.73238i −0.499712 0.866192i \(-0.666561\pi\)
0.499712 0.866192i \(-0.333439\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.19327 −0.252864
\(276\) 0 0
\(277\) 15.1092 0.907824 0.453912 0.891046i \(-0.350028\pi\)
0.453912 + 0.891046i \(0.350028\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.98895i 0.536236i 0.963386 + 0.268118i \(0.0864017\pi\)
−0.963386 + 0.268118i \(0.913598\pi\)
\(282\) 0 0
\(283\) 14.2175i 0.845141i 0.906330 + 0.422570i \(0.138872\pi\)
−0.906330 + 0.422570i \(0.861128\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.86162 0.168916
\(288\) 0 0
\(289\) 16.9516 0.997155
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 31.7676i − 1.85588i −0.372725 0.927942i \(-0.621577\pi\)
0.372725 0.927942i \(-0.378423\pi\)
\(294\) 0 0
\(295\) 1.28245i 0.0746674i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.3125 −1.40603
\(300\) 0 0
\(301\) −1.32366 −0.0762942
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 7.97709i − 0.456767i
\(306\) 0 0
\(307\) − 12.9510i − 0.739155i −0.929200 0.369578i \(-0.879502\pi\)
0.929200 0.369578i \(-0.120498\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.36337 −0.247424 −0.123712 0.992318i \(-0.539480\pi\)
−0.123712 + 0.992318i \(0.539480\pi\)
\(312\) 0 0
\(313\) 4.18119 0.236335 0.118167 0.992994i \(-0.462298\pi\)
0.118167 + 0.992994i \(0.462298\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.270142i 0.0151727i 0.999971 + 0.00758633i \(0.00241483\pi\)
−0.999971 + 0.00758633i \(0.997585\pi\)
\(318\) 0 0
\(319\) − 26.2488i − 1.46965i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.874875 −0.0486793
\(324\) 0 0
\(325\) 6.12645 0.339834
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.94701i 0.162474i
\(330\) 0 0
\(331\) − 23.5507i − 1.29446i −0.762293 0.647232i \(-0.775927\pi\)
0.762293 0.647232i \(-0.224073\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.49100 −0.300006
\(336\) 0 0
\(337\) 10.2751 0.559718 0.279859 0.960041i \(-0.409712\pi\)
0.279859 + 0.960041i \(0.409712\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 14.8196i − 0.802526i
\(342\) 0 0
\(343\) − 3.29642i − 0.177990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.44554 −0.292332 −0.146166 0.989260i \(-0.546693\pi\)
−0.146166 + 0.989260i \(0.546693\pi\)
\(348\) 0 0
\(349\) 2.96450 0.158686 0.0793429 0.996847i \(-0.474718\pi\)
0.0793429 + 0.996847i \(0.474718\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.5030i 0.825143i 0.910925 + 0.412571i \(0.135369\pi\)
−0.910925 + 0.412571i \(0.864631\pi\)
\(354\) 0 0
\(355\) − 13.4061i − 0.711523i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.96827 −0.367771 −0.183886 0.982948i \(-0.558868\pi\)
−0.183886 + 0.982948i \(0.558868\pi\)
\(360\) 0 0
\(361\) 3.17380 0.167042
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 12.3280i − 0.645278i
\(366\) 0 0
\(367\) − 16.5599i − 0.864417i −0.901774 0.432209i \(-0.857734\pi\)
0.901774 0.432209i \(-0.142266\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.602994 −0.0313059
\(372\) 0 0
\(373\) 9.82130 0.508528 0.254264 0.967135i \(-0.418167\pi\)
0.254264 + 0.967135i \(0.418167\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 38.3501i 1.97513i
\(378\) 0 0
\(379\) 10.7763i 0.553544i 0.960936 + 0.276772i \(0.0892646\pi\)
−0.960936 + 0.276772i \(0.910735\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.51537 −0.486213 −0.243106 0.970000i \(-0.578166\pi\)
−0.243106 + 0.970000i \(0.578166\pi\)
\(384\) 0 0
\(385\) −0.991298 −0.0505212
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.1237i 1.42593i 0.701199 + 0.712965i \(0.252648\pi\)
−0.701199 + 0.712965i \(0.747352\pi\)
\(390\) 0 0
\(391\) 0.872728i 0.0441357i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.7061 −0.589000
\(396\) 0 0
\(397\) −3.49390 −0.175354 −0.0876770 0.996149i \(-0.527944\pi\)
−0.0876770 + 0.996149i \(0.527944\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.6721i 1.63157i 0.578357 + 0.815784i \(0.303694\pi\)
−0.578357 + 0.815784i \(0.696306\pi\)
\(402\) 0 0
\(403\) 21.6517i 1.07855i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 48.3193 2.39510
\(408\) 0 0
\(409\) −38.5509 −1.90622 −0.953109 0.302627i \(-0.902136\pi\)
−0.953109 + 0.302627i \(0.902136\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.303175i 0.0149183i
\(414\) 0 0
\(415\) 7.81237i 0.383494i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.8172 1.70093 0.850467 0.526029i \(-0.176320\pi\)
0.850467 + 0.526029i \(0.176320\pi\)
\(420\) 0 0
\(421\) −6.33400 −0.308700 −0.154350 0.988016i \(-0.549328\pi\)
−0.154350 + 0.988016i \(0.549328\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 0.219916i − 0.0106675i
\(426\) 0 0
\(427\) − 1.88580i − 0.0912602i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.0070 −1.20455 −0.602273 0.798290i \(-0.705738\pi\)
−0.602273 + 0.798290i \(0.705738\pi\)
\(432\) 0 0
\(433\) 30.3390 1.45800 0.728999 0.684514i \(-0.239986\pi\)
0.728999 + 0.684514i \(0.239986\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.7874i 0.755212i
\(438\) 0 0
\(439\) 13.4814i 0.643431i 0.946836 + 0.321715i \(0.104259\pi\)
−0.946836 + 0.321715i \(0.895741\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −30.2417 −1.43683 −0.718413 0.695617i \(-0.755131\pi\)
−0.718413 + 0.695617i \(0.755131\pi\)
\(444\) 0 0
\(445\) 2.39093 0.113341
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.8055i 0.745907i 0.927850 + 0.372953i \(0.121655\pi\)
−0.927850 + 0.372953i \(0.878345\pi\)
\(450\) 0 0
\(451\) 50.7591i 2.39015i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.44830 0.0678976
\(456\) 0 0
\(457\) 16.0036 0.748616 0.374308 0.927304i \(-0.377880\pi\)
0.374308 + 0.927304i \(0.377880\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 12.9604i − 0.603625i −0.953367 0.301813i \(-0.902408\pi\)
0.953367 0.301813i \(-0.0975917\pi\)
\(462\) 0 0
\(463\) − 8.44368i − 0.392411i −0.980563 0.196206i \(-0.937138\pi\)
0.980563 0.196206i \(-0.0628620\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.6404 1.18650 0.593249 0.805019i \(-0.297845\pi\)
0.593249 + 0.805019i \(0.297845\pi\)
\(468\) 0 0
\(469\) −1.29808 −0.0599400
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 23.4789i − 1.07956i
\(474\) 0 0
\(475\) − 3.97822i − 0.182533i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3.44511 0.157411 0.0787056 0.996898i \(-0.474921\pi\)
0.0787056 + 0.996898i \(0.474921\pi\)
\(480\) 0 0
\(481\) −70.5954 −3.21887
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 1.29917i − 0.0589923i
\(486\) 0 0
\(487\) 32.4887i 1.47221i 0.676870 + 0.736103i \(0.263336\pi\)
−0.676870 + 0.736103i \(0.736664\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.93386 0.222662 0.111331 0.993783i \(-0.464489\pi\)
0.111331 + 0.993783i \(0.464489\pi\)
\(492\) 0 0
\(493\) 1.37662 0.0619999
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 3.16923i − 0.142160i
\(498\) 0 0
\(499\) − 16.2685i − 0.728277i −0.931345 0.364138i \(-0.881364\pi\)
0.931345 0.364138i \(-0.118636\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.2343 −0.679264 −0.339632 0.940558i \(-0.610303\pi\)
−0.339632 + 0.940558i \(0.610303\pi\)
\(504\) 0 0
\(505\) 6.33190 0.281766
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 23.2521i − 1.03063i −0.857000 0.515316i \(-0.827674\pi\)
0.857000 0.515316i \(-0.172326\pi\)
\(510\) 0 0
\(511\) − 2.91437i − 0.128924i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −14.7827 −0.651405
\(516\) 0 0
\(517\) −52.2737 −2.29900
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.5030i 1.51160i 0.654801 + 0.755801i \(0.272752\pi\)
−0.654801 + 0.755801i \(0.727248\pi\)
\(522\) 0 0
\(523\) 34.4523i 1.50649i 0.657738 + 0.753247i \(0.271513\pi\)
−0.657738 + 0.753247i \(0.728487\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.777214 0.0338560
\(528\) 0 0
\(529\) −7.25138 −0.315278
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 74.1600i − 3.21223i
\(534\) 0 0
\(535\) − 6.63259i − 0.286752i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 29.1186 1.25423
\(540\) 0 0
\(541\) 28.8403 1.23994 0.619971 0.784625i \(-0.287144\pi\)
0.619971 + 0.784625i \(0.287144\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.13296i 0.262707i
\(546\) 0 0
\(547\) 29.5474i 1.26336i 0.775230 + 0.631679i \(0.217634\pi\)
−0.775230 + 0.631679i \(0.782366\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 24.9026 1.06089
\(552\) 0 0
\(553\) −2.76735 −0.117680
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.4359i 0.611668i 0.952085 + 0.305834i \(0.0989352\pi\)
−0.952085 + 0.305834i \(0.901065\pi\)
\(558\) 0 0
\(559\) 34.3030i 1.45086i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.8884 −0.922485 −0.461242 0.887274i \(-0.652596\pi\)
−0.461242 + 0.887274i \(0.652596\pi\)
\(564\) 0 0
\(565\) −7.97294 −0.335424
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 5.36768i − 0.225025i −0.993650 0.112512i \(-0.964110\pi\)
0.993650 0.112512i \(-0.0358898\pi\)
\(570\) 0 0
\(571\) − 44.3735i − 1.85697i −0.371368 0.928486i \(-0.621111\pi\)
0.371368 0.928486i \(-0.378889\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.96845 −0.165496
\(576\) 0 0
\(577\) 37.6815 1.56870 0.784351 0.620318i \(-0.212996\pi\)
0.784351 + 0.620318i \(0.212996\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.84686i 0.0766206i
\(582\) 0 0
\(583\) − 10.6958i − 0.442977i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.7352 −1.26858 −0.634289 0.773096i \(-0.718707\pi\)
−0.634289 + 0.773096i \(0.718707\pi\)
\(588\) 0 0
\(589\) 14.0595 0.579314
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 44.2600i − 1.81754i −0.417295 0.908771i \(-0.637022\pi\)
0.417295 0.908771i \(-0.362978\pi\)
\(594\) 0 0
\(595\) − 0.0519887i − 0.00213133i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 44.7660 1.82909 0.914545 0.404484i \(-0.132549\pi\)
0.914545 + 0.404484i \(0.132549\pi\)
\(600\) 0 0
\(601\) −37.5308 −1.53091 −0.765457 0.643487i \(-0.777487\pi\)
−0.765457 + 0.643487i \(0.777487\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 6.58354i − 0.267659i
\(606\) 0 0
\(607\) 0.939378i 0.0381282i 0.999818 + 0.0190641i \(0.00606866\pi\)
−0.999818 + 0.0190641i \(0.993931\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 76.3729 3.08972
\(612\) 0 0
\(613\) −7.52274 −0.303840 −0.151920 0.988393i \(-0.548546\pi\)
−0.151920 + 0.988393i \(0.548546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 9.94062i − 0.400194i −0.979776 0.200097i \(-0.935874\pi\)
0.979776 0.200097i \(-0.0641257\pi\)
\(618\) 0 0
\(619\) 4.21615i 0.169461i 0.996404 + 0.0847306i \(0.0270030\pi\)
−0.996404 + 0.0847306i \(0.972997\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.565221 0.0226451
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.53411i 0.101042i
\(630\) 0 0
\(631\) − 14.1230i − 0.562228i −0.959674 0.281114i \(-0.909296\pi\)
0.959674 0.281114i \(-0.0907039\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.71824 0.187238
\(636\) 0 0
\(637\) −42.5428 −1.68561
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 18.0411i − 0.712581i −0.934375 0.356290i \(-0.884041\pi\)
0.934375 0.356290i \(-0.115959\pi\)
\(642\) 0 0
\(643\) − 33.5059i − 1.32134i −0.750675 0.660671i \(-0.770272\pi\)
0.750675 0.660671i \(-0.229728\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.6664 −1.55945 −0.779723 0.626125i \(-0.784640\pi\)
−0.779723 + 0.626125i \(0.784640\pi\)
\(648\) 0 0
\(649\) −5.37768 −0.211093
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 41.7726i 1.63469i 0.576149 + 0.817345i \(0.304555\pi\)
−0.576149 + 0.817345i \(0.695445\pi\)
\(654\) 0 0
\(655\) 11.5277i 0.450424i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −18.7863 −0.731811 −0.365906 0.930652i \(-0.619241\pi\)
−0.365906 + 0.930652i \(0.619241\pi\)
\(660\) 0 0
\(661\) 10.3787 0.403684 0.201842 0.979418i \(-0.435307\pi\)
0.201842 + 0.979418i \(0.435307\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 0.940458i − 0.0364694i
\(666\) 0 0
\(667\) − 24.8415i − 0.961868i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 33.4501 1.29133
\(672\) 0 0
\(673\) 4.61169 0.177768 0.0888839 0.996042i \(-0.471670\pi\)
0.0888839 + 0.996042i \(0.471670\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.7833i 0.568169i 0.958799 + 0.284085i \(0.0916897\pi\)
−0.958799 + 0.284085i \(0.908310\pi\)
\(678\) 0 0
\(679\) − 0.307126i − 0.0117864i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.8535 −1.10405 −0.552023 0.833829i \(-0.686144\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(684\) 0 0
\(685\) −1.82762 −0.0698299
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.6268i 0.595335i
\(690\) 0 0
\(691\) 13.1263i 0.499346i 0.968330 + 0.249673i \(0.0803232\pi\)
−0.968330 + 0.249673i \(0.919677\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.3382 −0.543879
\(696\) 0 0
\(697\) −2.66206 −0.100833
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 40.5190i 1.53038i 0.643804 + 0.765191i \(0.277355\pi\)
−0.643804 + 0.765191i \(0.722645\pi\)
\(702\) 0 0
\(703\) 45.8412i 1.72893i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.49687 0.0562958
\(708\) 0 0
\(709\) 12.8050 0.480901 0.240450 0.970661i \(-0.422705\pi\)
0.240450 + 0.970661i \(0.422705\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 14.0250i − 0.525242i
\(714\) 0 0
\(715\) 25.6899i 0.960747i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.5877 −0.916968 −0.458484 0.888703i \(-0.651607\pi\)
−0.458484 + 0.888703i \(0.651607\pi\)
\(720\) 0 0
\(721\) −3.49467 −0.130148
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.25975i 0.232481i
\(726\) 0 0
\(727\) 23.5253i 0.872506i 0.899824 + 0.436253i \(0.143695\pi\)
−0.899824 + 0.436253i \(0.856305\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.23135 0.0455431
\(732\) 0 0
\(733\) −36.3062 −1.34100 −0.670500 0.741909i \(-0.733921\pi\)
−0.670500 + 0.741909i \(0.733921\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 23.0253i − 0.848147i
\(738\) 0 0
\(739\) − 19.9466i − 0.733749i −0.930270 0.366875i \(-0.880428\pi\)
0.930270 0.366875i \(-0.119572\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −46.8143 −1.71745 −0.858726 0.512435i \(-0.828743\pi\)
−0.858726 + 0.512435i \(0.828743\pi\)
\(744\) 0 0
\(745\) −1.10903 −0.0406319
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 1.56796i − 0.0572919i
\(750\) 0 0
\(751\) 20.9312i 0.763790i 0.924206 + 0.381895i \(0.124728\pi\)
−0.924206 + 0.381895i \(0.875272\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.8568 0.540693
\(756\) 0 0
\(757\) −33.9548 −1.23411 −0.617054 0.786921i \(-0.711674\pi\)
−0.617054 + 0.786921i \(0.711674\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 28.4808i 1.03243i 0.856460 + 0.516214i \(0.172659\pi\)
−0.856460 + 0.516214i \(0.827341\pi\)
\(762\) 0 0
\(763\) 1.44984i 0.0524879i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.85689 0.283696
\(768\) 0 0
\(769\) 16.8525 0.607717 0.303858 0.952717i \(-0.401725\pi\)
0.303858 + 0.952717i \(0.401725\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 12.1668i − 0.437608i −0.975769 0.218804i \(-0.929784\pi\)
0.975769 0.218804i \(-0.0702155\pi\)
\(774\) 0 0
\(775\) 3.53413i 0.126950i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −48.1559 −1.72536
\(780\) 0 0
\(781\) 56.2155 2.01155
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.74387i 0.133625i
\(786\) 0 0
\(787\) − 4.70174i − 0.167599i −0.996483 0.0837995i \(-0.973294\pi\)
0.996483 0.0837995i \(-0.0267055\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.88482 −0.0670164
\(792\) 0 0
\(793\) −48.8712 −1.73547
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 46.8127i − 1.65819i −0.559108 0.829095i \(-0.688856\pi\)
0.559108 0.829095i \(-0.311144\pi\)
\(798\) 0 0
\(799\) − 2.74150i − 0.0969872i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 51.6948 1.82427
\(804\) 0 0
\(805\) −0.938150 −0.0330654
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 14.1000i − 0.495728i −0.968795 0.247864i \(-0.920271\pi\)
0.968795 0.247864i \(-0.0797287\pi\)
\(810\) 0 0
\(811\) 24.8786i 0.873605i 0.899557 + 0.436802i \(0.143889\pi\)
−0.899557 + 0.436802i \(0.856111\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −21.7665 −0.762447
\(816\) 0 0
\(817\) 22.2747 0.779294
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.9066i 1.11355i 0.830664 + 0.556774i \(0.187961\pi\)
−0.830664 + 0.556774i \(0.812039\pi\)
\(822\) 0 0
\(823\) − 31.6861i − 1.10451i −0.833675 0.552255i \(-0.813768\pi\)
0.833675 0.552255i \(-0.186232\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.7538 −0.443495 −0.221747 0.975104i \(-0.571176\pi\)
−0.221747 + 0.975104i \(0.571176\pi\)
\(828\) 0 0
\(829\) −15.9233 −0.553040 −0.276520 0.961008i \(-0.589181\pi\)
−0.276520 + 0.961008i \(0.589181\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.52712i 0.0529117i
\(834\) 0 0
\(835\) − 2.38143i − 0.0824127i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.9658 −0.447630 −0.223815 0.974632i \(-0.571851\pi\)
−0.223815 + 0.974632i \(0.571851\pi\)
\(840\) 0 0
\(841\) −10.1845 −0.351190
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 24.5334i − 0.843974i
\(846\) 0 0
\(847\) − 1.55636i − 0.0534772i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 45.7287 1.56756
\(852\) 0 0
\(853\) −8.78589 −0.300823 −0.150411 0.988623i \(-0.548060\pi\)
−0.150411 + 0.988623i \(0.548060\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.5798i 1.55698i 0.627659 + 0.778488i \(0.284013\pi\)
−0.627659 + 0.778488i \(0.715987\pi\)
\(858\) 0 0
\(859\) 50.3847i 1.71910i 0.511049 + 0.859552i \(0.329257\pi\)
−0.511049 + 0.859552i \(0.670743\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.4555 −1.07076 −0.535378 0.844612i \(-0.679831\pi\)
−0.535378 + 0.844612i \(0.679831\pi\)
\(864\) 0 0
\(865\) −15.1187 −0.514051
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 49.0870i − 1.66516i
\(870\) 0 0
\(871\) 33.6404i 1.13986i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.236402 0.00799184
\(876\) 0 0
\(877\) −27.8719 −0.941168 −0.470584 0.882355i \(-0.655957\pi\)
−0.470584 + 0.882355i \(0.655957\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 44.8082i 1.50963i 0.655941 + 0.754813i \(0.272272\pi\)
−0.655941 + 0.754813i \(0.727728\pi\)
\(882\) 0 0
\(883\) 2.50194i 0.0841969i 0.999113 + 0.0420984i \(0.0134043\pi\)
−0.999113 + 0.0420984i \(0.986596\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 49.3502 1.65702 0.828509 0.559976i \(-0.189190\pi\)
0.828509 + 0.559976i \(0.189190\pi\)
\(888\) 0 0
\(889\) 1.11540 0.0374094
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 49.5928i − 1.65956i
\(894\) 0 0
\(895\) − 13.2389i − 0.442527i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.1228 −0.737837
\(900\) 0 0
\(901\) 0.560944 0.0186878
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 16.4059i − 0.545352i
\(906\) 0 0
\(907\) 21.3269i 0.708149i 0.935217 + 0.354074i \(0.115204\pi\)
−0.935217 + 0.354074i \(0.884796\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.02938 0.0341047 0.0170524 0.999855i \(-0.494572\pi\)
0.0170524 + 0.999855i \(0.494572\pi\)
\(912\) 0 0
\(913\) −32.7594 −1.08418
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.72517i 0.0899930i
\(918\) 0 0
\(919\) − 2.07618i − 0.0684869i −0.999414 0.0342435i \(-0.989098\pi\)
0.999414 0.0342435i \(-0.0109022\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −82.1320 −2.70341
\(924\) 0 0
\(925\) −11.5231 −0.378876
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 47.7155i 1.56549i 0.622340 + 0.782747i \(0.286182\pi\)
−0.622340 + 0.782747i \(0.713818\pi\)
\(930\) 0 0
\(931\) 27.6252i 0.905379i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.922169 0.0301582
\(936\) 0 0
\(937\) 35.7608 1.16826 0.584128 0.811662i \(-0.301437\pi\)
0.584128 + 0.811662i \(0.301437\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.7639i 0.905077i 0.891745 + 0.452538i \(0.149481\pi\)
−0.891745 + 0.452538i \(0.850519\pi\)
\(942\) 0 0
\(943\) 48.0377i 1.56432i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.5707 −1.05841 −0.529203 0.848495i \(-0.677509\pi\)
−0.529203 + 0.848495i \(0.677509\pi\)
\(948\) 0 0
\(949\) −75.5270 −2.45171
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0.347929i 0.0112705i 0.999984 + 0.00563526i \(0.00179377\pi\)
−0.999984 + 0.00563526i \(0.998206\pi\)
\(954\) 0 0
\(955\) − 21.7066i − 0.702408i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.432053 −0.0139517
\(960\) 0 0
\(961\) 18.5099 0.597093
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.74708i 0.313770i
\(966\) 0 0
\(967\) 27.9086i 0.897480i 0.893662 + 0.448740i \(0.148127\pi\)
−0.893662 + 0.448740i \(0.851873\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.85692 0.252141 0.126070 0.992021i \(-0.459764\pi\)
0.126070 + 0.992021i \(0.459764\pi\)
\(972\) 0 0
\(973\) −3.38958 −0.108665
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.14065i 0.228449i 0.993455 + 0.114225i \(0.0364384\pi\)
−0.993455 + 0.114225i \(0.963562\pi\)
\(978\) 0 0
\(979\) 10.0258i 0.320427i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.7139 0.660669 0.330335 0.943864i \(-0.392838\pi\)
0.330335 + 0.943864i \(0.392838\pi\)
\(984\) 0 0
\(985\) −17.7484 −0.565510
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 22.2201i − 0.706557i
\(990\) 0 0
\(991\) 29.8200i 0.947264i 0.880723 + 0.473632i \(0.157057\pi\)
−0.880723 + 0.473632i \(0.842943\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.39842 0.297950
\(996\) 0 0
\(997\) −22.6671 −0.717874 −0.358937 0.933362i \(-0.616861\pi\)
−0.358937 + 0.933362i \(0.616861\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.h.b.2591.4 16
3.2 odd 2 4320.2.h.c.2591.12 yes 16
4.3 odd 2 4320.2.h.c.2591.5 yes 16
12.11 even 2 inner 4320.2.h.b.2591.13 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.h.b.2591.4 16 1.1 even 1 trivial
4320.2.h.b.2591.13 yes 16 12.11 even 2 inner
4320.2.h.c.2591.5 yes 16 4.3 odd 2
4320.2.h.c.2591.12 yes 16 3.2 odd 2