Properties

Label 4320.2.h.b.2591.15
Level $4320$
Weight $2$
Character 4320.2591
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(2591,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.2591"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 44 x^{14} - 168 x^{13} + 523 x^{12} - 1120 x^{11} + 2214 x^{10} - 3524 x^{9} + \cdots + 2116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2591.15
Root \(0.425176 + 3.22953i\) of defining polynomial
Character \(\chi\) \(=\) 4320.2591
Dual form 4320.2.h.b.2591.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +2.44295i q^{7} -4.23668 q^{11} +6.38948 q^{13} -5.57997i q^{17} -2.14365i q^{19} +2.71090 q^{23} -1.00000 q^{25} +0.719614i q^{29} +6.30723i q^{31} -2.44295 q^{35} +7.25427 q^{37} -1.13558i q^{41} -0.721630i q^{43} +4.62923 q^{47} +1.03199 q^{49} -5.99323i q^{53} -4.23668i q^{55} +12.3247 q^{59} -4.24205 q^{61} +6.38948i q^{65} -2.37240i q^{67} +1.19306 q^{71} +12.3341 q^{73} -10.3500i q^{77} +0.170278i q^{79} -9.42811 q^{83} +5.57997 q^{85} +8.07451i q^{89} +15.6092i q^{91} +2.14365 q^{95} -12.0803 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{11} - 8 q^{13} + 32 q^{23} - 16 q^{25} + 8 q^{37} + 16 q^{47} - 8 q^{49} - 32 q^{59} + 8 q^{61} - 32 q^{71} - 8 q^{73} - 32 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.44295i 0.923349i 0.887049 + 0.461674i \(0.152751\pi\)
−0.887049 + 0.461674i \(0.847249\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.23668 −1.27741 −0.638704 0.769453i \(-0.720529\pi\)
−0.638704 + 0.769453i \(0.720529\pi\)
\(12\) 0 0
\(13\) 6.38948 1.77212 0.886062 0.463567i \(-0.153431\pi\)
0.886062 + 0.463567i \(0.153431\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.57997i − 1.35334i −0.736286 0.676671i \(-0.763422\pi\)
0.736286 0.676671i \(-0.236578\pi\)
\(18\) 0 0
\(19\) − 2.14365i − 0.491788i −0.969297 0.245894i \(-0.920919\pi\)
0.969297 0.245894i \(-0.0790815\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.71090 0.565262 0.282631 0.959229i \(-0.408793\pi\)
0.282631 + 0.959229i \(0.408793\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.719614i 0.133629i 0.997765 + 0.0668145i \(0.0212836\pi\)
−0.997765 + 0.0668145i \(0.978716\pi\)
\(30\) 0 0
\(31\) 6.30723i 1.13281i 0.824126 + 0.566406i \(0.191667\pi\)
−0.824126 + 0.566406i \(0.808333\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.44295 −0.412934
\(36\) 0 0
\(37\) 7.25427 1.19259 0.596297 0.802764i \(-0.296638\pi\)
0.596297 + 0.802764i \(0.296638\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 1.13558i − 0.177348i −0.996061 0.0886739i \(-0.971737\pi\)
0.996061 0.0886739i \(-0.0282629\pi\)
\(42\) 0 0
\(43\) − 0.721630i − 0.110048i −0.998485 0.0550238i \(-0.982477\pi\)
0.998485 0.0550238i \(-0.0175235\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.62923 0.675242 0.337621 0.941282i \(-0.390378\pi\)
0.337621 + 0.941282i \(0.390378\pi\)
\(48\) 0 0
\(49\) 1.03199 0.147427
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 5.99323i − 0.823234i −0.911357 0.411617i \(-0.864964\pi\)
0.911357 0.411617i \(-0.135036\pi\)
\(54\) 0 0
\(55\) − 4.23668i − 0.571274i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.3247 1.60454 0.802272 0.596958i \(-0.203624\pi\)
0.802272 + 0.596958i \(0.203624\pi\)
\(60\) 0 0
\(61\) −4.24205 −0.543138 −0.271569 0.962419i \(-0.587543\pi\)
−0.271569 + 0.962419i \(0.587543\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.38948i 0.792518i
\(66\) 0 0
\(67\) − 2.37240i − 0.289835i −0.989444 0.144917i \(-0.953708\pi\)
0.989444 0.144917i \(-0.0462916\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.19306 0.141590 0.0707948 0.997491i \(-0.477446\pi\)
0.0707948 + 0.997491i \(0.477446\pi\)
\(72\) 0 0
\(73\) 12.3341 1.44359 0.721797 0.692104i \(-0.243316\pi\)
0.721797 + 0.692104i \(0.243316\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 10.3500i − 1.17949i
\(78\) 0 0
\(79\) 0.170278i 0.0191577i 0.999954 + 0.00957887i \(0.00304909\pi\)
−0.999954 + 0.00957887i \(0.996951\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −9.42811 −1.03487 −0.517435 0.855723i \(-0.673113\pi\)
−0.517435 + 0.855723i \(0.673113\pi\)
\(84\) 0 0
\(85\) 5.57997 0.605233
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.07451i 0.855897i 0.903803 + 0.427948i \(0.140763\pi\)
−0.903803 + 0.427948i \(0.859237\pi\)
\(90\) 0 0
\(91\) 15.6092i 1.63629i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.14365 0.219934
\(96\) 0 0
\(97\) −12.0803 −1.22657 −0.613287 0.789860i \(-0.710153\pi\)
−0.613287 + 0.789860i \(0.710153\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.24058i 0.819968i 0.912093 + 0.409984i \(0.134466\pi\)
−0.912093 + 0.409984i \(0.865534\pi\)
\(102\) 0 0
\(103\) 2.05087i 0.202078i 0.994882 + 0.101039i \(0.0322168\pi\)
−0.994882 + 0.101039i \(0.967783\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.9672 1.25359 0.626793 0.779186i \(-0.284367\pi\)
0.626793 + 0.779186i \(0.284367\pi\)
\(108\) 0 0
\(109\) −11.9126 −1.14102 −0.570510 0.821291i \(-0.693254\pi\)
−0.570510 + 0.821291i \(0.693254\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.9830i 1.87984i 0.341388 + 0.939922i \(0.389103\pi\)
−0.341388 + 0.939922i \(0.610897\pi\)
\(114\) 0 0
\(115\) 2.71090i 0.252793i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 13.6316 1.24961
\(120\) 0 0
\(121\) 6.94946 0.631769
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1.00000i − 0.0894427i
\(126\) 0 0
\(127\) 19.0423i 1.68973i 0.534981 + 0.844864i \(0.320319\pi\)
−0.534981 + 0.844864i \(0.679681\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.8332 −1.38335 −0.691675 0.722209i \(-0.743127\pi\)
−0.691675 + 0.722209i \(0.743127\pi\)
\(132\) 0 0
\(133\) 5.23684 0.454092
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.88737i 0.332121i 0.986116 + 0.166060i \(0.0531047\pi\)
−0.986116 + 0.166060i \(0.946895\pi\)
\(138\) 0 0
\(139\) 13.1814i 1.11803i 0.829157 + 0.559015i \(0.188821\pi\)
−0.829157 + 0.559015i \(0.811179\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −27.0702 −2.26372
\(144\) 0 0
\(145\) −0.719614 −0.0597607
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 10.0046i − 0.819608i −0.912174 0.409804i \(-0.865597\pi\)
0.912174 0.409804i \(-0.134403\pi\)
\(150\) 0 0
\(151\) 12.8613i 1.04663i 0.852138 + 0.523317i \(0.175306\pi\)
−0.852138 + 0.523317i \(0.824694\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.30723 −0.506609
\(156\) 0 0
\(157\) 23.8992 1.90736 0.953682 0.300817i \(-0.0972592\pi\)
0.953682 + 0.300817i \(0.0972592\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.62260i 0.521934i
\(162\) 0 0
\(163\) 23.4319i 1.83533i 0.397360 + 0.917663i \(0.369926\pi\)
−0.397360 + 0.917663i \(0.630074\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.7087 −0.906048 −0.453024 0.891498i \(-0.649655\pi\)
−0.453024 + 0.891498i \(0.649655\pi\)
\(168\) 0 0
\(169\) 27.8255 2.14042
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 23.8924i − 1.81650i −0.418426 0.908251i \(-0.637418\pi\)
0.418426 0.908251i \(-0.362582\pi\)
\(174\) 0 0
\(175\) − 2.44295i − 0.184670i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.03743 −0.301772 −0.150886 0.988551i \(-0.548213\pi\)
−0.150886 + 0.988551i \(0.548213\pi\)
\(180\) 0 0
\(181\) 3.45495 0.256804 0.128402 0.991722i \(-0.459015\pi\)
0.128402 + 0.991722i \(0.459015\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.25427i 0.533344i
\(186\) 0 0
\(187\) 23.6405i 1.72877i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.9663 1.15528 0.577642 0.816291i \(-0.303973\pi\)
0.577642 + 0.816291i \(0.303973\pi\)
\(192\) 0 0
\(193\) 12.2807 0.883982 0.441991 0.897019i \(-0.354272\pi\)
0.441991 + 0.897019i \(0.354272\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.82951i − 0.415335i −0.978199 0.207668i \(-0.933413\pi\)
0.978199 0.207668i \(-0.0665872\pi\)
\(198\) 0 0
\(199\) 15.3161i 1.08573i 0.839820 + 0.542865i \(0.182660\pi\)
−0.839820 + 0.542865i \(0.817340\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.75798 −0.123386
\(204\) 0 0
\(205\) 1.13558 0.0793123
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.08197i 0.628213i
\(210\) 0 0
\(211\) − 21.9307i − 1.50977i −0.655855 0.754887i \(-0.727692\pi\)
0.655855 0.754887i \(-0.272308\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.721630 0.0492148
\(216\) 0 0
\(217\) −15.4083 −1.04598
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 35.6531i − 2.39829i
\(222\) 0 0
\(223\) − 22.1825i − 1.48545i −0.669598 0.742724i \(-0.733533\pi\)
0.669598 0.742724i \(-0.266467\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.09492 0.338161 0.169081 0.985602i \(-0.445920\pi\)
0.169081 + 0.985602i \(0.445920\pi\)
\(228\) 0 0
\(229\) 25.5983 1.69158 0.845792 0.533513i \(-0.179129\pi\)
0.845792 + 0.533513i \(0.179129\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2.13115i 0.139616i 0.997560 + 0.0698082i \(0.0222387\pi\)
−0.997560 + 0.0698082i \(0.977761\pi\)
\(234\) 0 0
\(235\) 4.62923i 0.301978i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −17.3611 −1.12300 −0.561498 0.827478i \(-0.689775\pi\)
−0.561498 + 0.827478i \(0.689775\pi\)
\(240\) 0 0
\(241\) 12.0800 0.778144 0.389072 0.921207i \(-0.372796\pi\)
0.389072 + 0.921207i \(0.372796\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.03199i 0.0659314i
\(246\) 0 0
\(247\) − 13.6968i − 0.871509i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 22.2950 1.40725 0.703623 0.710574i \(-0.251565\pi\)
0.703623 + 0.710574i \(0.251565\pi\)
\(252\) 0 0
\(253\) −11.4852 −0.722070
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 17.8460i 1.11320i 0.830781 + 0.556600i \(0.187894\pi\)
−0.830781 + 0.556600i \(0.812106\pi\)
\(258\) 0 0
\(259\) 17.7218i 1.10118i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −19.8048 −1.22122 −0.610609 0.791932i \(-0.709075\pi\)
−0.610609 + 0.791932i \(0.709075\pi\)
\(264\) 0 0
\(265\) 5.99323 0.368161
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.4166i 0.635112i 0.948240 + 0.317556i \(0.102862\pi\)
−0.948240 + 0.317556i \(0.897138\pi\)
\(270\) 0 0
\(271\) 13.5925i 0.825689i 0.910802 + 0.412844i \(0.135465\pi\)
−0.910802 + 0.412844i \(0.864535\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.23668 0.255481
\(276\) 0 0
\(277\) 9.08674 0.545969 0.272985 0.962018i \(-0.411989\pi\)
0.272985 + 0.962018i \(0.411989\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 25.8543i − 1.54234i −0.636630 0.771169i \(-0.719672\pi\)
0.636630 0.771169i \(-0.280328\pi\)
\(282\) 0 0
\(283\) − 12.0976i − 0.719125i −0.933121 0.359562i \(-0.882926\pi\)
0.933121 0.359562i \(-0.117074\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.77417 0.163754
\(288\) 0 0
\(289\) −14.1361 −0.831532
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.3155i 1.59579i 0.602796 + 0.797895i \(0.294053\pi\)
−0.602796 + 0.797895i \(0.705947\pi\)
\(294\) 0 0
\(295\) 12.3247i 0.717574i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.3213 1.00171
\(300\) 0 0
\(301\) 1.76291 0.101612
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4.24205i − 0.242899i
\(306\) 0 0
\(307\) − 18.8846i − 1.07780i −0.842370 0.538900i \(-0.818840\pi\)
0.842370 0.538900i \(-0.181160\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.8447 1.29540 0.647701 0.761895i \(-0.275731\pi\)
0.647701 + 0.761895i \(0.275731\pi\)
\(312\) 0 0
\(313\) −15.9648 −0.902383 −0.451191 0.892427i \(-0.649001\pi\)
−0.451191 + 0.892427i \(0.649001\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.48494i − 0.0834027i −0.999130 0.0417013i \(-0.986722\pi\)
0.999130 0.0417013i \(-0.0132778\pi\)
\(318\) 0 0
\(319\) − 3.04878i − 0.170699i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −11.9615 −0.665557
\(324\) 0 0
\(325\) −6.38948 −0.354425
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.3090i 0.623484i
\(330\) 0 0
\(331\) − 20.1312i − 1.10651i −0.833012 0.553256i \(-0.813385\pi\)
0.833012 0.553256i \(-0.186615\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.37240 0.129618
\(336\) 0 0
\(337\) 20.3897 1.11070 0.555349 0.831617i \(-0.312585\pi\)
0.555349 + 0.831617i \(0.312585\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 26.7217i − 1.44706i
\(342\) 0 0
\(343\) 19.6218i 1.05948i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.44008 −0.345722 −0.172861 0.984946i \(-0.555301\pi\)
−0.172861 + 0.984946i \(0.555301\pi\)
\(348\) 0 0
\(349\) 2.62208 0.140356 0.0701782 0.997534i \(-0.477643\pi\)
0.0701782 + 0.997534i \(0.477643\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.9149i 1.69866i 0.527861 + 0.849331i \(0.322994\pi\)
−0.527861 + 0.849331i \(0.677006\pi\)
\(354\) 0 0
\(355\) 1.19306i 0.0633208i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.4748 −1.13340 −0.566699 0.823925i \(-0.691780\pi\)
−0.566699 + 0.823925i \(0.691780\pi\)
\(360\) 0 0
\(361\) 14.4048 0.758145
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.3341i 0.645595i
\(366\) 0 0
\(367\) − 0.608609i − 0.0317691i −0.999874 0.0158846i \(-0.994944\pi\)
0.999874 0.0158846i \(-0.00505643\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.6412 0.760132
\(372\) 0 0
\(373\) −13.3317 −0.690288 −0.345144 0.938550i \(-0.612170\pi\)
−0.345144 + 0.938550i \(0.612170\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.59796i 0.236807i
\(378\) 0 0
\(379\) − 13.2732i − 0.681797i −0.940100 0.340899i \(-0.889269\pi\)
0.940100 0.340899i \(-0.110731\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.6834 1.77224 0.886119 0.463458i \(-0.153391\pi\)
0.886119 + 0.463458i \(0.153391\pi\)
\(384\) 0 0
\(385\) 10.3500 0.527485
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 12.8534i − 0.651692i −0.945423 0.325846i \(-0.894351\pi\)
0.945423 0.325846i \(-0.105649\pi\)
\(390\) 0 0
\(391\) − 15.1267i − 0.764992i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.170278 −0.00856760
\(396\) 0 0
\(397\) 16.4668 0.826447 0.413223 0.910630i \(-0.364403\pi\)
0.413223 + 0.910630i \(0.364403\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 4.75317i − 0.237362i −0.992932 0.118681i \(-0.962133\pi\)
0.992932 0.118681i \(-0.0378666\pi\)
\(402\) 0 0
\(403\) 40.3000i 2.00748i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −30.7340 −1.52343
\(408\) 0 0
\(409\) 11.9615 0.591460 0.295730 0.955272i \(-0.404437\pi\)
0.295730 + 0.955272i \(0.404437\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 30.1087i 1.48155i
\(414\) 0 0
\(415\) − 9.42811i − 0.462808i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.9884 −1.02535 −0.512675 0.858583i \(-0.671345\pi\)
−0.512675 + 0.858583i \(0.671345\pi\)
\(420\) 0 0
\(421\) −8.19926 −0.399607 −0.199804 0.979836i \(-0.564030\pi\)
−0.199804 + 0.979836i \(0.564030\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.57997i 0.270668i
\(426\) 0 0
\(427\) − 10.3631i − 0.501506i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.8879 0.909800 0.454900 0.890542i \(-0.349675\pi\)
0.454900 + 0.890542i \(0.349675\pi\)
\(432\) 0 0
\(433\) −5.26261 −0.252905 −0.126453 0.991973i \(-0.540359\pi\)
−0.126453 + 0.991973i \(0.540359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.81123i − 0.277989i
\(438\) 0 0
\(439\) 15.3700i 0.733570i 0.930306 + 0.366785i \(0.119541\pi\)
−0.930306 + 0.366785i \(0.880459\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17.7438 −0.843032 −0.421516 0.906821i \(-0.638502\pi\)
−0.421516 + 0.906821i \(0.638502\pi\)
\(444\) 0 0
\(445\) −8.07451 −0.382769
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 3.03744i − 0.143346i −0.997428 0.0716728i \(-0.977166\pi\)
0.997428 0.0716728i \(-0.0228337\pi\)
\(450\) 0 0
\(451\) 4.81109i 0.226545i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −15.6092 −0.731770
\(456\) 0 0
\(457\) −5.80647 −0.271615 −0.135808 0.990735i \(-0.543363\pi\)
−0.135808 + 0.990735i \(0.543363\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 31.3510i − 1.46016i −0.683361 0.730081i \(-0.739482\pi\)
0.683361 0.730081i \(-0.260518\pi\)
\(462\) 0 0
\(463\) − 14.6360i − 0.680192i −0.940391 0.340096i \(-0.889540\pi\)
0.940391 0.340096i \(-0.110460\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 36.0783 1.66950 0.834752 0.550626i \(-0.185611\pi\)
0.834752 + 0.550626i \(0.185611\pi\)
\(468\) 0 0
\(469\) 5.79565 0.267618
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.05732i 0.140576i
\(474\) 0 0
\(475\) 2.14365i 0.0983576i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.3427 1.61485 0.807425 0.589970i \(-0.200860\pi\)
0.807425 + 0.589970i \(0.200860\pi\)
\(480\) 0 0
\(481\) 46.3510 2.11342
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 12.0803i − 0.548540i
\(486\) 0 0
\(487\) 23.6551i 1.07192i 0.844244 + 0.535958i \(0.180050\pi\)
−0.844244 + 0.535958i \(0.819950\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 25.9795 1.17244 0.586219 0.810153i \(-0.300616\pi\)
0.586219 + 0.810153i \(0.300616\pi\)
\(492\) 0 0
\(493\) 4.01543 0.180846
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.91458i 0.130737i
\(498\) 0 0
\(499\) − 37.7530i − 1.69006i −0.534721 0.845028i \(-0.679583\pi\)
0.534721 0.845028i \(-0.320417\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −29.0383 −1.29475 −0.647377 0.762170i \(-0.724134\pi\)
−0.647377 + 0.762170i \(0.724134\pi\)
\(504\) 0 0
\(505\) −8.24058 −0.366701
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 35.3219i − 1.56562i −0.622264 0.782808i \(-0.713787\pi\)
0.622264 0.782808i \(-0.286213\pi\)
\(510\) 0 0
\(511\) 30.1316i 1.33294i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.05087 −0.0903722
\(516\) 0 0
\(517\) −19.6126 −0.862559
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.4787i 0.940997i 0.882401 + 0.470498i \(0.155926\pi\)
−0.882401 + 0.470498i \(0.844074\pi\)
\(522\) 0 0
\(523\) 10.7863i 0.471650i 0.971796 + 0.235825i \(0.0757793\pi\)
−0.971796 + 0.235825i \(0.924221\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.1942 1.53308
\(528\) 0 0
\(529\) −15.6510 −0.680479
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 7.25577i − 0.314282i
\(534\) 0 0
\(535\) 12.9672i 0.560620i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.37221 −0.188324
\(540\) 0 0
\(541\) −38.6595 −1.66210 −0.831051 0.556196i \(-0.812260\pi\)
−0.831051 + 0.556196i \(0.812260\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 11.9126i − 0.510279i
\(546\) 0 0
\(547\) − 0.596115i − 0.0254880i −0.999919 0.0127440i \(-0.995943\pi\)
0.999919 0.0127440i \(-0.00405666\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.54260 0.0657171
\(552\) 0 0
\(553\) −0.415980 −0.0176893
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 38.2869i − 1.62227i −0.584860 0.811134i \(-0.698851\pi\)
0.584860 0.811134i \(-0.301149\pi\)
\(558\) 0 0
\(559\) − 4.61085i − 0.195018i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.6229 −1.41704 −0.708518 0.705693i \(-0.750636\pi\)
−0.708518 + 0.705693i \(0.750636\pi\)
\(564\) 0 0
\(565\) −19.9830 −0.840692
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.2247i 0.722095i 0.932547 + 0.361048i \(0.117581\pi\)
−0.932547 + 0.361048i \(0.882419\pi\)
\(570\) 0 0
\(571\) 9.50895i 0.397937i 0.980006 + 0.198969i \(0.0637592\pi\)
−0.980006 + 0.198969i \(0.936241\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.71090 −0.113052
\(576\) 0 0
\(577\) −3.26046 −0.135735 −0.0678674 0.997694i \(-0.521619\pi\)
−0.0678674 + 0.997694i \(0.521619\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 23.0324i − 0.955545i
\(582\) 0 0
\(583\) 25.3914i 1.05160i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −38.3973 −1.58483 −0.792414 0.609984i \(-0.791176\pi\)
−0.792414 + 0.609984i \(0.791176\pi\)
\(588\) 0 0
\(589\) 13.5205 0.557103
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 41.4818i 1.70345i 0.523987 + 0.851726i \(0.324444\pi\)
−0.523987 + 0.851726i \(0.675556\pi\)
\(594\) 0 0
\(595\) 13.6316i 0.558841i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.83558 0.115858 0.0579292 0.998321i \(-0.481550\pi\)
0.0579292 + 0.998321i \(0.481550\pi\)
\(600\) 0 0
\(601\) −14.3210 −0.584165 −0.292083 0.956393i \(-0.594348\pi\)
−0.292083 + 0.956393i \(0.594348\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.94946i 0.282536i
\(606\) 0 0
\(607\) − 18.7014i − 0.759068i −0.925178 0.379534i \(-0.876084\pi\)
0.925178 0.379534i \(-0.123916\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.5784 1.19661
\(612\) 0 0
\(613\) 18.6007 0.751275 0.375638 0.926767i \(-0.377424\pi\)
0.375638 + 0.926767i \(0.377424\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 7.01540i − 0.282429i −0.989979 0.141215i \(-0.954899\pi\)
0.989979 0.141215i \(-0.0451008\pi\)
\(618\) 0 0
\(619\) 13.7680i 0.553383i 0.960959 + 0.276691i \(0.0892380\pi\)
−0.960959 + 0.276691i \(0.910762\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19.7256 −0.790291
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 40.4786i − 1.61399i
\(630\) 0 0
\(631\) − 43.1272i − 1.71686i −0.512927 0.858432i \(-0.671439\pi\)
0.512927 0.858432i \(-0.328561\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.0423 −0.755670
\(636\) 0 0
\(637\) 6.59388 0.261259
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.90837i 0.114874i 0.998349 + 0.0574368i \(0.0182928\pi\)
−0.998349 + 0.0574368i \(0.981707\pi\)
\(642\) 0 0
\(643\) − 13.1111i − 0.517051i −0.966004 0.258526i \(-0.916763\pi\)
0.966004 0.258526i \(-0.0832367\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.03853 0.237399 0.118699 0.992930i \(-0.462127\pi\)
0.118699 + 0.992930i \(0.462127\pi\)
\(648\) 0 0
\(649\) −52.2160 −2.04966
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.2209i 1.02610i 0.858358 + 0.513051i \(0.171485\pi\)
−0.858358 + 0.513051i \(0.828515\pi\)
\(654\) 0 0
\(655\) − 15.8332i − 0.618653i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.7946 −0.965859 −0.482929 0.875659i \(-0.660427\pi\)
−0.482929 + 0.875659i \(0.660427\pi\)
\(660\) 0 0
\(661\) −18.2396 −0.709437 −0.354718 0.934973i \(-0.615423\pi\)
−0.354718 + 0.934973i \(0.615423\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.23684i 0.203076i
\(666\) 0 0
\(667\) 1.95080i 0.0755354i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.9722 0.693809
\(672\) 0 0
\(673\) −46.8651 −1.80652 −0.903259 0.429097i \(-0.858832\pi\)
−0.903259 + 0.429097i \(0.858832\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 6.03293i − 0.231864i −0.993257 0.115932i \(-0.963014\pi\)
0.993257 0.115932i \(-0.0369855\pi\)
\(678\) 0 0
\(679\) − 29.5117i − 1.13256i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.8191 1.17926 0.589631 0.807673i \(-0.299273\pi\)
0.589631 + 0.807673i \(0.299273\pi\)
\(684\) 0 0
\(685\) −3.88737 −0.148529
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 38.2936i − 1.45887i
\(690\) 0 0
\(691\) − 15.5475i − 0.591456i −0.955272 0.295728i \(-0.904438\pi\)
0.955272 0.295728i \(-0.0955622\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −13.1814 −0.499999
\(696\) 0 0
\(697\) −6.33650 −0.240012
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 11.0905i − 0.418884i −0.977821 0.209442i \(-0.932835\pi\)
0.977821 0.209442i \(-0.0671648\pi\)
\(702\) 0 0
\(703\) − 15.5506i − 0.586503i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.1313 −0.757116
\(708\) 0 0
\(709\) −32.5889 −1.22390 −0.611951 0.790896i \(-0.709615\pi\)
−0.611951 + 0.790896i \(0.709615\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17.0983i 0.640336i
\(714\) 0 0
\(715\) − 27.0702i − 1.01237i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −0.489793 −0.0182662 −0.00913309 0.999958i \(-0.502907\pi\)
−0.00913309 + 0.999958i \(0.502907\pi\)
\(720\) 0 0
\(721\) −5.01018 −0.186589
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 0.719614i − 0.0267258i
\(726\) 0 0
\(727\) − 30.6315i − 1.13606i −0.823008 0.568030i \(-0.807706\pi\)
0.823008 0.568030i \(-0.192294\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.02668 −0.148932
\(732\) 0 0
\(733\) 30.3625 1.12146 0.560732 0.827998i \(-0.310520\pi\)
0.560732 + 0.827998i \(0.310520\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0511i 0.370237i
\(738\) 0 0
\(739\) − 6.82740i − 0.251150i −0.992084 0.125575i \(-0.959922\pi\)
0.992084 0.125575i \(-0.0400775\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5692 −0.791298 −0.395649 0.918402i \(-0.629480\pi\)
−0.395649 + 0.918402i \(0.629480\pi\)
\(744\) 0 0
\(745\) 10.0046 0.366540
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31.6782i 1.15750i
\(750\) 0 0
\(751\) − 23.8218i − 0.869271i −0.900607 0.434635i \(-0.856877\pi\)
0.900607 0.434635i \(-0.143123\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.8613 −0.468069
\(756\) 0 0
\(757\) −47.7086 −1.73400 −0.866998 0.498311i \(-0.833954\pi\)
−0.866998 + 0.498311i \(0.833954\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 41.5846i 1.50744i 0.657196 + 0.753720i \(0.271743\pi\)
−0.657196 + 0.753720i \(0.728257\pi\)
\(762\) 0 0
\(763\) − 29.1019i − 1.05356i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 78.7487 2.84345
\(768\) 0 0
\(769\) −53.8617 −1.94230 −0.971151 0.238466i \(-0.923356\pi\)
−0.971151 + 0.238466i \(0.923356\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 53.8369i 1.93638i 0.250218 + 0.968190i \(0.419498\pi\)
−0.250218 + 0.968190i \(0.580502\pi\)
\(774\) 0 0
\(775\) − 6.30723i − 0.226562i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.43429 −0.0872175
\(780\) 0 0
\(781\) −5.05459 −0.180868
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.8992i 0.852999i
\(786\) 0 0
\(787\) 7.22815i 0.257656i 0.991667 + 0.128828i \(0.0411215\pi\)
−0.991667 + 0.128828i \(0.958879\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −48.8176 −1.73575
\(792\) 0 0
\(793\) −27.1045 −0.962508
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 24.3075i − 0.861015i −0.902587 0.430507i \(-0.858335\pi\)
0.902587 0.430507i \(-0.141665\pi\)
\(798\) 0 0
\(799\) − 25.8309i − 0.913833i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −52.2556 −1.84406
\(804\) 0 0
\(805\) −6.62260 −0.233416
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.9026i 0.629423i 0.949187 + 0.314711i \(0.101908\pi\)
−0.949187 + 0.314711i \(0.898092\pi\)
\(810\) 0 0
\(811\) 39.1739i 1.37558i 0.725909 + 0.687790i \(0.241419\pi\)
−0.725909 + 0.687790i \(0.758581\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.4319 −0.820783
\(816\) 0 0
\(817\) −1.54693 −0.0541201
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 1.28332i − 0.0447880i −0.999749 0.0223940i \(-0.992871\pi\)
0.999749 0.0223940i \(-0.00712883\pi\)
\(822\) 0 0
\(823\) − 27.1743i − 0.947237i −0.880730 0.473619i \(-0.842948\pi\)
0.880730 0.473619i \(-0.157052\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4825 1.26862 0.634311 0.773078i \(-0.281284\pi\)
0.634311 + 0.773078i \(0.281284\pi\)
\(828\) 0 0
\(829\) 28.2354 0.980657 0.490329 0.871538i \(-0.336877\pi\)
0.490329 + 0.871538i \(0.336877\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 5.75847i − 0.199519i
\(834\) 0 0
\(835\) − 11.7087i − 0.405197i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.3765 0.427284 0.213642 0.976912i \(-0.431467\pi\)
0.213642 + 0.976912i \(0.431467\pi\)
\(840\) 0 0
\(841\) 28.4822 0.982143
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 27.8255i 0.957226i
\(846\) 0 0
\(847\) 16.9772i 0.583343i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.6656 0.674128
\(852\) 0 0
\(853\) 14.0166 0.479919 0.239960 0.970783i \(-0.422866\pi\)
0.239960 + 0.970783i \(0.422866\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7.29151i − 0.249073i −0.992215 0.124537i \(-0.960256\pi\)
0.992215 0.124537i \(-0.0397444\pi\)
\(858\) 0 0
\(859\) − 9.55060i − 0.325862i −0.986637 0.162931i \(-0.947905\pi\)
0.986637 0.162931i \(-0.0520948\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.5186 0.358058 0.179029 0.983844i \(-0.442704\pi\)
0.179029 + 0.983844i \(0.442704\pi\)
\(864\) 0 0
\(865\) 23.8924 0.812364
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 0.721412i − 0.0244722i
\(870\) 0 0
\(871\) − 15.1584i − 0.513623i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.44295 0.0825868
\(876\) 0 0
\(877\) 25.3528 0.856103 0.428052 0.903754i \(-0.359200\pi\)
0.428052 + 0.903754i \(0.359200\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 19.4161i − 0.654146i −0.944999 0.327073i \(-0.893938\pi\)
0.944999 0.327073i \(-0.106062\pi\)
\(882\) 0 0
\(883\) 6.25508i 0.210500i 0.994446 + 0.105250i \(0.0335643\pi\)
−0.994446 + 0.105250i \(0.966436\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.4860 0.922889 0.461445 0.887169i \(-0.347331\pi\)
0.461445 + 0.887169i \(0.347331\pi\)
\(888\) 0 0
\(889\) −46.5193 −1.56021
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 9.92346i − 0.332076i
\(894\) 0 0
\(895\) − 4.03743i − 0.134957i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.53878 −0.151377
\(900\) 0 0
\(901\) −33.4420 −1.11412
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.45495i 0.114846i
\(906\) 0 0
\(907\) − 46.9987i − 1.56057i −0.625426 0.780283i \(-0.715075\pi\)
0.625426 0.780283i \(-0.284925\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.3713 0.674933 0.337466 0.941338i \(-0.390430\pi\)
0.337466 + 0.941338i \(0.390430\pi\)
\(912\) 0 0
\(913\) 39.9439 1.32195
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 38.6796i − 1.27731i
\(918\) 0 0
\(919\) 9.32861i 0.307722i 0.988092 + 0.153861i \(0.0491709\pi\)
−0.988092 + 0.153861i \(0.950829\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.62301 0.250914
\(924\) 0 0
\(925\) −7.25427 −0.238519
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 25.0444i − 0.821680i −0.911707 0.410840i \(-0.865235\pi\)
0.911707 0.410840i \(-0.134765\pi\)
\(930\) 0 0
\(931\) − 2.21223i − 0.0725028i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −23.6405 −0.773129
\(936\) 0 0
\(937\) −43.6231 −1.42510 −0.712552 0.701619i \(-0.752461\pi\)
−0.712552 + 0.701619i \(0.752461\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 60.0770i 1.95845i 0.202768 + 0.979227i \(0.435006\pi\)
−0.202768 + 0.979227i \(0.564994\pi\)
\(942\) 0 0
\(943\) − 3.07844i − 0.100248i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.0289922 −0.000942121 0 −0.000471061 1.00000i \(-0.500150\pi\)
−0.000471061 1.00000i \(0.500150\pi\)
\(948\) 0 0
\(949\) 78.8084 2.55823
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.4249i 0.758806i 0.925232 + 0.379403i \(0.123871\pi\)
−0.925232 + 0.379403i \(0.876129\pi\)
\(954\) 0 0
\(955\) 15.9663i 0.516658i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.49666 −0.306663
\(960\) 0 0
\(961\) −8.78119 −0.283264
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.2807i 0.395329i
\(966\) 0 0
\(967\) − 13.7977i − 0.443705i −0.975080 0.221853i \(-0.928790\pi\)
0.975080 0.221853i \(-0.0712104\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40.5798 1.30227 0.651133 0.758963i \(-0.274294\pi\)
0.651133 + 0.758963i \(0.274294\pi\)
\(972\) 0 0
\(973\) −32.2015 −1.03233
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 22.6254i − 0.723850i −0.932207 0.361925i \(-0.882120\pi\)
0.932207 0.361925i \(-0.117880\pi\)
\(978\) 0 0
\(979\) − 34.2091i − 1.09333i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.91037 0.316092 0.158046 0.987432i \(-0.449481\pi\)
0.158046 + 0.987432i \(0.449481\pi\)
\(984\) 0 0
\(985\) 5.82951 0.185744
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.95627i − 0.0622057i
\(990\) 0 0
\(991\) 26.7323i 0.849179i 0.905386 + 0.424589i \(0.139582\pi\)
−0.905386 + 0.424589i \(0.860418\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −15.3161 −0.485553
\(996\) 0 0
\(997\) 3.46079 0.109604 0.0548022 0.998497i \(-0.482547\pi\)
0.0548022 + 0.998497i \(0.482547\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.h.b.2591.15 yes 16
3.2 odd 2 4320.2.h.c.2591.7 yes 16
4.3 odd 2 4320.2.h.c.2591.10 yes 16
12.11 even 2 inner 4320.2.h.b.2591.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.h.b.2591.2 16 12.11 even 2 inner
4320.2.h.b.2591.15 yes 16 1.1 even 1 trivial
4320.2.h.c.2591.7 yes 16 3.2 odd 2
4320.2.h.c.2591.10 yes 16 4.3 odd 2