Properties

Label 4320.2.f.k.1729.4
Level $4320$
Weight $2$
Character 4320.1729
Analytic conductor $34.495$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(1729,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.1729"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,-6,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3x^{10} - 21x^{8} - 174x^{6} - 525x^{4} + 1875x^{2} + 15625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1729.4
Root \(-1.28187 + 1.83216i\) of defining polynomial
Character \(\chi\) \(=\) 4320.1729
Dual form 4320.2.f.k.1729.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28187 + 1.83216i) q^{5} -3.41531i q^{7} +1.00351 q^{11} +1.56023i q^{13} +2.54580i q^{17} +4.54580 q^{19} +2.66433i q^{23} +(-1.71364 - 4.69717i) q^{25} -3.97203 q^{29} -1.11852 q^{31} +(6.25740 + 4.37797i) q^{35} +6.83062i q^{37} -5.97904 q^{41} -9.09949i q^{43} +2.23704i q^{47} -4.66433 q^{49} +0.881478i q^{53} +(-1.28636 + 1.83859i) q^{55} +6.68769 q^{59} +9.75593 q^{61} +(-2.85859 - 2.00000i) q^{65} -2.00701i q^{67} -0.142926 q^{71} -8.94756i q^{73} -3.42728i q^{77} -3.87445 q^{79} +17.4203i q^{83} +(-4.66433 - 3.26338i) q^{85} +14.8167 q^{89} +5.32865 q^{91} +(-5.82711 + 8.32865i) q^{95} +11.0975i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{19} - 6 q^{25} - 4 q^{31} - 8 q^{49} - 30 q^{55} - 8 q^{61} + 88 q^{79} - 8 q^{85} - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.28187 + 1.83216i −0.573268 + 0.819368i
\(6\) 0 0
\(7\) 3.41531i 1.29086i −0.763817 0.645432i \(-0.776677\pi\)
0.763817 0.645432i \(-0.223323\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00351 0.302568 0.151284 0.988490i \(-0.451659\pi\)
0.151284 + 0.988490i \(0.451659\pi\)
\(12\) 0 0
\(13\) 1.56023i 0.432729i 0.976313 + 0.216364i \(0.0694199\pi\)
−0.976313 + 0.216364i \(0.930580\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.54580i 0.617448i 0.951152 + 0.308724i \(0.0999019\pi\)
−0.951152 + 0.308724i \(0.900098\pi\)
\(18\) 0 0
\(19\) 4.54580 1.04288 0.521439 0.853288i \(-0.325395\pi\)
0.521439 + 0.853288i \(0.325395\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.66433i 0.555550i 0.960646 + 0.277775i \(0.0895970\pi\)
−0.960646 + 0.277775i \(0.910403\pi\)
\(24\) 0 0
\(25\) −1.71364 4.69717i −0.342728 0.939435i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.97203 −0.737587 −0.368793 0.929511i \(-0.620229\pi\)
−0.368793 + 0.929511i \(0.620229\pi\)
\(30\) 0 0
\(31\) −1.11852 −0.200893 −0.100446 0.994942i \(-0.532027\pi\)
−0.100446 + 0.994942i \(0.532027\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.25740 + 4.37797i 1.05769 + 0.740011i
\(36\) 0 0
\(37\) 6.83062i 1.12295i 0.827495 + 0.561473i \(0.189765\pi\)
−0.827495 + 0.561473i \(0.810235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.97904 −0.933769 −0.466885 0.884318i \(-0.654624\pi\)
−0.466885 + 0.884318i \(0.654624\pi\)
\(42\) 0 0
\(43\) 9.09949i 1.38766i −0.720139 0.693830i \(-0.755922\pi\)
0.720139 0.693830i \(-0.244078\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.23704i 0.326307i 0.986601 + 0.163153i \(0.0521665\pi\)
−0.986601 + 0.163153i \(0.947834\pi\)
\(48\) 0 0
\(49\) −4.66433 −0.666332
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.881478i 0.121080i 0.998166 + 0.0605401i \(0.0192823\pi\)
−0.998166 + 0.0605401i \(0.980718\pi\)
\(54\) 0 0
\(55\) −1.28636 + 1.83859i −0.173453 + 0.247915i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.68769 0.870663 0.435331 0.900270i \(-0.356631\pi\)
0.435331 + 0.900270i \(0.356631\pi\)
\(60\) 0 0
\(61\) 9.75593 1.24912 0.624560 0.780977i \(-0.285279\pi\)
0.624560 + 0.780977i \(0.285279\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.85859 2.00000i −0.354564 0.248069i
\(66\) 0 0
\(67\) 2.00701i 0.245195i −0.992456 0.122598i \(-0.960878\pi\)
0.992456 0.122598i \(-0.0391225\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.142926 −0.0169622 −0.00848111 0.999964i \(-0.502700\pi\)
−0.00848111 + 0.999964i \(0.502700\pi\)
\(72\) 0 0
\(73\) 8.94756i 1.04723i −0.851954 0.523616i \(-0.824583\pi\)
0.851954 0.523616i \(-0.175417\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.42728i 0.390575i
\(78\) 0 0
\(79\) −3.87445 −0.435910 −0.217955 0.975959i \(-0.569939\pi\)
−0.217955 + 0.975959i \(0.569939\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.4203i 1.91212i 0.293168 + 0.956061i \(0.405290\pi\)
−0.293168 + 0.956061i \(0.594710\pi\)
\(84\) 0 0
\(85\) −4.66433 3.26338i −0.505917 0.353963i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.8167 1.57056 0.785282 0.619139i \(-0.212518\pi\)
0.785282 + 0.619139i \(0.212518\pi\)
\(90\) 0 0
\(91\) 5.32865 0.558594
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.82711 + 8.32865i −0.597849 + 0.854502i
\(96\) 0 0
\(97\) 11.0975i 1.12678i 0.826191 + 0.563390i \(0.190503\pi\)
−0.826191 + 0.563390i \(0.809497\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.38734 0.735067 0.367534 0.930010i \(-0.380202\pi\)
0.367534 + 0.930010i \(0.380202\pi\)
\(102\) 0 0
\(103\) 2.00701i 0.197757i 0.995100 + 0.0988784i \(0.0315255\pi\)
−0.995100 + 0.0988784i \(0.968475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.9930i 1.06273i 0.847143 + 0.531366i \(0.178321\pi\)
−0.847143 + 0.531366i \(0.821679\pi\)
\(108\) 0 0
\(109\) 2.66433 0.255196 0.127598 0.991826i \(-0.459273\pi\)
0.127598 + 0.991826i \(0.459273\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.09161i 0.667122i −0.942728 0.333561i \(-0.891750\pi\)
0.942728 0.333561i \(-0.108250\pi\)
\(114\) 0 0
\(115\) −4.88148 3.41531i −0.455200 0.318479i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.69470 0.797042
\(120\) 0 0
\(121\) −9.99298 −0.908452
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.8026 + 2.88148i 0.966218 + 0.257727i
\(126\) 0 0
\(127\) 16.5288i 1.46670i 0.679854 + 0.733348i \(0.262043\pi\)
−0.679854 + 0.733348i \(0.737957\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 21.3524 1.86557 0.932785 0.360433i \(-0.117371\pi\)
0.932785 + 0.360433i \(0.117371\pi\)
\(132\) 0 0
\(133\) 15.5253i 1.34622i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.45420i 0.295112i 0.989054 + 0.147556i \(0.0471407\pi\)
−0.989054 + 0.147556i \(0.952859\pi\)
\(138\) 0 0
\(139\) 22.6573 1.92177 0.960884 0.276952i \(-0.0893245\pi\)
0.960884 + 0.276952i \(0.0893245\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.56570i 0.130930i
\(144\) 0 0
\(145\) 5.09161 7.27740i 0.422835 0.604355i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.99801 −0.163683 −0.0818416 0.996645i \(-0.526080\pi\)
−0.0818416 + 0.996645i \(0.526080\pi\)
\(150\) 0 0
\(151\) −14.7559 −1.20082 −0.600410 0.799692i \(-0.704996\pi\)
−0.600410 + 0.799692i \(0.704996\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.43380 2.04931i 0.115165 0.164605i
\(156\) 0 0
\(157\) 22.3559i 1.78420i 0.451841 + 0.892099i \(0.350768\pi\)
−0.451841 + 0.892099i \(0.649232\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 9.09949 0.717140
\(162\) 0 0
\(163\) 4.82360i 0.377814i 0.981995 + 0.188907i \(0.0604944\pi\)
−0.981995 + 0.188907i \(0.939506\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.0846i 1.32204i 0.750366 + 0.661022i \(0.229877\pi\)
−0.750366 + 0.661022i \(0.770123\pi\)
\(168\) 0 0
\(169\) 10.5657 0.812746
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.88148i 0.219075i −0.993983 0.109537i \(-0.965063\pi\)
0.993983 0.109537i \(-0.0349369\pi\)
\(174\) 0 0
\(175\) −16.0423 + 5.85261i −1.21268 + 0.442416i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.5288 1.23542 0.617711 0.786405i \(-0.288060\pi\)
0.617711 + 0.786405i \(0.288060\pi\)
\(180\) 0 0
\(181\) −9.51889 −0.707533 −0.353767 0.935334i \(-0.615099\pi\)
−0.353767 + 0.935334i \(0.615099\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.5148 8.75593i −0.920106 0.643749i
\(186\) 0 0
\(187\) 2.55473i 0.186820i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1990 1.31683 0.658416 0.752654i \(-0.271227\pi\)
0.658416 + 0.752654i \(0.271227\pi\)
\(192\) 0 0
\(193\) 14.3789i 1.03501i 0.855679 + 0.517507i \(0.173140\pi\)
−0.855679 + 0.517507i \(0.826860\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.4472i 1.02932i −0.857395 0.514659i \(-0.827918\pi\)
0.857395 0.514659i \(-0.172082\pi\)
\(198\) 0 0
\(199\) 3.24407 0.229966 0.114983 0.993367i \(-0.463319\pi\)
0.114983 + 0.993367i \(0.463319\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13.5657i 0.952125i
\(204\) 0 0
\(205\) 7.66433 10.9546i 0.535300 0.765101i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.56174 0.315542
\(210\) 0 0
\(211\) −8.30876 −0.571999 −0.285999 0.958230i \(-0.592325\pi\)
−0.285999 + 0.958230i \(0.592325\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 16.6717 + 11.6643i 1.13700 + 0.795500i
\(216\) 0 0
\(217\) 3.82010i 0.259325i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.97203 −0.267187
\(222\) 0 0
\(223\) 20.2060i 1.35309i 0.736400 + 0.676547i \(0.236524\pi\)
−0.736400 + 0.676547i \(0.763476\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.0846i 0.735710i 0.929883 + 0.367855i \(0.119908\pi\)
−0.929883 + 0.367855i \(0.880092\pi\)
\(228\) 0 0
\(229\) −13.3216 −0.880318 −0.440159 0.897920i \(-0.645078\pi\)
−0.440159 + 0.897920i \(0.645078\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.4203i 1.07573i 0.843032 + 0.537863i \(0.180768\pi\)
−0.843032 + 0.537863i \(0.819232\pi\)
\(234\) 0 0
\(235\) −4.09863 2.86759i −0.267365 0.187061i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.6542 −0.753849 −0.376924 0.926244i \(-0.623018\pi\)
−0.376924 + 0.926244i \(0.623018\pi\)
\(240\) 0 0
\(241\) 13.3216 0.858121 0.429061 0.903276i \(-0.358845\pi\)
0.429061 + 0.903276i \(0.358845\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.97904 8.54580i 0.381987 0.545971i
\(246\) 0 0
\(247\) 7.09248i 0.451284i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.3154 −1.59790 −0.798948 0.601399i \(-0.794610\pi\)
−0.798948 + 0.601399i \(0.794610\pi\)
\(252\) 0 0
\(253\) 2.67367i 0.168092i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.69124i 0.105497i −0.998608 0.0527484i \(-0.983202\pi\)
0.998608 0.0527484i \(-0.0167981\pi\)
\(258\) 0 0
\(259\) 23.3287 1.44957
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.42026i 0.519215i 0.965714 + 0.259608i \(0.0835932\pi\)
−0.965714 + 0.259608i \(0.916407\pi\)
\(264\) 0 0
\(265\) −1.61501 1.12994i −0.0992093 0.0694114i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −23.9162 −1.45819 −0.729097 0.684410i \(-0.760060\pi\)
−0.729097 + 0.684410i \(0.760060\pi\)
\(270\) 0 0
\(271\) −23.7758 −1.44428 −0.722139 0.691748i \(-0.756841\pi\)
−0.722139 + 0.691748i \(0.756841\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.71965 4.71364i −0.103699 0.284243i
\(276\) 0 0
\(277\) 23.7732i 1.42839i −0.699944 0.714197i \(-0.746792\pi\)
0.699944 0.714197i \(-0.253208\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.6333 −1.05191 −0.525956 0.850512i \(-0.676292\pi\)
−0.525956 + 0.850512i \(0.676292\pi\)
\(282\) 0 0
\(283\) 4.27589i 0.254175i −0.991892 0.127088i \(-0.959437\pi\)
0.991892 0.127088i \(-0.0405629\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.4203i 1.20537i
\(288\) 0 0
\(289\) 10.5189 0.618758
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.2031i 1.12186i 0.827864 + 0.560929i \(0.189556\pi\)
−0.827864 + 0.560929i \(0.810444\pi\)
\(294\) 0 0
\(295\) −8.57272 + 12.2529i −0.499123 + 0.713393i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.15695 −0.240403
\(300\) 0 0
\(301\) −31.0776 −1.79128
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.5058 + 17.8745i −0.716080 + 1.02349i
\(306\) 0 0
\(307\) 27.8462i 1.58927i −0.607090 0.794633i \(-0.707663\pi\)
0.607090 0.794633i \(-0.292337\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.1865 1.65502 0.827509 0.561453i \(-0.189757\pi\)
0.827509 + 0.561453i \(0.189757\pi\)
\(312\) 0 0
\(313\) 1.14643i 0.0648002i 0.999475 + 0.0324001i \(0.0103151\pi\)
−0.999475 + 0.0324001i \(0.989685\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 27.3017i 1.53342i 0.641995 + 0.766709i \(0.278107\pi\)
−0.641995 + 0.766709i \(0.721893\pi\)
\(318\) 0 0
\(319\) −3.98595 −0.223170
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 11.5727i 0.643923i
\(324\) 0 0
\(325\) 7.32865 2.67367i 0.406520 0.148308i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.64020 0.421218
\(330\) 0 0
\(331\) 28.1692 1.54832 0.774159 0.632992i \(-0.218173\pi\)
0.774159 + 0.632992i \(0.218173\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.67717 + 2.57272i 0.200905 + 0.140563i
\(336\) 0 0
\(337\) 18.9496i 1.03225i 0.856513 + 0.516126i \(0.172626\pi\)
−0.856513 + 0.516126i \(0.827374\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.12244 −0.0607837
\(342\) 0 0
\(343\) 7.97705i 0.430720i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.90137i 0.102071i 0.998697 + 0.0510354i \(0.0162521\pi\)
−0.998697 + 0.0510354i \(0.983748\pi\)
\(348\) 0 0
\(349\) 18.4132 0.985638 0.492819 0.870132i \(-0.335967\pi\)
0.492819 + 0.870132i \(0.335967\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.2370i 0.544863i −0.962175 0.272431i \(-0.912172\pi\)
0.962175 0.272431i \(-0.0878278\pi\)
\(354\) 0 0
\(355\) 0.183212 0.261864i 0.00972389 0.0138983i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.8532 1.57559 0.787796 0.615936i \(-0.211222\pi\)
0.787796 + 0.615936i \(0.211222\pi\)
\(360\) 0 0
\(361\) 1.66433 0.0875961
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 16.3934 + 11.4696i 0.858069 + 0.600345i
\(366\) 0 0
\(367\) 3.70116i 0.193199i −0.995323 0.0965995i \(-0.969203\pi\)
0.995323 0.0965995i \(-0.0307966\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.01052 0.156298
\(372\) 0 0
\(373\) 0.809581i 0.0419185i −0.999780 0.0209592i \(-0.993328\pi\)
0.999780 0.0209592i \(-0.00667202\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.19726i 0.319175i
\(378\) 0 0
\(379\) 36.1115 1.85492 0.927462 0.373919i \(-0.121986\pi\)
0.927462 + 0.373919i \(0.121986\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.5727i 0.591338i −0.955290 0.295669i \(-0.904457\pi\)
0.955290 0.295669i \(-0.0955426\pi\)
\(384\) 0 0
\(385\) 6.27934 + 4.39331i 0.320025 + 0.223904i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −22.2040 −1.12579 −0.562894 0.826529i \(-0.690312\pi\)
−0.562894 + 0.826529i \(0.690312\pi\)
\(390\) 0 0
\(391\) −6.78285 −0.343023
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.96653 7.09863i 0.249893 0.357171i
\(396\) 0 0
\(397\) 9.50428i 0.477006i −0.971142 0.238503i \(-0.923343\pi\)
0.971142 0.238503i \(-0.0766567\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.41730 −0.0707766 −0.0353883 0.999374i \(-0.511267\pi\)
−0.0353883 + 0.999374i \(0.511267\pi\)
\(402\) 0 0
\(403\) 1.74515i 0.0869320i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.85456i 0.339768i
\(408\) 0 0
\(409\) −33.2230 −1.64277 −0.821386 0.570373i \(-0.806799\pi\)
−0.821386 + 0.570373i \(0.806799\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 22.8405i 1.12391i
\(414\) 0 0
\(415\) −31.9167 22.3304i −1.56673 1.09616i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.5113 −0.562363 −0.281182 0.959655i \(-0.590726\pi\)
−0.281182 + 0.959655i \(0.590726\pi\)
\(420\) 0 0
\(421\) 23.0846 1.12507 0.562537 0.826772i \(-0.309825\pi\)
0.562537 + 0.826772i \(0.309825\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.9581 4.36259i 0.580052 0.211617i
\(426\) 0 0
\(427\) 33.3195i 1.61244i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −29.9961 −1.44486 −0.722431 0.691443i \(-0.756975\pi\)
−0.722431 + 0.691443i \(0.756975\pi\)
\(432\) 0 0
\(433\) 7.54827i 0.362747i −0.983414 0.181373i \(-0.941946\pi\)
0.983414 0.181373i \(-0.0580542\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.1115i 0.579372i
\(438\) 0 0
\(439\) 38.1563 1.82110 0.910550 0.413398i \(-0.135658\pi\)
0.910550 + 0.413398i \(0.135658\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.48111i 0.117881i 0.998261 + 0.0589406i \(0.0187723\pi\)
−0.998261 + 0.0589406i \(0.981228\pi\)
\(444\) 0 0
\(445\) −18.9930 + 27.1465i −0.900353 + 1.28687i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.38232 0.159621 0.0798107 0.996810i \(-0.474568\pi\)
0.0798107 + 0.996810i \(0.474568\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.83062 + 9.76296i −0.320224 + 0.457694i
\(456\) 0 0
\(457\) 28.4869i 1.33256i −0.745701 0.666280i \(-0.767885\pi\)
0.745701 0.666280i \(-0.232115\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.98103 0.185415 0.0927076 0.995693i \(-0.470448\pi\)
0.0927076 + 0.995693i \(0.470448\pi\)
\(462\) 0 0
\(463\) 12.2289i 0.568327i 0.958776 + 0.284164i \(0.0917159\pi\)
−0.958776 + 0.284164i \(0.908284\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.3287i 0.940698i −0.882481 0.470349i \(-0.844128\pi\)
0.882481 0.470349i \(-0.155872\pi\)
\(468\) 0 0
\(469\) −6.85456 −0.316514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.13139i 0.419862i
\(474\) 0 0
\(475\) −7.78987 21.3524i −0.357424 0.979716i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.16396 0.281639 0.140819 0.990035i \(-0.455026\pi\)
0.140819 + 0.990035i \(0.455026\pi\)
\(480\) 0 0
\(481\) −10.6573 −0.485931
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.3324 14.2255i −0.923248 0.645947i
\(486\) 0 0
\(487\) 13.3994i 0.607183i 0.952802 + 0.303592i \(0.0981858\pi\)
−0.952802 + 0.303592i \(0.901814\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.96302 0.178849 0.0894244 0.995994i \(-0.471497\pi\)
0.0894244 + 0.995994i \(0.471497\pi\)
\(492\) 0 0
\(493\) 10.1120i 0.455422i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.488137i 0.0218959i
\(498\) 0 0
\(499\) 23.2172 1.03934 0.519671 0.854366i \(-0.326054\pi\)
0.519671 + 0.854366i \(0.326054\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13.8098i 0.615747i −0.951427 0.307873i \(-0.900383\pi\)
0.951427 0.307873i \(-0.0996173\pi\)
\(504\) 0 0
\(505\) −9.46957 + 13.5348i −0.421390 + 0.602291i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15.6352 0.693020 0.346510 0.938046i \(-0.387367\pi\)
0.346510 + 0.938046i \(0.387367\pi\)
\(510\) 0 0
\(511\) −30.5587 −1.35184
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.67717 2.57272i −0.162036 0.113368i
\(516\) 0 0
\(517\) 2.24489i 0.0987300i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.25788 −0.186541 −0.0932706 0.995641i \(-0.529732\pi\)
−0.0932706 + 0.995641i \(0.529732\pi\)
\(522\) 0 0
\(523\) 33.3195i 1.45696i −0.685067 0.728480i \(-0.740227\pi\)
0.685067 0.728480i \(-0.259773\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.84754i 0.124041i
\(528\) 0 0
\(529\) 15.9014 0.691364
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.32865i 0.404069i
\(534\) 0 0
\(535\) −20.1409 14.0915i −0.870768 0.609230i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.68068 −0.201611
\(540\) 0 0
\(541\) 32.6035 1.40173 0.700866 0.713293i \(-0.252797\pi\)
0.700866 + 0.713293i \(0.252797\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.41531 + 4.88148i −0.146296 + 0.209100i
\(546\) 0 0
\(547\) 34.4149i 1.47148i 0.677266 + 0.735738i \(0.263165\pi\)
−0.677266 + 0.735738i \(0.736835\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −18.0561 −0.769214
\(552\) 0 0
\(553\) 13.2325i 0.562701i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.9930i 1.31321i −0.754233 0.656607i \(-0.771991\pi\)
0.754233 0.656607i \(-0.228009\pi\)
\(558\) 0 0
\(559\) 14.1973 0.600480
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.1902i 0.808772i 0.914588 + 0.404386i \(0.132515\pi\)
−0.914588 + 0.404386i \(0.867485\pi\)
\(564\) 0 0
\(565\) 12.9930 + 9.09049i 0.546619 + 0.382440i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.6333 0.739225 0.369612 0.929186i \(-0.379491\pi\)
0.369612 + 0.929186i \(0.379491\pi\)
\(570\) 0 0
\(571\) 6.29471 0.263425 0.131713 0.991288i \(-0.457952\pi\)
0.131713 + 0.991288i \(0.457952\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.5148 4.56570i 0.521903 0.190403i
\(576\) 0 0
\(577\) 36.8267i 1.53312i −0.642174 0.766559i \(-0.721967\pi\)
0.642174 0.766559i \(-0.278033\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 59.4955 2.46829
\(582\) 0 0
\(583\) 0.884568i 0.0366351i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.9321i 1.19416i −0.802183 0.597078i \(-0.796328\pi\)
0.802183 0.597078i \(-0.203672\pi\)
\(588\) 0 0
\(589\) −5.08458 −0.209507
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.4940i 0.718392i 0.933262 + 0.359196i \(0.116949\pi\)
−0.933262 + 0.359196i \(0.883051\pi\)
\(594\) 0 0
\(595\) −11.1454 + 15.9301i −0.456918 + 0.653071i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.49727 0.306330 0.153165 0.988201i \(-0.451053\pi\)
0.153165 + 0.988201i \(0.451053\pi\)
\(600\) 0 0
\(601\) 17.8943 0.729926 0.364963 0.931022i \(-0.381082\pi\)
0.364963 + 0.931022i \(0.381082\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.8097 18.3088i 0.520786 0.744357i
\(606\) 0 0
\(607\) 13.1135i 0.532261i 0.963937 + 0.266131i \(0.0857452\pi\)
−0.963937 + 0.266131i \(0.914255\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3.49029 −0.141202
\(612\) 0 0
\(613\) 38.6908i 1.56271i 0.624088 + 0.781354i \(0.285471\pi\)
−0.624088 + 0.781354i \(0.714529\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.7688i 1.31922i −0.751607 0.659611i \(-0.770721\pi\)
0.751607 0.659611i \(-0.229279\pi\)
\(618\) 0 0
\(619\) 39.1314 1.57282 0.786412 0.617703i \(-0.211936\pi\)
0.786412 + 0.617703i \(0.211936\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 50.6035i 2.02739i
\(624\) 0 0
\(625\) −19.1269 + 16.0985i −0.765075 + 0.643941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −17.3894 −0.693361
\(630\) 0 0
\(631\) −11.7360 −0.467204 −0.233602 0.972332i \(-0.575051\pi\)
−0.233602 + 0.972332i \(0.575051\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −30.2835 21.1877i −1.20176 0.840809i
\(636\) 0 0
\(637\) 7.27740i 0.288341i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.1950 0.876650 0.438325 0.898817i \(-0.355572\pi\)
0.438325 + 0.898817i \(0.355572\pi\)
\(642\) 0 0
\(643\) 11.9161i 0.469924i −0.972005 0.234962i \(-0.924503\pi\)
0.972005 0.234962i \(-0.0754966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.2678i 1.15064i −0.817930 0.575318i \(-0.804878\pi\)
0.817930 0.575318i \(-0.195122\pi\)
\(648\) 0 0
\(649\) 6.71113 0.263435
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.21013i 0.0864890i 0.999065 + 0.0432445i \(0.0137694\pi\)
−0.999065 + 0.0432445i \(0.986231\pi\)
\(654\) 0 0
\(655\) −27.3709 + 39.1211i −1.06947 + 1.52859i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.3859 −0.638304 −0.319152 0.947704i \(-0.603398\pi\)
−0.319152 + 0.947704i \(0.603398\pi\)
\(660\) 0 0
\(661\) −16.0398 −0.623875 −0.311938 0.950103i \(-0.600978\pi\)
−0.311938 + 0.950103i \(0.600978\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 28.4449 + 19.9014i 1.10305 + 0.771742i
\(666\) 0 0
\(667\) 10.5828i 0.409767i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.79013 0.377944
\(672\) 0 0
\(673\) 27.2305i 1.04966i −0.851207 0.524830i \(-0.824129\pi\)
0.851207 0.524830i \(-0.175871\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 35.0916i 1.34868i 0.738421 + 0.674340i \(0.235572\pi\)
−0.738421 + 0.674340i \(0.764428\pi\)
\(678\) 0 0
\(679\) 37.9014 1.45452
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 25.2818i 0.967383i 0.875239 + 0.483691i \(0.160704\pi\)
−0.875239 + 0.483691i \(0.839296\pi\)
\(684\) 0 0
\(685\) −6.32865 4.42782i −0.241805 0.169178i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.37530 −0.0523949
\(690\) 0 0
\(691\) −30.2947 −1.15247 −0.576233 0.817286i \(-0.695478\pi\)
−0.576233 + 0.817286i \(0.695478\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −29.0436 + 41.5119i −1.10169 + 1.57463i
\(696\) 0 0
\(697\) 15.2215i 0.576554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −46.1622 −1.74352 −0.871760 0.489933i \(-0.837021\pi\)
−0.871760 + 0.489933i \(0.837021\pi\)
\(702\) 0 0
\(703\) 31.0506i 1.17110i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25.2300i 0.948873i
\(708\) 0 0
\(709\) 13.0776 0.491138 0.245569 0.969379i \(-0.421025\pi\)
0.245569 + 0.969379i \(0.421025\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.98011i 0.111606i
\(714\) 0 0
\(715\) −2.86861 2.00701i −0.107280 0.0750580i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −44.4260 −1.65681 −0.828405 0.560129i \(-0.810751\pi\)
−0.828405 + 0.560129i \(0.810751\pi\)
\(720\) 0 0
\(721\) 6.85456 0.255277
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.80663 + 18.6573i 0.252792 + 0.692915i
\(726\) 0 0
\(727\) 30.9996i 1.14971i −0.818254 0.574856i \(-0.805058\pi\)
0.818254 0.574856i \(-0.194942\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 23.1655 0.856807
\(732\) 0 0
\(733\) 45.0157i 1.66269i 0.555754 + 0.831347i \(0.312430\pi\)
−0.555754 + 0.831347i \(0.687570\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.01405i 0.0741884i
\(738\) 0 0
\(739\) 7.27098 0.267467 0.133734 0.991017i \(-0.457303\pi\)
0.133734 + 0.991017i \(0.457303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.8405i 1.49829i −0.662404 0.749147i \(-0.730464\pi\)
0.662404 0.749147i \(-0.269536\pi\)
\(744\) 0 0
\(745\) 2.56118 3.66068i 0.0938343 0.134117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 37.5444 1.37184
\(750\) 0 0
\(751\) −27.5388 −1.00490 −0.502452 0.864605i \(-0.667569\pi\)
−0.502452 + 0.864605i \(0.667569\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.9151 27.0353i 0.688392 0.983914i
\(756\) 0 0
\(757\) 17.9791i 0.653462i −0.945117 0.326731i \(-0.894053\pi\)
0.945117 0.326731i \(-0.105947\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31.9022 −1.15645 −0.578227 0.815876i \(-0.696255\pi\)
−0.578227 + 0.815876i \(0.696255\pi\)
\(762\) 0 0
\(763\) 9.09949i 0.329424i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.4343i 0.376761i
\(768\) 0 0
\(769\) −50.9321 −1.83666 −0.918330 0.395817i \(-0.870462\pi\)
−0.918330 + 0.395817i \(0.870462\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.34854i 0.228341i −0.993461 0.114171i \(-0.963579\pi\)
0.993461 0.114171i \(-0.0364211\pi\)
\(774\) 0 0
\(775\) 1.91675 + 5.25389i 0.0688515 + 0.188725i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −27.1795 −0.973808
\(780\) 0 0
\(781\) −0.143427 −0.00513223
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.9597 28.6573i −1.46191 1.02282i
\(786\) 0 0
\(787\) 33.3195i 1.18771i 0.804571 + 0.593856i \(0.202395\pi\)
−0.804571 + 0.593856i \(0.797605\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −24.2200 −0.861165
\(792\) 0 0
\(793\) 15.2215i 0.540530i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 14.3933i 0.509838i 0.966962 + 0.254919i \(0.0820489\pi\)
−0.966962 + 0.254919i \(0.917951\pi\)
\(798\) 0 0
\(799\) −5.69508 −0.201477
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.97893i 0.316860i
\(804\) 0 0
\(805\) −11.6643 + 16.6717i −0.411113 + 0.587602i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.3154 −0.468144 −0.234072 0.972219i \(-0.575205\pi\)
−0.234072 + 0.972219i \(0.575205\pi\)
\(810\) 0 0
\(811\) 15.3146 0.537768 0.268884 0.963173i \(-0.413345\pi\)
0.268884 + 0.963173i \(0.413345\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.83763 6.18321i −0.309569 0.216588i
\(816\) 0 0
\(817\) 41.3645i 1.44716i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.7787 −0.376178 −0.188089 0.982152i \(-0.560229\pi\)
−0.188089 + 0.982152i \(0.560229\pi\)
\(822\) 0 0
\(823\) 1.69415i 0.0590543i 0.999564 + 0.0295272i \(0.00940015\pi\)
−0.999564 + 0.0295272i \(0.990600\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.5587i 0.541028i −0.962716 0.270514i \(-0.912806\pi\)
0.962716 0.270514i \(-0.0871936\pi\)
\(828\) 0 0
\(829\) −1.38248 −0.0480156 −0.0240078 0.999712i \(-0.507643\pi\)
−0.0240078 + 0.999712i \(0.507643\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.8745i 0.411425i
\(834\) 0 0
\(835\) −31.3017 21.9001i −1.08324 0.757886i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −40.6978 −1.40505 −0.702523 0.711661i \(-0.747943\pi\)
−0.702523 + 0.711661i \(0.747943\pi\)
\(840\) 0 0
\(841\) −13.2230 −0.455965
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −13.5438 + 19.3581i −0.465921 + 0.665938i
\(846\) 0 0
\(847\) 34.1291i 1.17269i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.1990 −0.623853
\(852\) 0 0
\(853\) 6.02103i 0.206156i 0.994673 + 0.103078i \(0.0328692\pi\)
−0.994673 + 0.103078i \(0.967131\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.7290i 1.66455i 0.554362 + 0.832276i \(0.312962\pi\)
−0.554362 + 0.832276i \(0.687038\pi\)
\(858\) 0 0
\(859\) 25.4542 0.868486 0.434243 0.900796i \(-0.357016\pi\)
0.434243 + 0.900796i \(0.357016\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.1384i 0.855722i −0.903845 0.427861i \(-0.859267\pi\)
0.903845 0.427861i \(-0.140733\pi\)
\(864\) 0 0
\(865\) 5.27934 + 3.69367i 0.179503 + 0.125588i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.88804 −0.131893
\(870\) 0 0
\(871\) 3.13139 0.106103
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.84113 36.8943i 0.332691 1.24726i
\(876\) 0 0
\(877\) 30.8057i 1.04023i −0.854095 0.520117i \(-0.825888\pi\)
0.854095 0.520117i \(-0.174112\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.8377 0.702040 0.351020 0.936368i \(-0.385835\pi\)
0.351020 + 0.936368i \(0.385835\pi\)
\(882\) 0 0
\(883\) 53.2876i 1.79327i 0.442769 + 0.896636i \(0.353996\pi\)
−0.442769 + 0.896636i \(0.646004\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.8335i 1.43821i −0.694903 0.719104i \(-0.744553\pi\)
0.694903 0.719104i \(-0.255447\pi\)
\(888\) 0 0
\(889\) 56.4510 1.89331
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1692i 0.340298i
\(894\) 0 0
\(895\) −21.1877 + 30.2835i −0.708228 + 1.01227i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.44280 0.148176
\(900\) 0 0
\(901\) −2.24407 −0.0747608
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.2019 17.4401i 0.405606 0.579730i
\(906\) 0 0
\(907\) 11.0825i 0.367989i −0.982927 0.183994i \(-0.941097\pi\)
0.982927 0.183994i \(-0.0589028\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −37.7383 −1.25033 −0.625163 0.780494i \(-0.714968\pi\)
−0.625163 + 0.780494i \(0.714968\pi\)
\(912\) 0 0
\(913\) 17.4813i 0.578548i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 72.9251i 2.40820i
\(918\) 0 0
\(919\) 43.4132 1.43207 0.716035 0.698064i \(-0.245955\pi\)
0.716035 + 0.698064i \(0.245955\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.222997i 0.00734004i
\(924\) 0 0
\(925\) 32.0846 11.7052i 1.05493 0.384865i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −50.6729 −1.66252 −0.831262 0.555881i \(-0.812381\pi\)
−0.831262 + 0.555881i \(0.812381\pi\)
\(930\) 0 0
\(931\) −21.2031 −0.694904
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.68068 3.27482i −0.153075 0.107098i
\(936\) 0 0
\(937\) 30.7138i 1.00338i 0.865049 + 0.501688i \(0.167287\pi\)
−0.865049 + 0.501688i \(0.832713\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −43.5474 −1.41961 −0.709803 0.704401i \(-0.751216\pi\)
−0.709803 + 0.704401i \(0.751216\pi\)
\(942\) 0 0
\(943\) 15.9301i 0.518756i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.2370i 0.755102i −0.925989 0.377551i \(-0.876766\pi\)
0.925989 0.377551i \(-0.123234\pi\)
\(948\) 0 0
\(949\) 13.9602 0.453168
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52.5894i 1.70354i 0.523917 + 0.851769i \(0.324470\pi\)
−0.523917 + 0.851769i \(0.675530\pi\)
\(954\) 0 0
\(955\) −23.3287 + 33.3435i −0.754897 + 1.07897i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.7971 0.380950
\(960\) 0 0
\(961\) −29.7489 −0.959642
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26.3445 18.4318i −0.848058 0.593341i
\(966\) 0 0
\(967\) 5.68418i 0.182791i −0.995815 0.0913955i \(-0.970867\pi\)
0.995815 0.0913955i \(-0.0291327\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.38431 −0.0444245 −0.0222123 0.999753i \(-0.507071\pi\)
−0.0222123 + 0.999753i \(0.507071\pi\)
\(972\) 0 0
\(973\) 77.3817i 2.48074i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.76296i 0.0564019i −0.999602 0.0282010i \(-0.991022\pi\)
0.999602 0.0282010i \(-0.00897784\pi\)
\(978\) 0 0
\(979\) 14.8686 0.475203
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43.9930i 1.40316i −0.712592 0.701579i \(-0.752479\pi\)
0.712592 0.701579i \(-0.247521\pi\)
\(984\) 0 0
\(985\) 26.4696 + 18.5193i 0.843391 + 0.590075i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.2440 0.770914
\(990\) 0 0
\(991\) −9.35557 −0.297189 −0.148595 0.988898i \(-0.547475\pi\)
−0.148595 + 0.988898i \(0.547475\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.15846 + 5.94366i −0.131832 + 0.188427i
\(996\) 0 0
\(997\) 18.6278i 0.589947i 0.955505 + 0.294974i \(0.0953108\pi\)
−0.955505 + 0.294974i \(0.904689\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.f.k.1729.4 yes 12
3.2 odd 2 inner 4320.2.f.k.1729.9 yes 12
4.3 odd 2 4320.2.f.h.1729.4 yes 12
5.4 even 2 inner 4320.2.f.k.1729.3 yes 12
12.11 even 2 4320.2.f.h.1729.9 yes 12
15.14 odd 2 inner 4320.2.f.k.1729.10 yes 12
20.19 odd 2 4320.2.f.h.1729.3 12
60.59 even 2 4320.2.f.h.1729.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4320.2.f.h.1729.3 12 20.19 odd 2
4320.2.f.h.1729.4 yes 12 4.3 odd 2
4320.2.f.h.1729.9 yes 12 12.11 even 2
4320.2.f.h.1729.10 yes 12 60.59 even 2
4320.2.f.k.1729.3 yes 12 5.4 even 2 inner
4320.2.f.k.1729.4 yes 12 1.1 even 1 trivial
4320.2.f.k.1729.9 yes 12 3.2 odd 2 inner
4320.2.f.k.1729.10 yes 12 15.14 odd 2 inner