Properties

Label 4320.2.b.a
Level $4320$
Weight $2$
Character orbit 4320.b
Analytic conductor $34.495$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4320,2,Mod(431,4320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4320.431"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} - 6 x^{12} + 8 x^{11} - 20 x^{9} + 44 x^{8} - 40 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + \beta_1 q^{7} + \beta_{8} q^{11} - \beta_{13} q^{13} + \beta_{2} q^{17} - \beta_{6} q^{19} - \beta_{11} q^{23} + q^{25} + ( - \beta_{14} + \beta_{6}) q^{29} + ( - \beta_{15} - \beta_{7}) q^{31}+ \cdots + (\beta_{14} - \beta_{12} - \beta_{11} + \cdots + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 4 q^{19} - 4 q^{23} + 16 q^{25} + 16 q^{47} - 32 q^{49} - 16 q^{53} - 32 q^{67} + 48 q^{71} - 16 q^{73} + 24 q^{91} + 4 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} - 6 x^{12} + 8 x^{11} - 20 x^{9} + 44 x^{8} - 40 x^{7} + \cdots + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - \nu^{15} + 6 \nu^{14} + 3 \nu^{13} - 14 \nu^{12} + 34 \nu^{11} - 32 \nu^{10} - 96 \nu^{9} + \cdots + 384 ) / 896 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - \nu^{15} + 13 \nu^{14} - 11 \nu^{13} - 7 \nu^{12} + 20 \nu^{11} - 74 \nu^{10} + 44 \nu^{9} + \cdots - 960 ) / 448 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - \nu^{15} + 13 \nu^{14} + 3 \nu^{13} - 7 \nu^{12} + 34 \nu^{11} + 38 \nu^{10} - 40 \nu^{9} + \cdots + 1728 ) / 448 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{14} - 3 \nu^{13} + 5 \nu^{12} - 3 \nu^{11} - 2 \nu^{10} + 10 \nu^{9} - 16 \nu^{8} + 4 \nu^{7} + \cdots - 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{15} + 2 \nu^{14} - 5 \nu^{13} + 6 \nu^{12} - 6 \nu^{11} - 16 \nu^{10} + 16 \nu^{9} + \cdots - 64 \nu ) / 128 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{15} - 2 \nu^{14} + 7 \nu^{13} - 6 \nu^{12} + 6 \nu^{11} - 24 \nu^{9} + 36 \nu^{8} - 12 \nu^{7} + \cdots + 256 ) / 128 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 9 \nu^{15} - 12 \nu^{14} + \nu^{13} - 54 \nu^{11} + 92 \nu^{10} - 88 \nu^{9} - 52 \nu^{8} + 212 \nu^{7} + \cdots - 768 ) / 896 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 9 \nu^{15} + 2 \nu^{14} + \nu^{13} + 14 \nu^{12} - 54 \nu^{11} + 8 \nu^{10} + 24 \nu^{9} - 52 \nu^{8} + \cdots + 128 ) / 896 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 13 \nu^{15} + 36 \nu^{14} - 17 \nu^{13} - 56 \nu^{12} + 162 \nu^{11} - 220 \nu^{10} + 320 \nu^{9} + \cdots + 512 ) / 896 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - \nu^{15} + 2 \nu^{14} - \nu^{13} - 2 \nu^{12} + 6 \nu^{11} - 8 \nu^{10} + 20 \nu^{8} - 44 \nu^{7} + \cdots + 256 ) / 64 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - \nu^{15} + \nu^{13} - 4 \nu^{12} + 4 \nu^{10} - 4 \nu^{9} + 4 \nu^{8} - 4 \nu^{7} + 8 \nu^{6} + \cdots + 64 ) / 64 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - \nu^{15} - 2 \nu^{14} + \nu^{13} - 6 \nu^{12} + 8 \nu^{11} - 12 \nu^{9} + 20 \nu^{8} - 28 \nu^{7} + \cdots + 192 ) / 64 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 23 \nu^{15} + 26 \nu^{14} - 15 \nu^{13} - 42 \nu^{12} + 138 \nu^{11} - 120 \nu^{10} - 24 \nu^{9} + \cdots + 3456 ) / 896 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - \nu^{15} + 2 \nu^{14} - 2 \nu^{13} + 2 \nu^{12} + \nu^{11} - 4 \nu^{10} + 2 \nu^{9} + 4 \nu^{8} + \cdots + 96 ) / 32 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 27 \nu^{15} - 22 \nu^{14} - 25 \nu^{13} + 70 \nu^{12} - 78 \nu^{11} + 24 \nu^{10} + 128 \nu^{9} + \cdots - 4992 ) / 896 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{13} + \beta_{10} - \beta_{8} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{4} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{15} + \beta_{11} + \beta_{10} + \beta_{9} + \beta_{8} + 2\beta_{7} + 2\beta_{6} + \beta_{4} - \beta_{2} + \beta _1 - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -\beta_{13} + \beta_{12} + \beta_{7} + 2\beta_{6} + \beta_{4} + \beta_{3} + 2\beta_{2} - 2\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - \beta_{15} + 2 \beta_{14} - 4 \beta_{13} + 2 \beta_{12} - \beta_{11} - \beta_{10} + \beta_{9} + \cdots - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 2 \beta_{15} + \beta_{13} + \beta_{12} + 2 \beta_{11} - 2 \beta_{9} + 4 \beta_{8} - 7 \beta_{7} + \cdots - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( \beta_{15} - 2 \beta_{13} + 3 \beta_{11} - 5 \beta_{10} + \beta_{9} - 3 \beta_{8} - 4 \beta_{7} + \cdots + 14 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 2 \beta_{15} - 4 \beta_{14} - 3 \beta_{13} + \beta_{12} - 2 \beta_{11} + 4 \beta_{10} - 2 \beta_{9} + \cdots - 22 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( \beta_{15} + 4 \beta_{14} + 2 \beta_{13} - \beta_{11} - 13 \beta_{10} + 5 \beta_{9} + 5 \beta_{8} + \cdots + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 2 \beta_{15} - 8 \beta_{14} + 9 \beta_{13} - 3 \beta_{12} + 10 \beta_{11} + 2 \beta_{9} + 9 \beta_{7} + \cdots - 38 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( \beta_{15} - 4 \beta_{14} + 14 \beta_{13} + 4 \beta_{12} - 17 \beta_{11} - 21 \beta_{10} - 3 \beta_{9} + \cdots + 30 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 14 \beta_{15} - 8 \beta_{14} - 7 \beta_{13} - 3 \beta_{12} - 26 \beta_{11} + 4 \beta_{10} - 10 \beta_{9} + \cdots - 78 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 15 \beta_{15} - 28 \beta_{14} + 18 \beta_{13} - 40 \beta_{12} + 7 \beta_{11} - 5 \beta_{10} + \cdots - 42 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 50 \beta_{15} - 8 \beta_{14} + \beta_{13} - 67 \beta_{12} + 10 \beta_{11} - 8 \beta_{10} + 18 \beta_{9} + \cdots - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 7 \beta_{15} - 76 \beta_{14} + 78 \beta_{13} - 44 \beta_{12} - 113 \beta_{11} + 59 \beta_{10} + \cdots + 78 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
431.1
−0.0685300 + 1.41255i
0.963606 + 1.03512i
0.527497 1.31215i
−1.34868 0.425523i
−1.31385 0.523269i
−0.427379 1.34809i
1.29231 0.574397i
1.37502 0.330644i
1.37502 + 0.330644i
1.29231 + 0.574397i
−0.427379 + 1.34809i
−1.31385 + 0.523269i
−1.34868 + 0.425523i
0.527497 + 1.31215i
0.963606 1.03512i
−0.0685300 1.41255i
0 0 0 −1.00000 0 5.03977i 0 0 0
431.2 0 0 0 −1.00000 0 4.74492i 0 0 0
431.3 0 0 0 −1.00000 0 2.90264i 0 0 0
431.4 0 0 0 −1.00000 0 2.46349i 0 0 0
431.5 0 0 0 −1.00000 0 2.25998i 0 0 0
431.6 0 0 0 −1.00000 0 1.58153i 0 0 0
431.7 0 0 0 −1.00000 0 1.39827i 0 0 0
431.8 0 0 0 −1.00000 0 0.168502i 0 0 0
431.9 0 0 0 −1.00000 0 0.168502i 0 0 0
431.10 0 0 0 −1.00000 0 1.39827i 0 0 0
431.11 0 0 0 −1.00000 0 1.58153i 0 0 0
431.12 0 0 0 −1.00000 0 2.25998i 0 0 0
431.13 0 0 0 −1.00000 0 2.46349i 0 0 0
431.14 0 0 0 −1.00000 0 2.90264i 0 0 0
431.15 0 0 0 −1.00000 0 4.74492i 0 0 0
431.16 0 0 0 −1.00000 0 5.03977i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 431.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4320.2.b.a 16
3.b odd 2 1 4320.2.b.c 16
4.b odd 2 1 1080.2.b.b 16
8.b even 2 1 1080.2.b.c yes 16
8.d odd 2 1 4320.2.b.c 16
12.b even 2 1 1080.2.b.c yes 16
24.f even 2 1 inner 4320.2.b.a 16
24.h odd 2 1 1080.2.b.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.b.b 16 4.b odd 2 1
1080.2.b.b 16 24.h odd 2 1
1080.2.b.c yes 16 8.b even 2 1
1080.2.b.c yes 16 12.b even 2 1
4320.2.b.a 16 1.a even 1 1 trivial
4320.2.b.a 16 24.f even 2 1 inner
4320.2.b.c 16 3.b odd 2 1
4320.2.b.c 16 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4320, [\chi])\):

\( T_{7}^{16} + 72 T_{7}^{14} + 1944 T_{7}^{12} + 25144 T_{7}^{10} + 170640 T_{7}^{8} + 614304 T_{7}^{6} + \cdots + 20736 \) Copy content Toggle raw display
\( T_{23}^{8} + 2T_{23}^{7} - 90T_{23}^{6} - 78T_{23}^{5} + 1544T_{23}^{4} + 1126T_{23}^{3} - 7622T_{23}^{2} - 3642T_{23} + 10551 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T + 1)^{16} \) Copy content Toggle raw display
$7$ \( T^{16} + 72 T^{14} + \cdots + 20736 \) Copy content Toggle raw display
$11$ \( T^{16} + 96 T^{14} + \cdots + 135424 \) Copy content Toggle raw display
$13$ \( T^{16} + 104 T^{14} + \cdots + 2304 \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 121506529 \) Copy content Toggle raw display
$19$ \( (T^{8} + 2 T^{7} + \cdots + 1231)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 2 T^{7} + \cdots + 10551)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} - 128 T^{6} + \cdots - 75408)^{2} \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 1270851201 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 7398752256 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 62148495616 \) Copy content Toggle raw display
$43$ \( (T^{8} - 216 T^{6} + \cdots + 4117456)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} - 8 T^{7} + \cdots + 106752)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 8 T^{7} + \cdots + 3362241)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + 440 T^{14} + \cdots + 9339136 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 17225775009 \) Copy content Toggle raw display
$67$ \( (T^{8} + 16 T^{7} + \cdots - 118784)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} - 24 T^{7} + \cdots + 2680272)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 8 T^{7} + \cdots - 36272)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 19\!\cdots\!29 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 18891677809 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 51758070016 \) Copy content Toggle raw display
$97$ \( (T^{8} - 8 T^{7} + \cdots + 8676352)^{2} \) Copy content Toggle raw display
show more
show less