Properties

Label 432.4.c.g.431.2
Level $432$
Weight $4$
Character 432.431
Analytic conductor $25.489$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,4,Mod(431,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.431"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 432.431
Dual form 432.4.c.g.431.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.0000i q^{5} +5.19615i q^{7} -62.3538 q^{11} +7.00000 q^{13} +84.0000i q^{17} +67.5500i q^{19} +62.3538 q^{23} -19.0000 q^{25} -168.000i q^{29} +259.808i q^{31} +62.3538 q^{35} -97.0000 q^{37} -72.0000i q^{41} +363.731i q^{43} +436.477 q^{47} +316.000 q^{49} +504.000i q^{53} +748.246i q^{55} -436.477 q^{59} -133.000 q^{61} -84.0000i q^{65} +545.596i q^{67} -498.831 q^{71} -497.000 q^{73} -324.000i q^{77} +1127.57i q^{79} -872.954 q^{83} +1008.00 q^{85} -1164.00i q^{89} +36.3731i q^{91} +810.600 q^{95} -749.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 28 q^{13} - 76 q^{25} - 388 q^{37} + 1264 q^{49} - 532 q^{61} - 1988 q^{73} + 4032 q^{85} - 2996 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 12.0000i − 1.07331i −0.843801 0.536656i \(-0.819687\pi\)
0.843801 0.536656i \(-0.180313\pi\)
\(6\) 0 0
\(7\) 5.19615i 0.280566i 0.990111 + 0.140283i \(0.0448012\pi\)
−0.990111 + 0.140283i \(0.955199\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −62.3538 −1.70913 −0.854563 0.519348i \(-0.826175\pi\)
−0.854563 + 0.519348i \(0.826175\pi\)
\(12\) 0 0
\(13\) 7.00000 0.149342 0.0746712 0.997208i \(-0.476209\pi\)
0.0746712 + 0.997208i \(0.476209\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 84.0000i 1.19841i 0.800595 + 0.599206i \(0.204517\pi\)
−0.800595 + 0.599206i \(0.795483\pi\)
\(18\) 0 0
\(19\) 67.5500i 0.815633i 0.913064 + 0.407817i \(0.133710\pi\)
−0.913064 + 0.407817i \(0.866290\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 62.3538 0.565290 0.282645 0.959225i \(-0.408788\pi\)
0.282645 + 0.959225i \(0.408788\pi\)
\(24\) 0 0
\(25\) −19.0000 −0.152000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 168.000i − 1.07575i −0.843024 0.537876i \(-0.819227\pi\)
0.843024 0.537876i \(-0.180773\pi\)
\(30\) 0 0
\(31\) 259.808i 1.50525i 0.658448 + 0.752626i \(0.271213\pi\)
−0.658448 + 0.752626i \(0.728787\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 62.3538 0.301135
\(36\) 0 0
\(37\) −97.0000 −0.430992 −0.215496 0.976505i \(-0.569137\pi\)
−0.215496 + 0.976505i \(0.569137\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 72.0000i − 0.274256i −0.990553 0.137128i \(-0.956213\pi\)
0.990553 0.137128i \(-0.0437872\pi\)
\(42\) 0 0
\(43\) 363.731i 1.28996i 0.764198 + 0.644981i \(0.223135\pi\)
−0.764198 + 0.644981i \(0.776865\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 436.477 1.35461 0.677305 0.735702i \(-0.263148\pi\)
0.677305 + 0.735702i \(0.263148\pi\)
\(48\) 0 0
\(49\) 316.000 0.921283
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 504.000i 1.30622i 0.757263 + 0.653111i \(0.226536\pi\)
−0.757263 + 0.653111i \(0.773464\pi\)
\(54\) 0 0
\(55\) 748.246i 1.83443i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −436.477 −0.963126 −0.481563 0.876411i \(-0.659931\pi\)
−0.481563 + 0.876411i \(0.659931\pi\)
\(60\) 0 0
\(61\) −133.000 −0.279162 −0.139581 0.990211i \(-0.544576\pi\)
−0.139581 + 0.990211i \(0.544576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 84.0000i − 0.160291i
\(66\) 0 0
\(67\) 545.596i 0.994853i 0.867506 + 0.497427i \(0.165722\pi\)
−0.867506 + 0.497427i \(0.834278\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −498.831 −0.833807 −0.416904 0.908951i \(-0.636885\pi\)
−0.416904 + 0.908951i \(0.636885\pi\)
\(72\) 0 0
\(73\) −497.000 −0.796842 −0.398421 0.917203i \(-0.630442\pi\)
−0.398421 + 0.917203i \(0.630442\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 324.000i − 0.479522i
\(78\) 0 0
\(79\) 1127.57i 1.60584i 0.596090 + 0.802918i \(0.296720\pi\)
−0.596090 + 0.802918i \(0.703280\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −872.954 −1.15445 −0.577224 0.816586i \(-0.695864\pi\)
−0.577224 + 0.816586i \(0.695864\pi\)
\(84\) 0 0
\(85\) 1008.00 1.28627
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 1164.00i − 1.38633i −0.720777 0.693167i \(-0.756215\pi\)
0.720777 0.693167i \(-0.243785\pi\)
\(90\) 0 0
\(91\) 36.3731i 0.0419004i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 810.600 0.875429
\(96\) 0 0
\(97\) −749.000 −0.784015 −0.392007 0.919962i \(-0.628219\pi\)
−0.392007 + 0.919962i \(0.628219\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1008.00i 0.993067i 0.868018 + 0.496533i \(0.165394\pi\)
−0.868018 + 0.496533i \(0.834606\pi\)
\(102\) 0 0
\(103\) 732.657i 0.700882i 0.936585 + 0.350441i \(0.113968\pi\)
−0.936585 + 0.350441i \(0.886032\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1309.43 1.18306 0.591530 0.806283i \(-0.298524\pi\)
0.591530 + 0.806283i \(0.298524\pi\)
\(108\) 0 0
\(109\) −1226.00 −1.07733 −0.538667 0.842518i \(-0.681072\pi\)
−0.538667 + 0.842518i \(0.681072\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2100.00i 1.74824i 0.485708 + 0.874121i \(0.338562\pi\)
−0.485708 + 0.874121i \(0.661438\pi\)
\(114\) 0 0
\(115\) − 748.246i − 0.606733i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −436.477 −0.336233
\(120\) 0 0
\(121\) 2557.00 1.92111
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 1272.00i − 0.910169i
\(126\) 0 0
\(127\) 509.223i 0.355797i 0.984049 + 0.177899i \(0.0569299\pi\)
−0.984049 + 0.177899i \(0.943070\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 872.954 0.582216 0.291108 0.956690i \(-0.405976\pi\)
0.291108 + 0.956690i \(0.405976\pi\)
\(132\) 0 0
\(133\) −351.000 −0.228839
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 84.0000i − 0.0523840i −0.999657 0.0261920i \(-0.991662\pi\)
0.999657 0.0261920i \(-0.00833812\pi\)
\(138\) 0 0
\(139\) − 2301.90i − 1.40463i −0.711864 0.702317i \(-0.752149\pi\)
0.711864 0.702317i \(-0.247851\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −436.477 −0.255245
\(144\) 0 0
\(145\) −2016.00 −1.15462
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 2688.00i − 1.47792i −0.673751 0.738958i \(-0.735318\pi\)
0.673751 0.738958i \(-0.264682\pi\)
\(150\) 0 0
\(151\) − 763.834i − 0.411655i −0.978588 0.205828i \(-0.934011\pi\)
0.978588 0.205828i \(-0.0659886\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3117.69 1.61561
\(156\) 0 0
\(157\) 3206.00 1.62972 0.814862 0.579655i \(-0.196813\pi\)
0.814862 + 0.579655i \(0.196813\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 324.000i 0.158601i
\(162\) 0 0
\(163\) − 3673.68i − 1.76531i −0.470026 0.882653i \(-0.655755\pi\)
0.470026 0.882653i \(-0.344245\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3928.29 −1.82024 −0.910121 0.414343i \(-0.864011\pi\)
−0.910121 + 0.414343i \(0.864011\pi\)
\(168\) 0 0
\(169\) −2148.00 −0.977697
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1272.00i 0.559008i 0.960145 + 0.279504i \(0.0901700\pi\)
−0.960145 + 0.279504i \(0.909830\pi\)
\(174\) 0 0
\(175\) − 98.7269i − 0.0426460i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3491.81 −1.45805 −0.729024 0.684489i \(-0.760026\pi\)
−0.729024 + 0.684489i \(0.760026\pi\)
\(180\) 0 0
\(181\) −3269.00 −1.34245 −0.671223 0.741255i \(-0.734231\pi\)
−0.671223 + 0.741255i \(0.734231\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1164.00i 0.462589i
\(186\) 0 0
\(187\) − 5237.72i − 2.04824i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1683.55 −0.637789 −0.318894 0.947790i \(-0.603312\pi\)
−0.318894 + 0.947790i \(0.603312\pi\)
\(192\) 0 0
\(193\) 4583.00 1.70928 0.854641 0.519219i \(-0.173777\pi\)
0.854641 + 0.519219i \(0.173777\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4116.00i 1.48859i 0.667849 + 0.744297i \(0.267215\pi\)
−0.667849 + 0.744297i \(0.732785\pi\)
\(198\) 0 0
\(199\) − 223.435i − 0.0795922i −0.999208 0.0397961i \(-0.987329\pi\)
0.999208 0.0397961i \(-0.0126708\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 872.954 0.301819
\(204\) 0 0
\(205\) −864.000 −0.294363
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 4212.00i − 1.39402i
\(210\) 0 0
\(211\) − 4401.14i − 1.43596i −0.696065 0.717979i \(-0.745067\pi\)
0.696065 0.717979i \(-0.254933\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4364.77 1.38453
\(216\) 0 0
\(217\) −1350.00 −0.422322
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 588.000i 0.178974i
\(222\) 0 0
\(223\) 758.638i 0.227812i 0.993492 + 0.113906i \(0.0363363\pi\)
−0.993492 + 0.113906i \(0.963664\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1745.91 −0.510484 −0.255242 0.966877i \(-0.582155\pi\)
−0.255242 + 0.966877i \(0.582155\pi\)
\(228\) 0 0
\(229\) 3598.00 1.03826 0.519132 0.854694i \(-0.326255\pi\)
0.519132 + 0.854694i \(0.326255\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 1344.00i − 0.377890i −0.981988 0.188945i \(-0.939493\pi\)
0.981988 0.188945i \(-0.0605068\pi\)
\(234\) 0 0
\(235\) − 5237.72i − 1.45392i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5237.72 1.41757 0.708787 0.705423i \(-0.249243\pi\)
0.708787 + 0.705423i \(0.249243\pi\)
\(240\) 0 0
\(241\) −2513.00 −0.671687 −0.335843 0.941918i \(-0.609021\pi\)
−0.335843 + 0.941918i \(0.609021\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 3792.00i − 0.988824i
\(246\) 0 0
\(247\) 472.850i 0.121809i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 872.954 0.219523 0.109762 0.993958i \(-0.464991\pi\)
0.109762 + 0.993958i \(0.464991\pi\)
\(252\) 0 0
\(253\) −3888.00 −0.966152
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3288.00i − 0.798054i −0.916939 0.399027i \(-0.869348\pi\)
0.916939 0.399027i \(-0.130652\pi\)
\(258\) 0 0
\(259\) − 504.027i − 0.120922i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1247.08 −0.292388 −0.146194 0.989256i \(-0.546702\pi\)
−0.146194 + 0.989256i \(0.546702\pi\)
\(264\) 0 0
\(265\) 6048.00 1.40198
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4884.00i 1.10700i 0.832850 + 0.553500i \(0.186708\pi\)
−0.832850 + 0.553500i \(0.813292\pi\)
\(270\) 0 0
\(271\) 4099.76i 0.918978i 0.888184 + 0.459489i \(0.151967\pi\)
−0.888184 + 0.459489i \(0.848033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1184.72 0.259787
\(276\) 0 0
\(277\) 1870.00 0.405622 0.202811 0.979218i \(-0.434992\pi\)
0.202811 + 0.979218i \(0.434992\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7896.00i 1.67628i 0.545452 + 0.838142i \(0.316358\pi\)
−0.545452 + 0.838142i \(0.683642\pi\)
\(282\) 0 0
\(283\) − 3626.91i − 0.761829i −0.924610 0.380915i \(-0.875609\pi\)
0.924610 0.380915i \(-0.124391\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 374.123 0.0769470
\(288\) 0 0
\(289\) −2143.00 −0.436190
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 588.000i − 0.117240i −0.998280 0.0586200i \(-0.981330\pi\)
0.998280 0.0586200i \(-0.0186700\pi\)
\(294\) 0 0
\(295\) 5237.72i 1.03374i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 436.477 0.0844218
\(300\) 0 0
\(301\) −1890.00 −0.361920
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1596.00i 0.299629i
\(306\) 0 0
\(307\) 2650.04i 0.492657i 0.969186 + 0.246328i \(0.0792242\pi\)
−0.969186 + 0.246328i \(0.920776\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4801.24 −0.875414 −0.437707 0.899118i \(-0.644209\pi\)
−0.437707 + 0.899118i \(0.644209\pi\)
\(312\) 0 0
\(313\) −6181.00 −1.11620 −0.558100 0.829774i \(-0.688470\pi\)
−0.558100 + 0.829774i \(0.688470\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2856.00i − 0.506022i −0.967463 0.253011i \(-0.918579\pi\)
0.967463 0.253011i \(-0.0814209\pi\)
\(318\) 0 0
\(319\) 10475.4i 1.83860i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5674.20 −0.977464
\(324\) 0 0
\(325\) −133.000 −0.0227000
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2268.00i 0.380057i
\(330\) 0 0
\(331\) − 1345.80i − 0.223481i −0.993737 0.111740i \(-0.964358\pi\)
0.993737 0.111740i \(-0.0356425\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6547.15 1.06779
\(336\) 0 0
\(337\) 3499.00 0.565587 0.282793 0.959181i \(-0.408739\pi\)
0.282793 + 0.959181i \(0.408739\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 16200.0i − 2.57267i
\(342\) 0 0
\(343\) 3424.26i 0.539046i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11722.5 −1.81354 −0.906769 0.421627i \(-0.861459\pi\)
−0.906769 + 0.421627i \(0.861459\pi\)
\(348\) 0 0
\(349\) 7175.00 1.10048 0.550242 0.835005i \(-0.314535\pi\)
0.550242 + 0.835005i \(0.314535\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 1584.00i − 0.238832i −0.992844 0.119416i \(-0.961898\pi\)
0.992844 0.119416i \(-0.0381023\pi\)
\(354\) 0 0
\(355\) 5985.97i 0.894936i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4801.24 −0.705850 −0.352925 0.935652i \(-0.614813\pi\)
−0.352925 + 0.935652i \(0.614813\pi\)
\(360\) 0 0
\(361\) 2296.00 0.334743
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5964.00i 0.855260i
\(366\) 0 0
\(367\) 10834.0i 1.54095i 0.637470 + 0.770476i \(0.279981\pi\)
−0.637470 + 0.770476i \(0.720019\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2618.86 −0.366481
\(372\) 0 0
\(373\) −4201.00 −0.583162 −0.291581 0.956546i \(-0.594181\pi\)
−0.291581 + 0.956546i \(0.594181\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1176.00i − 0.160655i
\(378\) 0 0
\(379\) 5201.35i 0.704948i 0.935822 + 0.352474i \(0.114660\pi\)
−0.935822 + 0.352474i \(0.885340\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8729.54 1.16464 0.582322 0.812958i \(-0.302144\pi\)
0.582322 + 0.812958i \(0.302144\pi\)
\(384\) 0 0
\(385\) −3888.00 −0.514677
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14364.0i 1.87219i 0.351741 + 0.936097i \(0.385590\pi\)
−0.351741 + 0.936097i \(0.614410\pi\)
\(390\) 0 0
\(391\) 5237.72i 0.677450i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13530.8 1.72356
\(396\) 0 0
\(397\) 2198.00 0.277870 0.138935 0.990301i \(-0.455632\pi\)
0.138935 + 0.990301i \(0.455632\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 672.000i 0.0836860i 0.999124 + 0.0418430i \(0.0133229\pi\)
−0.999124 + 0.0418430i \(0.986677\pi\)
\(402\) 0 0
\(403\) 1818.65i 0.224798i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6048.32 0.736620
\(408\) 0 0
\(409\) −6041.00 −0.730338 −0.365169 0.930941i \(-0.618989\pi\)
−0.365169 + 0.930941i \(0.618989\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2268.00i − 0.270220i
\(414\) 0 0
\(415\) 10475.4i 1.23908i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10039.0 1.17049 0.585245 0.810856i \(-0.300998\pi\)
0.585245 + 0.810856i \(0.300998\pi\)
\(420\) 0 0
\(421\) 6343.00 0.734297 0.367148 0.930162i \(-0.380334\pi\)
0.367148 + 0.930162i \(0.380334\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1596.00i − 0.182159i
\(426\) 0 0
\(427\) − 691.088i − 0.0783234i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7794.23 −0.871078 −0.435539 0.900170i \(-0.643442\pi\)
−0.435539 + 0.900170i \(0.643442\pi\)
\(432\) 0 0
\(433\) 10514.0 1.16691 0.583453 0.812147i \(-0.301701\pi\)
0.583453 + 0.812147i \(0.301701\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4212.00i 0.461069i
\(438\) 0 0
\(439\) 1465.31i 0.159307i 0.996823 + 0.0796534i \(0.0253813\pi\)
−0.996823 + 0.0796534i \(0.974619\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8355.41 −0.896112 −0.448056 0.894005i \(-0.647884\pi\)
−0.448056 + 0.894005i \(0.647884\pi\)
\(444\) 0 0
\(445\) −13968.0 −1.48797
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3780.00i 0.397303i 0.980070 + 0.198652i \(0.0636563\pi\)
−0.980070 + 0.198652i \(0.936344\pi\)
\(450\) 0 0
\(451\) 4489.48i 0.468739i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 436.477 0.0449722
\(456\) 0 0
\(457\) −2486.00 −0.254464 −0.127232 0.991873i \(-0.540609\pi\)
−0.127232 + 0.991873i \(0.540609\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 10404.0i − 1.05111i −0.850759 0.525556i \(-0.823857\pi\)
0.850759 0.525556i \(-0.176143\pi\)
\(462\) 0 0
\(463\) − 909.327i − 0.0912743i −0.998958 0.0456371i \(-0.985468\pi\)
0.998958 0.0456371i \(-0.0145318\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11784.9 1.16775 0.583875 0.811844i \(-0.301536\pi\)
0.583875 + 0.811844i \(0.301536\pi\)
\(468\) 0 0
\(469\) −2835.00 −0.279122
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 22680.0i − 2.20471i
\(474\) 0 0
\(475\) − 1283.45i − 0.123976i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −18332.0 −1.74867 −0.874334 0.485325i \(-0.838701\pi\)
−0.874334 + 0.485325i \(0.838701\pi\)
\(480\) 0 0
\(481\) −679.000 −0.0643654
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8988.00i 0.841493i
\(486\) 0 0
\(487\) − 12257.7i − 1.14056i −0.821452 0.570278i \(-0.806836\pi\)
0.821452 0.570278i \(-0.193164\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6173.03 0.567383 0.283691 0.958916i \(-0.408441\pi\)
0.283691 + 0.958916i \(0.408441\pi\)
\(492\) 0 0
\(493\) 14112.0 1.28919
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2592.00i − 0.233938i
\(498\) 0 0
\(499\) 9384.25i 0.841877i 0.907089 + 0.420939i \(0.138299\pi\)
−0.907089 + 0.420939i \(0.861701\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1309.43 −0.116073 −0.0580364 0.998314i \(-0.518484\pi\)
−0.0580364 + 0.998314i \(0.518484\pi\)
\(504\) 0 0
\(505\) 12096.0 1.06587
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5292.00i 0.460833i 0.973092 + 0.230416i \(0.0740088\pi\)
−0.973092 + 0.230416i \(0.925991\pi\)
\(510\) 0 0
\(511\) − 2582.49i − 0.223567i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8791.89 0.752266
\(516\) 0 0
\(517\) −27216.0 −2.31520
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9900.00i 0.832489i 0.909253 + 0.416245i \(0.136654\pi\)
−0.909253 + 0.416245i \(0.863346\pi\)
\(522\) 0 0
\(523\) − 16289.9i − 1.36197i −0.732298 0.680984i \(-0.761552\pi\)
0.732298 0.680984i \(-0.238448\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21823.8 −1.80391
\(528\) 0 0
\(529\) −8279.00 −0.680447
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 504.000i − 0.0409581i
\(534\) 0 0
\(535\) − 15713.2i − 1.26979i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −19703.8 −1.57459
\(540\) 0 0
\(541\) 15919.0 1.26509 0.632543 0.774525i \(-0.282011\pi\)
0.632543 + 0.774525i \(0.282011\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14712.0i 1.15632i
\(546\) 0 0
\(547\) 3600.93i 0.281471i 0.990047 + 0.140736i \(0.0449468\pi\)
−0.990047 + 0.140736i \(0.955053\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11348.4 0.877419
\(552\) 0 0
\(553\) −5859.00 −0.450543
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2100.00i 0.159748i 0.996805 + 0.0798742i \(0.0254519\pi\)
−0.996805 + 0.0798742i \(0.974548\pi\)
\(558\) 0 0
\(559\) 2546.11i 0.192646i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9602.49 −0.718822 −0.359411 0.933179i \(-0.617022\pi\)
−0.359411 + 0.933179i \(0.617022\pi\)
\(564\) 0 0
\(565\) 25200.0 1.87641
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2604.00i 0.191855i 0.995388 + 0.0959274i \(0.0305817\pi\)
−0.995388 + 0.0959274i \(0.969418\pi\)
\(570\) 0 0
\(571\) − 20550.8i − 1.50617i −0.657923 0.753085i \(-0.728565\pi\)
0.657923 0.753085i \(-0.271435\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1184.72 −0.0859241
\(576\) 0 0
\(577\) 9947.00 0.717676 0.358838 0.933400i \(-0.383173\pi\)
0.358838 + 0.933400i \(0.383173\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 4536.00i − 0.323898i
\(582\) 0 0
\(583\) − 31426.3i − 2.23250i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14403.7 1.01279 0.506393 0.862303i \(-0.330978\pi\)
0.506393 + 0.862303i \(0.330978\pi\)
\(588\) 0 0
\(589\) −17550.0 −1.22773
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6792.00i 0.470344i 0.971954 + 0.235172i \(0.0755653\pi\)
−0.971954 + 0.235172i \(0.924435\pi\)
\(594\) 0 0
\(595\) 5237.72i 0.360883i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11847.2 0.808121 0.404061 0.914732i \(-0.367598\pi\)
0.404061 + 0.914732i \(0.367598\pi\)
\(600\) 0 0
\(601\) −10150.0 −0.688897 −0.344449 0.938805i \(-0.611934\pi\)
−0.344449 + 0.938805i \(0.611934\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 30684.0i − 2.06195i
\(606\) 0 0
\(607\) − 13338.5i − 0.891918i −0.895053 0.445959i \(-0.852863\pi\)
0.895053 0.445959i \(-0.147137\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3055.34 0.202301
\(612\) 0 0
\(613\) −2941.00 −0.193778 −0.0968890 0.995295i \(-0.530889\pi\)
−0.0968890 + 0.995295i \(0.530889\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 14700.0i − 0.959157i −0.877499 0.479578i \(-0.840790\pi\)
0.877499 0.479578i \(-0.159210\pi\)
\(618\) 0 0
\(619\) 2478.56i 0.160940i 0.996757 + 0.0804701i \(0.0256421\pi\)
−0.996757 + 0.0804701i \(0.974358\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6048.32 0.388958
\(624\) 0 0
\(625\) −17639.0 −1.12890
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 8148.00i − 0.516506i
\(630\) 0 0
\(631\) − 30153.3i − 1.90235i −0.308652 0.951175i \(-0.599878\pi\)
0.308652 0.951175i \(-0.400122\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6110.68 0.381881
\(636\) 0 0
\(637\) 2212.00 0.137587
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8736.00i 0.538301i 0.963098 + 0.269151i \(0.0867430\pi\)
−0.963098 + 0.269151i \(0.913257\pi\)
\(642\) 0 0
\(643\) 2650.04i 0.162531i 0.996692 + 0.0812654i \(0.0258961\pi\)
−0.996692 + 0.0812654i \(0.974104\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 27061.6 1.64436 0.822179 0.569229i \(-0.192758\pi\)
0.822179 + 0.569229i \(0.192758\pi\)
\(648\) 0 0
\(649\) 27216.0 1.64610
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2520.00i 0.151019i 0.997145 + 0.0755094i \(0.0240583\pi\)
−0.997145 + 0.0755094i \(0.975942\pi\)
\(654\) 0 0
\(655\) − 10475.4i − 0.624900i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1371.78 −0.0810882 −0.0405441 0.999178i \(-0.512909\pi\)
−0.0405441 + 0.999178i \(0.512909\pi\)
\(660\) 0 0
\(661\) −17773.0 −1.04582 −0.522912 0.852387i \(-0.675154\pi\)
−0.522912 + 0.852387i \(0.675154\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4212.00i 0.245616i
\(666\) 0 0
\(667\) − 10475.4i − 0.608112i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8293.06 0.477124
\(672\) 0 0
\(673\) 3323.00 0.190330 0.0951651 0.995462i \(-0.469662\pi\)
0.0951651 + 0.995462i \(0.469662\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29052.0i 1.64927i 0.565662 + 0.824637i \(0.308621\pi\)
−0.565662 + 0.824637i \(0.691379\pi\)
\(678\) 0 0
\(679\) − 3891.92i − 0.219968i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14466.1 −0.810438 −0.405219 0.914220i \(-0.632805\pi\)
−0.405219 + 0.914220i \(0.632805\pi\)
\(684\) 0 0
\(685\) −1008.00 −0.0562244
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3528.00i 0.195074i
\(690\) 0 0
\(691\) 4063.39i 0.223703i 0.993725 + 0.111851i \(0.0356781\pi\)
−0.993725 + 0.111851i \(0.964322\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −27622.7 −1.50761
\(696\) 0 0
\(697\) 6048.00 0.328672
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 588.000i − 0.0316811i −0.999875 0.0158406i \(-0.994958\pi\)
0.999875 0.0158406i \(-0.00504242\pi\)
\(702\) 0 0
\(703\) − 6552.35i − 0.351531i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5237.72 −0.278621
\(708\) 0 0
\(709\) 29455.0 1.56023 0.780117 0.625634i \(-0.215160\pi\)
0.780117 + 0.625634i \(0.215160\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16200.0i 0.850904i
\(714\) 0 0
\(715\) 5237.72i 0.273958i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9602.49 0.498070 0.249035 0.968494i \(-0.419887\pi\)
0.249035 + 0.968494i \(0.419887\pi\)
\(720\) 0 0
\(721\) −3807.00 −0.196644
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3192.00i 0.163514i
\(726\) 0 0
\(727\) − 25471.5i − 1.29943i −0.760177 0.649716i \(-0.774888\pi\)
0.760177 0.649716i \(-0.225112\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −30553.4 −1.54591
\(732\) 0 0
\(733\) −30170.0 −1.52027 −0.760133 0.649768i \(-0.774866\pi\)
−0.760133 + 0.649768i \(0.774866\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 34020.0i − 1.70033i
\(738\) 0 0
\(739\) 31499.1i 1.56795i 0.620795 + 0.783973i \(0.286810\pi\)
−0.620795 + 0.783973i \(0.713190\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13904.9 0.686570 0.343285 0.939231i \(-0.388460\pi\)
0.343285 + 0.939231i \(0.388460\pi\)
\(744\) 0 0
\(745\) −32256.0 −1.58627
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6804.00i 0.331926i
\(750\) 0 0
\(751\) − 6147.05i − 0.298680i −0.988786 0.149340i \(-0.952285\pi\)
0.988786 0.149340i \(-0.0477150\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9166.01 −0.441835
\(756\) 0 0
\(757\) 13687.0 0.657150 0.328575 0.944478i \(-0.393432\pi\)
0.328575 + 0.944478i \(0.393432\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5460.00i 0.260085i 0.991508 + 0.130043i \(0.0415114\pi\)
−0.991508 + 0.130043i \(0.958489\pi\)
\(762\) 0 0
\(763\) − 6370.48i − 0.302263i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3055.34 −0.143836
\(768\) 0 0
\(769\) 20783.0 0.974583 0.487291 0.873239i \(-0.337985\pi\)
0.487291 + 0.873239i \(0.337985\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 10680.0i − 0.496938i −0.968640 0.248469i \(-0.920073\pi\)
0.968640 0.248469i \(-0.0799274\pi\)
\(774\) 0 0
\(775\) − 4936.34i − 0.228798i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4863.60 0.223693
\(780\) 0 0
\(781\) 31104.0 1.42508
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 38472.0i − 1.74920i
\(786\) 0 0
\(787\) 42509.7i 1.92542i 0.270530 + 0.962712i \(0.412801\pi\)
−0.270530 + 0.962712i \(0.587199\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −10911.9 −0.490497
\(792\) 0 0
\(793\) −931.000 −0.0416908
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22080.0i 0.981322i 0.871351 + 0.490661i \(0.163245\pi\)
−0.871351 + 0.490661i \(0.836755\pi\)
\(798\) 0 0
\(799\) 36664.1i 1.62338i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 30989.9 1.36190
\(804\) 0 0
\(805\) 3888.00 0.170229
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 37632.0i − 1.63544i −0.575616 0.817720i \(-0.695238\pi\)
0.575616 0.817720i \(-0.304762\pi\)
\(810\) 0 0
\(811\) 8843.85i 0.382922i 0.981500 + 0.191461i \(0.0613225\pi\)
−0.981500 + 0.191461i \(0.938677\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −44084.2 −1.89472
\(816\) 0 0
\(817\) −24570.0 −1.05214
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10500.0i 0.446349i 0.974779 + 0.223174i \(0.0716420\pi\)
−0.974779 + 0.223174i \(0.928358\pi\)
\(822\) 0 0
\(823\) − 42956.6i − 1.81941i −0.415257 0.909704i \(-0.636309\pi\)
0.415257 0.909704i \(-0.363691\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22634.4 −0.951725 −0.475863 0.879520i \(-0.657864\pi\)
−0.475863 + 0.879520i \(0.657864\pi\)
\(828\) 0 0
\(829\) −16877.0 −0.707072 −0.353536 0.935421i \(-0.615021\pi\)
−0.353536 + 0.935421i \(0.615021\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26544.0i 1.10408i
\(834\) 0 0
\(835\) 47139.5i 1.95369i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21823.8 0.898025 0.449012 0.893526i \(-0.351776\pi\)
0.449012 + 0.893526i \(0.351776\pi\)
\(840\) 0 0
\(841\) −3835.00 −0.157243
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25776.0i 1.04937i
\(846\) 0 0
\(847\) 13286.6i 0.538998i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6048.32 −0.243635
\(852\) 0 0
\(853\) −1897.00 −0.0761454 −0.0380727 0.999275i \(-0.512122\pi\)
−0.0380727 + 0.999275i \(0.512122\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21264.0i 0.847566i 0.905764 + 0.423783i \(0.139298\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(858\) 0 0
\(859\) 27565.6i 1.09491i 0.836836 + 0.547454i \(0.184403\pi\)
−0.836836 + 0.547454i \(0.815597\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26625.1 1.05021 0.525103 0.851038i \(-0.324027\pi\)
0.525103 + 0.851038i \(0.324027\pi\)
\(864\) 0 0
\(865\) 15264.0 0.599990
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 70308.0i − 2.74457i
\(870\) 0 0
\(871\) 3819.17i 0.148574i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6609.51 0.255362
\(876\) 0 0
\(877\) −2329.00 −0.0896747 −0.0448374 0.998994i \(-0.514277\pi\)
−0.0448374 + 0.998994i \(0.514277\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41004.0i 1.56806i 0.620724 + 0.784029i \(0.286839\pi\)
−0.620724 + 0.784029i \(0.713161\pi\)
\(882\) 0 0
\(883\) 25715.8i 0.980073i 0.871702 + 0.490036i \(0.163016\pi\)
−0.871702 + 0.490036i \(0.836984\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30553.4 1.15657 0.578287 0.815833i \(-0.303721\pi\)
0.578287 + 0.815833i \(0.303721\pi\)
\(888\) 0 0
\(889\) −2646.00 −0.0998245
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 29484.0i 1.10486i
\(894\) 0 0
\(895\) 41901.8i 1.56494i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 43647.7 1.61928
\(900\) 0 0
\(901\) −42336.0 −1.56539
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 39228.0i 1.44087i
\(906\) 0 0
\(907\) − 5856.06i − 0.214385i −0.994238 0.107193i \(-0.965814\pi\)
0.994238 0.107193i \(-0.0341862\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51504.3 1.87312 0.936560 0.350507i \(-0.113991\pi\)
0.936560 + 0.350507i \(0.113991\pi\)
\(912\) 0 0
\(913\) 54432.0 1.97310
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4536.00i 0.163350i
\(918\) 0 0
\(919\) 8947.77i 0.321175i 0.987022 + 0.160588i \(0.0513389\pi\)
−0.987022 + 0.160588i \(0.948661\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3491.81 −0.124523
\(924\) 0 0
\(925\) 1843.00 0.0655108
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 34944.0i − 1.23410i −0.786925 0.617048i \(-0.788328\pi\)
0.786925 0.617048i \(-0.211672\pi\)
\(930\) 0 0
\(931\) 21345.8i 0.751429i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −62852.7 −2.19840
\(936\) 0 0
\(937\) 875.000 0.0305069 0.0152535 0.999884i \(-0.495144\pi\)
0.0152535 + 0.999884i \(0.495144\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 45204.0i − 1.56600i −0.622020 0.783001i \(-0.713688\pi\)
0.622020 0.783001i \(-0.286312\pi\)
\(942\) 0 0
\(943\) − 4489.48i − 0.155034i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31364.0 −1.07623 −0.538116 0.842871i \(-0.680864\pi\)
−0.538116 + 0.842871i \(0.680864\pi\)
\(948\) 0 0
\(949\) −3479.00 −0.119002
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9492.00i 0.322640i 0.986902 + 0.161320i \(0.0515751\pi\)
−0.986902 + 0.161320i \(0.948425\pi\)
\(954\) 0 0
\(955\) 20202.6i 0.684547i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 436.477 0.0146972
\(960\) 0 0
\(961\) −37709.0 −1.26578
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 54996.0i − 1.83459i
\(966\) 0 0
\(967\) 2291.50i 0.0762045i 0.999274 + 0.0381023i \(0.0121313\pi\)
−0.999274 + 0.0381023i \(0.987869\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 40592.3 1.34158 0.670788 0.741649i \(-0.265956\pi\)
0.670788 + 0.741649i \(0.265956\pi\)
\(972\) 0 0
\(973\) 11961.0 0.394093
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 25704.0i − 0.841703i −0.907130 0.420851i \(-0.861731\pi\)
0.907130 0.420851i \(-0.138269\pi\)
\(978\) 0 0
\(979\) 72579.9i 2.36942i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −42338.2 −1.37373 −0.686867 0.726783i \(-0.741015\pi\)
−0.686867 + 0.726783i \(0.741015\pi\)
\(984\) 0 0
\(985\) 49392.0 1.59773
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22680.0i 0.729203i
\(990\) 0 0
\(991\) − 3382.70i − 0.108431i −0.998529 0.0542154i \(-0.982734\pi\)
0.998529 0.0542154i \(-0.0172658\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2681.21 −0.0854274
\(996\) 0 0
\(997\) 35966.0 1.14248 0.571241 0.820782i \(-0.306462\pi\)
0.571241 + 0.820782i \(0.306462\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.4.c.g.431.2 yes 4
3.2 odd 2 inner 432.4.c.g.431.4 yes 4
4.3 odd 2 inner 432.4.c.g.431.1 4
8.3 odd 2 1728.4.c.f.1727.3 4
8.5 even 2 1728.4.c.f.1727.4 4
12.11 even 2 inner 432.4.c.g.431.3 yes 4
24.5 odd 2 1728.4.c.f.1727.2 4
24.11 even 2 1728.4.c.f.1727.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.4.c.g.431.1 4 4.3 odd 2 inner
432.4.c.g.431.2 yes 4 1.1 even 1 trivial
432.4.c.g.431.3 yes 4 12.11 even 2 inner
432.4.c.g.431.4 yes 4 3.2 odd 2 inner
1728.4.c.f.1727.1 4 24.11 even 2
1728.4.c.f.1727.2 4 24.5 odd 2
1728.4.c.f.1727.3 4 8.3 odd 2
1728.4.c.f.1727.4 4 8.5 even 2