Properties

Label 432.4.c.a.431.2
Level $432$
Weight $4$
Character 432.431
Analytic conductor $25.489$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,4,Mod(431,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.431"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,-72,0,38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 431.2
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 432.431
Dual form 432.4.c.a.431.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.7846i q^{5} -29.4449i q^{7} -36.0000 q^{11} +19.0000 q^{13} +103.923i q^{17} -1.73205i q^{19} -108.000 q^{23} -307.000 q^{25} -207.846i q^{29} +93.5307i q^{31} +612.000 q^{35} -109.000 q^{37} -374.123i q^{41} -467.654i q^{43} -468.000 q^{47} -524.000 q^{49} +124.708i q^{53} -748.246i q^{55} +36.0000 q^{59} -145.000 q^{61} +394.908i q^{65} -313.501i q^{67} -576.000 q^{71} -809.000 q^{73} +1060.02i q^{77} +497.099i q^{79} +360.000 q^{83} -2160.00 q^{85} +270.200i q^{89} -559.452i q^{91} +36.0000 q^{95} +955.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 72 q^{11} + 38 q^{13} - 216 q^{23} - 614 q^{25} + 1224 q^{35} - 218 q^{37} - 936 q^{47} - 1048 q^{49} + 72 q^{59} - 290 q^{61} - 1152 q^{71} - 1618 q^{73} + 720 q^{83} - 4320 q^{85} + 72 q^{95} + 1910 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 20.7846i 1.85903i 0.368782 + 0.929516i \(0.379775\pi\)
−0.368782 + 0.929516i \(0.620225\pi\)
\(6\) 0 0
\(7\) − 29.4449i − 1.58987i −0.606693 0.794937i \(-0.707504\pi\)
0.606693 0.794937i \(-0.292496\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −36.0000 −0.986764 −0.493382 0.869813i \(-0.664240\pi\)
−0.493382 + 0.869813i \(0.664240\pi\)
\(12\) 0 0
\(13\) 19.0000 0.405358 0.202679 0.979245i \(-0.435035\pi\)
0.202679 + 0.979245i \(0.435035\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 103.923i 1.48265i 0.671146 + 0.741325i \(0.265802\pi\)
−0.671146 + 0.741325i \(0.734198\pi\)
\(18\) 0 0
\(19\) − 1.73205i − 0.0209137i −0.999945 0.0104568i \(-0.996671\pi\)
0.999945 0.0104568i \(-0.00332857\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −108.000 −0.979111 −0.489556 0.871972i \(-0.662841\pi\)
−0.489556 + 0.871972i \(0.662841\pi\)
\(24\) 0 0
\(25\) −307.000 −2.45600
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 207.846i − 1.33090i −0.746443 0.665449i \(-0.768240\pi\)
0.746443 0.665449i \(-0.231760\pi\)
\(30\) 0 0
\(31\) 93.5307i 0.541891i 0.962595 + 0.270945i \(0.0873363\pi\)
−0.962595 + 0.270945i \(0.912664\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 612.000 2.95563
\(36\) 0 0
\(37\) −109.000 −0.484311 −0.242155 0.970238i \(-0.577854\pi\)
−0.242155 + 0.970238i \(0.577854\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 374.123i − 1.42508i −0.701633 0.712539i \(-0.747545\pi\)
0.701633 0.712539i \(-0.252455\pi\)
\(42\) 0 0
\(43\) − 467.654i − 1.65852i −0.558860 0.829262i \(-0.688761\pi\)
0.558860 0.829262i \(-0.311239\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −468.000 −1.45244 −0.726221 0.687461i \(-0.758725\pi\)
−0.726221 + 0.687461i \(0.758725\pi\)
\(48\) 0 0
\(49\) −524.000 −1.52770
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 124.708i 0.323206i 0.986856 + 0.161603i \(0.0516664\pi\)
−0.986856 + 0.161603i \(0.948334\pi\)
\(54\) 0 0
\(55\) − 748.246i − 1.83443i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 36.0000 0.0794373 0.0397187 0.999211i \(-0.487354\pi\)
0.0397187 + 0.999211i \(0.487354\pi\)
\(60\) 0 0
\(61\) −145.000 −0.304350 −0.152175 0.988354i \(-0.548628\pi\)
−0.152175 + 0.988354i \(0.548628\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 394.908i 0.753573i
\(66\) 0 0
\(67\) − 313.501i − 0.571646i −0.958282 0.285823i \(-0.907733\pi\)
0.958282 0.285823i \(-0.0922669\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −576.000 −0.962798 −0.481399 0.876502i \(-0.659871\pi\)
−0.481399 + 0.876502i \(0.659871\pi\)
\(72\) 0 0
\(73\) −809.000 −1.29707 −0.648536 0.761184i \(-0.724618\pi\)
−0.648536 + 0.761184i \(0.724618\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1060.02i 1.56883i
\(78\) 0 0
\(79\) 497.099i 0.707949i 0.935255 + 0.353974i \(0.115170\pi\)
−0.935255 + 0.353974i \(0.884830\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 360.000 0.476086 0.238043 0.971255i \(-0.423494\pi\)
0.238043 + 0.971255i \(0.423494\pi\)
\(84\) 0 0
\(85\) −2160.00 −2.75629
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 270.200i 0.321811i 0.986970 + 0.160905i \(0.0514414\pi\)
−0.986970 + 0.160905i \(0.948559\pi\)
\(90\) 0 0
\(91\) − 559.452i − 0.644468i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 36.0000 0.0388792
\(96\) 0 0
\(97\) 955.000 0.999645 0.499822 0.866128i \(-0.333399\pi\)
0.499822 + 0.866128i \(0.333399\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 249.415i − 0.245720i −0.992424 0.122860i \(-0.960793\pi\)
0.992424 0.122860i \(-0.0392067\pi\)
\(102\) 0 0
\(103\) 1903.52i 1.82097i 0.413544 + 0.910484i \(0.364291\pi\)
−0.413544 + 0.910484i \(0.635709\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1548.00 −1.39861 −0.699303 0.714826i \(-0.746506\pi\)
−0.699303 + 0.714826i \(0.746506\pi\)
\(108\) 0 0
\(109\) 214.000 0.188050 0.0940251 0.995570i \(-0.470027\pi\)
0.0940251 + 0.995570i \(0.470027\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1392.57i − 1.15931i −0.814863 0.579654i \(-0.803188\pi\)
0.814863 0.579654i \(-0.196812\pi\)
\(114\) 0 0
\(115\) − 2244.74i − 1.82020i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3060.00 2.35722
\(120\) 0 0
\(121\) −35.0000 −0.0262960
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 3782.80i − 2.70675i
\(126\) 0 0
\(127\) − 2151.21i − 1.50306i −0.659698 0.751531i \(-0.729316\pi\)
0.659698 0.751531i \(-0.270684\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 792.000 0.528224 0.264112 0.964492i \(-0.414921\pi\)
0.264112 + 0.964492i \(0.414921\pi\)
\(132\) 0 0
\(133\) −51.0000 −0.0332501
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 394.908i 0.246272i 0.992390 + 0.123136i \(0.0392951\pi\)
−0.992390 + 0.123136i \(0.960705\pi\)
\(138\) 0 0
\(139\) 1716.46i 1.04740i 0.851903 + 0.523699i \(0.175448\pi\)
−0.851903 + 0.523699i \(0.824552\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −684.000 −0.399993
\(144\) 0 0
\(145\) 4320.00 2.47418
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2161.60i 1.18849i 0.804284 + 0.594245i \(0.202549\pi\)
−0.804284 + 0.594245i \(0.797451\pi\)
\(150\) 0 0
\(151\) 1432.41i 0.771971i 0.922505 + 0.385985i \(0.126138\pi\)
−0.922505 + 0.385985i \(0.873862\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1944.00 −1.00739
\(156\) 0 0
\(157\) 1766.00 0.897721 0.448860 0.893602i \(-0.351830\pi\)
0.448860 + 0.893602i \(0.351830\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3180.05i 1.55666i
\(162\) 0 0
\(163\) − 278.860i − 0.134000i −0.997753 0.0670000i \(-0.978657\pi\)
0.997753 0.0670000i \(-0.0213428\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2196.00 1.01755 0.508777 0.860898i \(-0.330098\pi\)
0.508777 + 0.860898i \(0.330098\pi\)
\(168\) 0 0
\(169\) −1836.00 −0.835685
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1787.48i 0.785545i 0.919636 + 0.392773i \(0.128484\pi\)
−0.919636 + 0.392773i \(0.871516\pi\)
\(174\) 0 0
\(175\) 9039.57i 3.90473i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1152.00 −0.481031 −0.240515 0.970645i \(-0.577316\pi\)
−0.240515 + 0.970645i \(0.577316\pi\)
\(180\) 0 0
\(181\) 2215.00 0.909611 0.454806 0.890591i \(-0.349709\pi\)
0.454806 + 0.890591i \(0.349709\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 2265.52i − 0.900349i
\(186\) 0 0
\(187\) − 3741.23i − 1.46303i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4572.00 −1.73203 −0.866017 0.500015i \(-0.833328\pi\)
−0.866017 + 0.500015i \(0.833328\pi\)
\(192\) 0 0
\(193\) −937.000 −0.349465 −0.174732 0.984616i \(-0.555906\pi\)
−0.174732 + 0.984616i \(0.555906\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1849.83i 0.669010i 0.942394 + 0.334505i \(0.108569\pi\)
−0.942394 + 0.334505i \(0.891431\pi\)
\(198\) 0 0
\(199\) 2527.06i 0.900194i 0.892980 + 0.450097i \(0.148611\pi\)
−0.892980 + 0.450097i \(0.851389\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6120.00 −2.11596
\(204\) 0 0
\(205\) 7776.00 2.64927
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 62.3538i 0.0206369i
\(210\) 0 0
\(211\) 2277.65i 0.743126i 0.928408 + 0.371563i \(0.121178\pi\)
−0.928408 + 0.371563i \(0.878822\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9720.00 3.08325
\(216\) 0 0
\(217\) 2754.00 0.861538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1974.54i 0.601004i
\(222\) 0 0
\(223\) 1590.02i 0.477470i 0.971085 + 0.238735i \(0.0767327\pi\)
−0.971085 + 0.238735i \(0.923267\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3312.00 0.968393 0.484196 0.874959i \(-0.339112\pi\)
0.484196 + 0.874959i \(0.339112\pi\)
\(228\) 0 0
\(229\) −1010.00 −0.291453 −0.145726 0.989325i \(-0.546552\pi\)
−0.145726 + 0.989325i \(0.546552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 831.384i 0.233759i 0.993146 + 0.116879i \(0.0372891\pi\)
−0.993146 + 0.116879i \(0.962711\pi\)
\(234\) 0 0
\(235\) − 9727.20i − 2.70014i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2736.00 −0.740490 −0.370245 0.928934i \(-0.620726\pi\)
−0.370245 + 0.928934i \(0.620726\pi\)
\(240\) 0 0
\(241\) 3007.00 0.803726 0.401863 0.915700i \(-0.368363\pi\)
0.401863 + 0.915700i \(0.368363\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 10891.1i − 2.84004i
\(246\) 0 0
\(247\) − 32.9090i − 0.00847752i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5112.00 1.28552 0.642762 0.766066i \(-0.277788\pi\)
0.642762 + 0.766066i \(0.277788\pi\)
\(252\) 0 0
\(253\) 3888.00 0.966152
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6775.78i − 1.64460i −0.569056 0.822299i \(-0.692691\pi\)
0.569056 0.822299i \(-0.307309\pi\)
\(258\) 0 0
\(259\) 3209.49i 0.769992i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3024.00 −0.709003 −0.354502 0.935055i \(-0.615349\pi\)
−0.354502 + 0.935055i \(0.615349\pi\)
\(264\) 0 0
\(265\) −2592.00 −0.600850
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2016.11i 0.456967i 0.973548 + 0.228484i \(0.0733768\pi\)
−0.973548 + 0.228484i \(0.926623\pi\)
\(270\) 0 0
\(271\) 3178.31i 0.712431i 0.934404 + 0.356215i \(0.115933\pi\)
−0.934404 + 0.356215i \(0.884067\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11052.0 2.42349
\(276\) 0 0
\(277\) 2734.00 0.593033 0.296516 0.955028i \(-0.404175\pi\)
0.296516 + 0.955028i \(0.404175\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1288.65i 0.273574i 0.990601 + 0.136787i \(0.0436775\pi\)
−0.990601 + 0.136787i \(0.956322\pi\)
\(282\) 0 0
\(283\) 2525.33i 0.530443i 0.964188 + 0.265221i \(0.0854450\pi\)
−0.964188 + 0.265221i \(0.914555\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11016.0 −2.26569
\(288\) 0 0
\(289\) −5887.00 −1.19825
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3512.60i 0.700369i 0.936681 + 0.350185i \(0.113881\pi\)
−0.936681 + 0.350185i \(0.886119\pi\)
\(294\) 0 0
\(295\) 748.246i 0.147676i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2052.00 −0.396890
\(300\) 0 0
\(301\) −13770.0 −2.63684
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 3013.77i − 0.565796i
\(306\) 0 0
\(307\) − 6827.74i − 1.26932i −0.772793 0.634658i \(-0.781141\pi\)
0.772793 0.634658i \(-0.218859\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8676.00 −1.58190 −0.790950 0.611881i \(-0.790413\pi\)
−0.790950 + 0.611881i \(0.790413\pi\)
\(312\) 0 0
\(313\) −1333.00 −0.240721 −0.120360 0.992730i \(-0.538405\pi\)
−0.120360 + 0.992730i \(0.538405\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10433.9i 1.84866i 0.381596 + 0.924329i \(0.375375\pi\)
−0.381596 + 0.924329i \(0.624625\pi\)
\(318\) 0 0
\(319\) 7482.46i 1.31328i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 180.000 0.0310076
\(324\) 0 0
\(325\) −5833.00 −0.995559
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 13780.2i 2.30920i
\(330\) 0 0
\(331\) − 7886.03i − 1.30953i −0.755831 0.654766i \(-0.772767\pi\)
0.755831 0.654766i \(-0.227233\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6516.00 1.06271
\(336\) 0 0
\(337\) 6931.00 1.12034 0.560172 0.828377i \(-0.310735\pi\)
0.560172 + 0.828377i \(0.310735\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 3367.11i − 0.534719i
\(342\) 0 0
\(343\) 5329.52i 0.838971i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1296.00 0.200498 0.100249 0.994962i \(-0.468036\pi\)
0.100249 + 0.994962i \(0.468036\pi\)
\(348\) 0 0
\(349\) −9757.00 −1.49650 −0.748252 0.663414i \(-0.769107\pi\)
−0.748252 + 0.663414i \(0.769107\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8729.54i 1.31622i 0.752921 + 0.658111i \(0.228644\pi\)
−0.752921 + 0.658111i \(0.771356\pi\)
\(354\) 0 0
\(355\) − 11971.9i − 1.78987i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8388.00 −1.23315 −0.616576 0.787295i \(-0.711481\pi\)
−0.616576 + 0.787295i \(0.711481\pi\)
\(360\) 0 0
\(361\) 6856.00 0.999563
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 16814.7i − 2.41130i
\(366\) 0 0
\(367\) − 8821.33i − 1.25469i −0.778743 0.627343i \(-0.784142\pi\)
0.778743 0.627343i \(-0.215858\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3672.00 0.513856
\(372\) 0 0
\(373\) −181.000 −0.0251255 −0.0125628 0.999921i \(-0.503999\pi\)
−0.0125628 + 0.999921i \(0.503999\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3949.08i − 0.539490i
\(378\) 0 0
\(379\) − 10664.2i − 1.44534i −0.691192 0.722672i \(-0.742914\pi\)
0.691192 0.722672i \(-0.257086\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11664.0 1.55614 0.778071 0.628176i \(-0.216198\pi\)
0.778071 + 0.628176i \(0.216198\pi\)
\(384\) 0 0
\(385\) −22032.0 −2.91651
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5549.49i 0.723317i 0.932311 + 0.361659i \(0.117789\pi\)
−0.932311 + 0.361659i \(0.882211\pi\)
\(390\) 0 0
\(391\) − 11223.7i − 1.45168i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10332.0 −1.31610
\(396\) 0 0
\(397\) −11338.0 −1.43334 −0.716672 0.697410i \(-0.754336\pi\)
−0.716672 + 0.697410i \(0.754336\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2826.71i 0.352017i 0.984389 + 0.176009i \(0.0563187\pi\)
−0.984389 + 0.176009i \(0.943681\pi\)
\(402\) 0 0
\(403\) 1777.08i 0.219660i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3924.00 0.477900
\(408\) 0 0
\(409\) 6607.00 0.798766 0.399383 0.916784i \(-0.369224\pi\)
0.399383 + 0.916784i \(0.369224\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 1060.02i − 0.126295i
\(414\) 0 0
\(415\) 7482.46i 0.885059i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8892.00 −1.03676 −0.518380 0.855150i \(-0.673465\pi\)
−0.518380 + 0.855150i \(0.673465\pi\)
\(420\) 0 0
\(421\) 5707.00 0.660670 0.330335 0.943864i \(-0.392838\pi\)
0.330335 + 0.943864i \(0.392838\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 31904.4i − 3.64139i
\(426\) 0 0
\(427\) 4269.51i 0.483878i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6588.00 0.736271 0.368135 0.929772i \(-0.379996\pi\)
0.368135 + 0.929772i \(0.379996\pi\)
\(432\) 0 0
\(433\) −4750.00 −0.527183 −0.263592 0.964634i \(-0.584907\pi\)
−0.263592 + 0.964634i \(0.584907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 187.061i 0.0204768i
\(438\) 0 0
\(439\) − 1028.84i − 0.111854i −0.998435 0.0559268i \(-0.982189\pi\)
0.998435 0.0559268i \(-0.0178114\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 10152.0 1.08879 0.544397 0.838827i \(-0.316758\pi\)
0.544397 + 0.838827i \(0.316758\pi\)
\(444\) 0 0
\(445\) −5616.00 −0.598256
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 15276.7i − 1.60568i −0.596193 0.802841i \(-0.703321\pi\)
0.596193 0.802841i \(-0.296679\pi\)
\(450\) 0 0
\(451\) 13468.4i 1.40622i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11628.0 1.19809
\(456\) 0 0
\(457\) −13142.0 −1.34520 −0.672600 0.740006i \(-0.734823\pi\)
−0.672600 + 0.740006i \(0.734823\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6048.32i 0.611059i 0.952183 + 0.305530i \(0.0988335\pi\)
−0.952183 + 0.305530i \(0.901166\pi\)
\(462\) 0 0
\(463\) − 2398.89i − 0.240790i −0.992726 0.120395i \(-0.961584\pi\)
0.992726 0.120395i \(-0.0384162\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4500.00 0.445900 0.222950 0.974830i \(-0.428431\pi\)
0.222950 + 0.974830i \(0.428431\pi\)
\(468\) 0 0
\(469\) −9231.00 −0.908844
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16835.5i 1.63657i
\(474\) 0 0
\(475\) 531.740i 0.0513640i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2232.00 −0.212907 −0.106454 0.994318i \(-0.533950\pi\)
−0.106454 + 0.994318i \(0.533950\pi\)
\(480\) 0 0
\(481\) −2071.00 −0.196319
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19849.3i 1.85837i
\(486\) 0 0
\(487\) 4584.74i 0.426600i 0.976987 + 0.213300i \(0.0684212\pi\)
−0.976987 + 0.213300i \(0.931579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9108.00 −0.837145 −0.418573 0.908183i \(-0.637469\pi\)
−0.418573 + 0.908183i \(0.637469\pi\)
\(492\) 0 0
\(493\) 21600.0 1.97326
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16960.2i 1.53073i
\(498\) 0 0
\(499\) − 16554.9i − 1.48517i −0.669751 0.742586i \(-0.733599\pi\)
0.669751 0.742586i \(-0.266401\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 252.000 0.0223382 0.0111691 0.999938i \(-0.496445\pi\)
0.0111691 + 0.999938i \(0.496445\pi\)
\(504\) 0 0
\(505\) 5184.00 0.456802
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 15650.8i − 1.36289i −0.731870 0.681444i \(-0.761352\pi\)
0.731870 0.681444i \(-0.238648\pi\)
\(510\) 0 0
\(511\) 23820.9i 2.06218i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −39564.0 −3.38524
\(516\) 0 0
\(517\) 16848.0 1.43322
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17521.4i 1.47337i 0.676234 + 0.736687i \(0.263611\pi\)
−0.676234 + 0.736687i \(0.736389\pi\)
\(522\) 0 0
\(523\) − 2059.41i − 0.172183i −0.996287 0.0860914i \(-0.972562\pi\)
0.996287 0.0860914i \(-0.0274377\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9720.00 −0.803434
\(528\) 0 0
\(529\) −503.000 −0.0413413
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 7108.34i − 0.577666i
\(534\) 0 0
\(535\) − 32174.6i − 2.60005i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18864.0 1.50748
\(540\) 0 0
\(541\) 2971.00 0.236106 0.118053 0.993007i \(-0.462335\pi\)
0.118053 + 0.993007i \(0.462335\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4447.91i 0.349592i
\(546\) 0 0
\(547\) 22043.8i 1.72308i 0.507689 + 0.861540i \(0.330500\pi\)
−0.507689 + 0.861540i \(0.669500\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −360.000 −0.0278340
\(552\) 0 0
\(553\) 14637.0 1.12555
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16814.7i 1.27911i 0.768746 + 0.639555i \(0.220881\pi\)
−0.768746 + 0.639555i \(0.779119\pi\)
\(558\) 0 0
\(559\) − 8885.42i − 0.672296i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13608.0 −1.01867 −0.509333 0.860570i \(-0.670108\pi\)
−0.509333 + 0.860570i \(0.670108\pi\)
\(564\) 0 0
\(565\) 28944.0 2.15519
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 7752.66i − 0.571192i −0.958350 0.285596i \(-0.907808\pi\)
0.958350 0.285596i \(-0.0921916\pi\)
\(570\) 0 0
\(571\) − 16587.9i − 1.21573i −0.794042 0.607863i \(-0.792027\pi\)
0.794042 0.607863i \(-0.207973\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33156.0 2.40470
\(576\) 0 0
\(577\) −10477.0 −0.755915 −0.377958 0.925823i \(-0.623374\pi\)
−0.377958 + 0.925823i \(0.623374\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 10600.2i − 0.756916i
\(582\) 0 0
\(583\) − 4489.48i − 0.318928i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 828.000 0.0582201 0.0291101 0.999576i \(-0.490733\pi\)
0.0291101 + 0.999576i \(0.490733\pi\)
\(588\) 0 0
\(589\) 162.000 0.0113329
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 16752.4i − 1.16010i −0.814581 0.580049i \(-0.803033\pi\)
0.814581 0.580049i \(-0.196967\pi\)
\(594\) 0 0
\(595\) 63600.9i 4.38216i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11016.0 −0.751422 −0.375711 0.926737i \(-0.622601\pi\)
−0.375711 + 0.926737i \(0.622601\pi\)
\(600\) 0 0
\(601\) 7418.00 0.503472 0.251736 0.967796i \(-0.418999\pi\)
0.251736 + 0.967796i \(0.418999\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 727.461i − 0.0488851i
\(606\) 0 0
\(607\) 18926.1i 1.26555i 0.774337 + 0.632774i \(0.218084\pi\)
−0.774337 + 0.632774i \(0.781916\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8892.00 −0.588759
\(612\) 0 0
\(613\) 12527.0 0.825385 0.412692 0.910870i \(-0.364588\pi\)
0.412692 + 0.910870i \(0.364588\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 11701.7i − 0.763524i −0.924261 0.381762i \(-0.875317\pi\)
0.924261 0.381762i \(-0.124683\pi\)
\(618\) 0 0
\(619\) − 2121.76i − 0.137772i −0.997625 0.0688860i \(-0.978056\pi\)
0.997625 0.0688860i \(-0.0219445\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7956.00 0.511638
\(624\) 0 0
\(625\) 40249.0 2.57594
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 11327.6i − 0.718063i
\(630\) 0 0
\(631\) − 5426.52i − 0.342355i −0.985240 0.171178i \(-0.945243\pi\)
0.985240 0.171178i \(-0.0547572\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 44712.0 2.79424
\(636\) 0 0
\(637\) −9956.00 −0.619264
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 11306.8i 0.696713i 0.937362 + 0.348356i \(0.113260\pi\)
−0.937362 + 0.348356i \(0.886740\pi\)
\(642\) 0 0
\(643\) 14123.1i 0.866193i 0.901347 + 0.433097i \(0.142579\pi\)
−0.901347 + 0.433097i \(0.857421\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13464.0 −0.818121 −0.409061 0.912507i \(-0.634144\pi\)
−0.409061 + 0.912507i \(0.634144\pi\)
\(648\) 0 0
\(649\) −1296.00 −0.0783859
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 3865.94i − 0.231678i −0.993268 0.115839i \(-0.963044\pi\)
0.993268 0.115839i \(-0.0369557\pi\)
\(654\) 0 0
\(655\) 16461.4i 0.981986i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 23400.0 1.38321 0.691604 0.722277i \(-0.256904\pi\)
0.691604 + 0.722277i \(0.256904\pi\)
\(660\) 0 0
\(661\) −15409.0 −0.906718 −0.453359 0.891328i \(-0.649774\pi\)
−0.453359 + 0.891328i \(0.649774\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 1060.02i − 0.0618130i
\(666\) 0 0
\(667\) 22447.4i 1.30310i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5220.00 0.300322
\(672\) 0 0
\(673\) −19693.0 −1.12795 −0.563974 0.825792i \(-0.690728\pi\)
−0.563974 + 0.825792i \(0.690728\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 25876.8i − 1.46902i −0.678597 0.734511i \(-0.737412\pi\)
0.678597 0.734511i \(-0.262588\pi\)
\(678\) 0 0
\(679\) − 28119.8i − 1.58931i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −17856.0 −1.00035 −0.500176 0.865924i \(-0.666731\pi\)
−0.500176 + 0.865924i \(0.666731\pi\)
\(684\) 0 0
\(685\) −8208.00 −0.457827
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2369.45i 0.131014i
\(690\) 0 0
\(691\) 2899.45i 0.159624i 0.996810 + 0.0798122i \(0.0254320\pi\)
−0.996810 + 0.0798122i \(0.974568\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −35676.0 −1.94715
\(696\) 0 0
\(697\) 38880.0 2.11289
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 27414.9i − 1.47710i −0.674199 0.738550i \(-0.735511\pi\)
0.674199 0.738550i \(-0.264489\pi\)
\(702\) 0 0
\(703\) 188.794i 0.0101287i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7344.00 −0.390664
\(708\) 0 0
\(709\) 1603.00 0.0849110 0.0424555 0.999098i \(-0.486482\pi\)
0.0424555 + 0.999098i \(0.486482\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 10101.3i − 0.530571i
\(714\) 0 0
\(715\) − 14216.7i − 0.743599i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16344.0 −0.847745 −0.423872 0.905722i \(-0.639329\pi\)
−0.423872 + 0.905722i \(0.639329\pi\)
\(720\) 0 0
\(721\) 56049.0 2.89511
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 63808.8i 3.26869i
\(726\) 0 0
\(727\) − 4021.82i − 0.205173i −0.994724 0.102587i \(-0.967288\pi\)
0.994724 0.102587i \(-0.0327119\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 48600.0 2.45901
\(732\) 0 0
\(733\) 38086.0 1.91915 0.959576 0.281449i \(-0.0908152\pi\)
0.959576 + 0.281449i \(0.0908152\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 11286.0i 0.564080i
\(738\) 0 0
\(739\) − 7575.99i − 0.377114i −0.982062 0.188557i \(-0.939619\pi\)
0.982062 0.188557i \(-0.0603810\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18036.0 −0.890547 −0.445274 0.895395i \(-0.646894\pi\)
−0.445274 + 0.895395i \(0.646894\pi\)
\(744\) 0 0
\(745\) −44928.0 −2.20944
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 45580.6i 2.22361i
\(750\) 0 0
\(751\) − 9853.64i − 0.478781i −0.970923 0.239390i \(-0.923052\pi\)
0.970923 0.239390i \(-0.0769476\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −29772.0 −1.43512
\(756\) 0 0
\(757\) −40661.0 −1.95224 −0.976122 0.217222i \(-0.930301\pi\)
−0.976122 + 0.217222i \(0.930301\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 9706.41i − 0.462362i −0.972911 0.231181i \(-0.925741\pi\)
0.972911 0.231181i \(-0.0742589\pi\)
\(762\) 0 0
\(763\) − 6301.20i − 0.298976i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 684.000 0.0322005
\(768\) 0 0
\(769\) −5041.00 −0.236389 −0.118194 0.992990i \(-0.537711\pi\)
−0.118194 + 0.992990i \(0.537711\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13011.2i 0.605406i 0.953085 + 0.302703i \(0.0978891\pi\)
−0.953085 + 0.302703i \(0.902111\pi\)
\(774\) 0 0
\(775\) − 28713.9i − 1.33088i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −648.000 −0.0298036
\(780\) 0 0
\(781\) 20736.0 0.950054
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 36705.6i 1.66889i
\(786\) 0 0
\(787\) 26062.2i 1.18045i 0.807238 + 0.590226i \(0.200961\pi\)
−0.807238 + 0.590226i \(0.799039\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −41004.0 −1.84315
\(792\) 0 0
\(793\) −2755.00 −0.123371
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1163.94i 0.0517300i 0.999665 + 0.0258650i \(0.00823400\pi\)
−0.999665 + 0.0258650i \(0.991766\pi\)
\(798\) 0 0
\(799\) − 48636.0i − 2.15346i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 29124.0 1.27990
\(804\) 0 0
\(805\) −66096.0 −2.89389
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 15796.3i 0.686488i 0.939246 + 0.343244i \(0.111526\pi\)
−0.939246 + 0.343244i \(0.888474\pi\)
\(810\) 0 0
\(811\) 24972.7i 1.08127i 0.841257 + 0.540635i \(0.181816\pi\)
−0.841257 + 0.540635i \(0.818184\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 5796.00 0.249110
\(816\) 0 0
\(817\) −810.000 −0.0346858
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 22676.0i − 0.963944i −0.876187 0.481972i \(-0.839921\pi\)
0.876187 0.481972i \(-0.160079\pi\)
\(822\) 0 0
\(823\) − 11911.3i − 0.504499i −0.967662 0.252249i \(-0.918830\pi\)
0.967662 0.252249i \(-0.0811703\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43956.0 1.84825 0.924123 0.382094i \(-0.124797\pi\)
0.924123 + 0.382094i \(0.124797\pi\)
\(828\) 0 0
\(829\) −17225.0 −0.721651 −0.360826 0.932633i \(-0.617505\pi\)
−0.360826 + 0.932633i \(0.617505\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 54455.7i − 2.26504i
\(834\) 0 0
\(835\) 45643.0i 1.89167i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22680.0 0.933255 0.466627 0.884454i \(-0.345469\pi\)
0.466627 + 0.884454i \(0.345469\pi\)
\(840\) 0 0
\(841\) −18811.0 −0.771290
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 38160.5i − 1.55357i
\(846\) 0 0
\(847\) 1030.57i 0.0418073i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11772.0 0.474194
\(852\) 0 0
\(853\) 35819.0 1.43777 0.718886 0.695128i \(-0.244652\pi\)
0.718886 + 0.695128i \(0.244652\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 7399.32i − 0.294931i −0.989067 0.147466i \(-0.952888\pi\)
0.989067 0.147466i \(-0.0471116\pi\)
\(858\) 0 0
\(859\) 8263.61i 0.328232i 0.986441 + 0.164116i \(0.0524771\pi\)
−0.986441 + 0.164116i \(0.947523\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4932.00 −0.194539 −0.0972695 0.995258i \(-0.531011\pi\)
−0.0972695 + 0.995258i \(0.531011\pi\)
\(864\) 0 0
\(865\) −37152.0 −1.46035
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 17895.5i − 0.698579i
\(870\) 0 0
\(871\) − 5956.52i − 0.231721i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −111384. −4.30339
\(876\) 0 0
\(877\) −35821.0 −1.37924 −0.689618 0.724174i \(-0.742221\pi\)
−0.689618 + 0.724174i \(0.742221\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 21886.2i − 0.836963i −0.908225 0.418482i \(-0.862562\pi\)
0.908225 0.418482i \(-0.137438\pi\)
\(882\) 0 0
\(883\) − 652.983i − 0.0248863i −0.999923 0.0124432i \(-0.996039\pi\)
0.999923 0.0124432i \(-0.00396089\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26856.0 1.01661 0.508307 0.861176i \(-0.330272\pi\)
0.508307 + 0.861176i \(0.330272\pi\)
\(888\) 0 0
\(889\) −63342.0 −2.38968
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 810.600i 0.0303759i
\(894\) 0 0
\(895\) − 23943.9i − 0.894252i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 19440.0 0.721202
\(900\) 0 0
\(901\) −12960.0 −0.479201
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46037.9i 1.69100i
\(906\) 0 0
\(907\) − 19144.4i − 0.700858i −0.936589 0.350429i \(-0.886036\pi\)
0.936589 0.350429i \(-0.113964\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32904.0 1.19666 0.598330 0.801249i \(-0.295831\pi\)
0.598330 + 0.801249i \(0.295831\pi\)
\(912\) 0 0
\(913\) −12960.0 −0.469785
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 23320.3i − 0.839809i
\(918\) 0 0
\(919\) − 50413.1i − 1.80955i −0.425893 0.904774i \(-0.640040\pi\)
0.425893 0.904774i \(-0.359960\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10944.0 −0.390278
\(924\) 0 0
\(925\) 33463.0 1.18947
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 36248.4i − 1.28016i −0.768308 0.640081i \(-0.778901\pi\)
0.768308 0.640081i \(-0.221099\pi\)
\(930\) 0 0
\(931\) 907.595i 0.0319497i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 77760.0 2.71981
\(936\) 0 0
\(937\) −11989.0 −0.417997 −0.208999 0.977916i \(-0.567020\pi\)
−0.208999 + 0.977916i \(0.567020\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10454.7i 0.362181i 0.983466 + 0.181090i \(0.0579627\pi\)
−0.983466 + 0.181090i \(0.942037\pi\)
\(942\) 0 0
\(943\) 40405.3i 1.39531i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3780.00 0.129708 0.0648540 0.997895i \(-0.479342\pi\)
0.0648540 + 0.997895i \(0.479342\pi\)
\(948\) 0 0
\(949\) −15371.0 −0.525778
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 31197.7i 1.06043i 0.847862 + 0.530216i \(0.177889\pi\)
−0.847862 + 0.530216i \(0.822111\pi\)
\(954\) 0 0
\(955\) − 95027.2i − 3.21990i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11628.0 0.391541
\(960\) 0 0
\(961\) 21043.0 0.706354
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 19475.2i − 0.649667i
\(966\) 0 0
\(967\) 6607.77i 0.219743i 0.993946 + 0.109872i \(0.0350440\pi\)
−0.993946 + 0.109872i \(0.964956\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −33012.0 −1.09105 −0.545523 0.838096i \(-0.683669\pi\)
−0.545523 + 0.838096i \(0.683669\pi\)
\(972\) 0 0
\(973\) 50541.0 1.66523
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 57240.8i − 1.87441i −0.348783 0.937204i \(-0.613405\pi\)
0.348783 0.937204i \(-0.386595\pi\)
\(978\) 0 0
\(979\) − 9727.20i − 0.317551i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15084.0 −0.489425 −0.244713 0.969596i \(-0.578694\pi\)
−0.244713 + 0.969596i \(0.578694\pi\)
\(984\) 0 0
\(985\) −38448.0 −1.24371
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 50506.6i 1.62388i
\(990\) 0 0
\(991\) 24600.3i 0.788552i 0.918992 + 0.394276i \(0.129005\pi\)
−0.918992 + 0.394276i \(0.870995\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −52524.0 −1.67349
\(996\) 0 0
\(997\) 3422.00 0.108702 0.0543510 0.998522i \(-0.482691\pi\)
0.0543510 + 0.998522i \(0.482691\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.4.c.a.431.2 yes 2
3.2 odd 2 432.4.c.d.431.1 yes 2
4.3 odd 2 432.4.c.d.431.2 yes 2
8.3 odd 2 1728.4.c.a.1727.1 2
8.5 even 2 1728.4.c.d.1727.1 2
12.11 even 2 inner 432.4.c.a.431.1 2
24.5 odd 2 1728.4.c.a.1727.2 2
24.11 even 2 1728.4.c.d.1727.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.4.c.a.431.1 2 12.11 even 2 inner
432.4.c.a.431.2 yes 2 1.1 even 1 trivial
432.4.c.d.431.1 yes 2 3.2 odd 2
432.4.c.d.431.2 yes 2 4.3 odd 2
1728.4.c.a.1727.1 2 8.3 odd 2
1728.4.c.a.1727.2 2 24.5 odd 2
1728.4.c.d.1727.1 2 8.5 even 2
1728.4.c.d.1727.2 2 24.11 even 2