Properties

Label 432.3.bc.a.353.1
Level $432$
Weight $3$
Character 432.353
Analytic conductor $11.771$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,3,Mod(65,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 13])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.65"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 432.bc (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,6,0,-15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.7711474204\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 353.1
Character \(\chi\) \(=\) 432.353
Dual form 432.3.bc.a.257.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.32380 + 1.89736i) q^{3} +(3.98394 + 4.74788i) q^{5} +(7.49258 - 2.72708i) q^{7} +(1.80008 - 8.81815i) q^{9} +(7.35571 - 8.76619i) q^{11} +(-1.43358 - 8.13025i) q^{13} +(-18.2663 - 3.47416i) q^{15} +(20.7128 - 11.9585i) q^{17} +(-6.12102 + 10.6019i) q^{19} +(-12.2370 + 20.5533i) q^{21} +(5.04566 - 13.8628i) q^{23} +(-2.32934 + 13.2103i) q^{25} +(12.5481 + 23.9070i) q^{27} +(-17.5228 - 3.08975i) q^{29} +(12.2356 + 4.45339i) q^{31} +(-0.460606 + 34.3273i) q^{33} +(42.7978 + 24.7093i) q^{35} +(8.53500 + 14.7831i) q^{37} +(18.7573 + 16.1730i) q^{39} +(30.2688 - 5.33721i) q^{41} +(30.5116 + 25.6022i) q^{43} +(49.0389 - 26.5844i) q^{45} +(-19.9668 - 54.8583i) q^{47} +(11.1657 - 9.36910i) q^{49} +(-25.4428 + 67.0888i) q^{51} +91.2612i q^{53} +70.9255 q^{55} +(-5.89158 - 36.2505i) q^{57} +(13.2814 + 15.8282i) q^{59} +(32.8508 - 11.9567i) q^{61} +(-10.5605 - 70.9797i) q^{63} +(32.8901 - 39.1969i) q^{65} +(-8.95370 - 50.7790i) q^{67} +(14.5776 + 41.7879i) q^{69} +(-2.28181 + 1.31740i) q^{71} +(-34.5072 + 59.7683i) q^{73} +(-19.6518 - 35.1177i) q^{75} +(31.2072 - 85.7410i) q^{77} +(-26.2964 + 149.134i) q^{79} +(-74.5194 - 31.7468i) q^{81} +(-53.2469 - 9.38886i) q^{83} +(139.296 + 50.6997i) q^{85} +(46.5819 - 26.0671i) q^{87} +(-141.225 - 81.5361i) q^{89} +(-32.9130 - 57.0070i) q^{91} +(-36.8828 + 12.8665i) q^{93} +(-74.7224 + 13.1756i) q^{95} +(43.6738 + 36.6467i) q^{97} +(-64.0607 - 80.6436i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 6 q^{3} - 15 q^{5} + 6 q^{7} + 6 q^{11} - 6 q^{13} + 9 q^{15} - 9 q^{17} + 3 q^{19} + 132 q^{21} - 120 q^{23} - 15 q^{25} + 90 q^{27} - 168 q^{29} - 39 q^{31} - 207 q^{33} + 252 q^{35} - 3 q^{37}+ \cdots - 513 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.32380 + 1.89736i −0.774600 + 0.632452i
\(4\) 0 0
\(5\) 3.98394 + 4.74788i 0.796788 + 0.949575i 0.999560 0.0296506i \(-0.00943948\pi\)
−0.202772 + 0.979226i \(0.564995\pi\)
\(6\) 0 0
\(7\) 7.49258 2.72708i 1.07037 0.389582i 0.254054 0.967190i \(-0.418236\pi\)
0.816315 + 0.577608i \(0.196014\pi\)
\(8\) 0 0
\(9\) 1.80008 8.81815i 0.200009 0.979794i
\(10\) 0 0
\(11\) 7.35571 8.76619i 0.668701 0.796927i −0.319906 0.947449i \(-0.603651\pi\)
0.988607 + 0.150523i \(0.0480957\pi\)
\(12\) 0 0
\(13\) −1.43358 8.13025i −0.110276 0.625403i −0.988981 0.148040i \(-0.952704\pi\)
0.878706 0.477364i \(-0.158408\pi\)
\(14\) 0 0
\(15\) −18.2663 3.47416i −1.21775 0.231611i
\(16\) 0 0
\(17\) 20.7128 11.9585i 1.21840 0.703443i 0.253824 0.967250i \(-0.418311\pi\)
0.964576 + 0.263807i \(0.0849782\pi\)
\(18\) 0 0
\(19\) −6.12102 + 10.6019i −0.322159 + 0.557995i −0.980933 0.194345i \(-0.937742\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(20\) 0 0
\(21\) −12.2370 + 20.5533i −0.582715 + 0.978727i
\(22\) 0 0
\(23\) 5.04566 13.8628i 0.219377 0.602732i −0.780368 0.625320i \(-0.784968\pi\)
0.999745 + 0.0225880i \(0.00719059\pi\)
\(24\) 0 0
\(25\) −2.32934 + 13.2103i −0.0931735 + 0.528413i
\(26\) 0 0
\(27\) 12.5481 + 23.9070i 0.464745 + 0.885444i
\(28\) 0 0
\(29\) −17.5228 3.08975i −0.604235 0.106543i −0.136843 0.990593i \(-0.543695\pi\)
−0.467393 + 0.884050i \(0.654807\pi\)
\(30\) 0 0
\(31\) 12.2356 + 4.45339i 0.394697 + 0.143658i 0.531741 0.846907i \(-0.321538\pi\)
−0.137044 + 0.990565i \(0.543760\pi\)
\(32\) 0 0
\(33\) −0.460606 + 34.3273i −0.0139578 + 1.04022i
\(34\) 0 0
\(35\) 42.7978 + 24.7093i 1.22280 + 0.705981i
\(36\) 0 0
\(37\) 8.53500 + 14.7831i 0.230676 + 0.399542i 0.958007 0.286744i \(-0.0925730\pi\)
−0.727331 + 0.686286i \(0.759240\pi\)
\(38\) 0 0
\(39\) 18.7573 + 16.1730i 0.480957 + 0.414693i
\(40\) 0 0
\(41\) 30.2688 5.33721i 0.738265 0.130176i 0.208144 0.978098i \(-0.433258\pi\)
0.530121 + 0.847922i \(0.322147\pi\)
\(42\) 0 0
\(43\) 30.5116 + 25.6022i 0.709571 + 0.595401i 0.924479 0.381233i \(-0.124501\pi\)
−0.214908 + 0.976634i \(0.568945\pi\)
\(44\) 0 0
\(45\) 49.0389 26.5844i 1.08975 0.590764i
\(46\) 0 0
\(47\) −19.9668 54.8583i −0.424825 1.16720i −0.948914 0.315534i \(-0.897816\pi\)
0.524089 0.851663i \(-0.324406\pi\)
\(48\) 0 0
\(49\) 11.1657 9.36910i 0.227871 0.191206i
\(50\) 0 0
\(51\) −25.4428 + 67.0888i −0.498878 + 1.31547i
\(52\) 0 0
\(53\) 91.2612i 1.72191i 0.508681 + 0.860955i \(0.330133\pi\)
−0.508681 + 0.860955i \(0.669867\pi\)
\(54\) 0 0
\(55\) 70.9255 1.28956
\(56\) 0 0
\(57\) −5.89158 36.2505i −0.103361 0.635973i
\(58\) 0 0
\(59\) 13.2814 + 15.8282i 0.225109 + 0.268274i 0.866764 0.498719i \(-0.166196\pi\)
−0.641655 + 0.766994i \(0.721752\pi\)
\(60\) 0 0
\(61\) 32.8508 11.9567i 0.538538 0.196012i −0.0584084 0.998293i \(-0.518603\pi\)
0.596947 + 0.802281i \(0.296380\pi\)
\(62\) 0 0
\(63\) −10.5605 70.9797i −0.167627 1.12666i
\(64\) 0 0
\(65\) 32.8901 39.1969i 0.506001 0.603029i
\(66\) 0 0
\(67\) −8.95370 50.7790i −0.133637 0.757895i −0.975799 0.218670i \(-0.929828\pi\)
0.842162 0.539225i \(-0.181283\pi\)
\(68\) 0 0
\(69\) 14.5776 + 41.7879i 0.211270 + 0.605621i
\(70\) 0 0
\(71\) −2.28181 + 1.31740i −0.0321381 + 0.0185549i −0.515983 0.856599i \(-0.672573\pi\)
0.483845 + 0.875154i \(0.339240\pi\)
\(72\) 0 0
\(73\) −34.5072 + 59.7683i −0.472702 + 0.818743i −0.999512 0.0312395i \(-0.990055\pi\)
0.526810 + 0.849983i \(0.323388\pi\)
\(74\) 0 0
\(75\) −19.6518 35.1177i −0.262024 0.468237i
\(76\) 0 0
\(77\) 31.2072 85.7410i 0.405288 1.11352i
\(78\) 0 0
\(79\) −26.2964 + 149.134i −0.332866 + 1.88778i 0.114494 + 0.993424i \(0.463475\pi\)
−0.447360 + 0.894354i \(0.647636\pi\)
\(80\) 0 0
\(81\) −74.5194 31.7468i −0.919993 0.391936i
\(82\) 0 0
\(83\) −53.2469 9.38886i −0.641529 0.113119i −0.156585 0.987664i \(-0.550049\pi\)
−0.484943 + 0.874546i \(0.661160\pi\)
\(84\) 0 0
\(85\) 139.296 + 50.6997i 1.63878 + 0.596467i
\(86\) 0 0
\(87\) 46.5819 26.0671i 0.535424 0.299622i
\(88\) 0 0
\(89\) −141.225 81.5361i −1.58679 0.916136i −0.993831 0.110906i \(-0.964625\pi\)
−0.592962 0.805230i \(-0.702042\pi\)
\(90\) 0 0
\(91\) −32.9130 57.0070i −0.361682 0.626451i
\(92\) 0 0
\(93\) −36.8828 + 12.8665i −0.396589 + 0.138349i
\(94\) 0 0
\(95\) −74.7224 + 13.1756i −0.786551 + 0.138690i
\(96\) 0 0
\(97\) 43.6738 + 36.6467i 0.450246 + 0.377801i 0.839527 0.543318i \(-0.182832\pi\)
−0.389281 + 0.921119i \(0.627277\pi\)
\(98\) 0 0
\(99\) −64.0607 80.6436i −0.647078 0.814582i
\(100\) 0 0
\(101\) −9.49911 26.0986i −0.0940506 0.258402i 0.883743 0.467973i \(-0.155016\pi\)
−0.977793 + 0.209571i \(0.932793\pi\)
\(102\) 0 0
\(103\) −62.8906 + 52.7715i −0.610589 + 0.512345i −0.894829 0.446408i \(-0.852703\pi\)
0.284241 + 0.958753i \(0.408258\pi\)
\(104\) 0 0
\(105\) −146.336 + 23.7832i −1.39368 + 0.226506i
\(106\) 0 0
\(107\) 35.8639i 0.335177i 0.985857 + 0.167588i \(0.0535980\pi\)
−0.985857 + 0.167588i \(0.946402\pi\)
\(108\) 0 0
\(109\) 1.41546 0.0129859 0.00649295 0.999979i \(-0.497933\pi\)
0.00649295 + 0.999979i \(0.497933\pi\)
\(110\) 0 0
\(111\) −47.8823 18.1589i −0.431372 0.163594i
\(112\) 0 0
\(113\) −95.7961 114.165i −0.847753 1.01031i −0.999759 0.0219332i \(-0.993018\pi\)
0.152006 0.988380i \(-0.451427\pi\)
\(114\) 0 0
\(115\) 85.9207 31.2726i 0.747136 0.271935i
\(116\) 0 0
\(117\) −74.2743 1.99359i −0.634823 0.0170393i
\(118\) 0 0
\(119\) 122.580 146.086i 1.03009 1.22761i
\(120\) 0 0
\(121\) −1.72825 9.80142i −0.0142831 0.0810035i
\(122\) 0 0
\(123\) −60.2121 + 69.8334i −0.489530 + 0.567751i
\(124\) 0 0
\(125\) 62.1878 35.9041i 0.497502 0.287233i
\(126\) 0 0
\(127\) 8.57044 14.8444i 0.0674838 0.116885i −0.830309 0.557303i \(-0.811836\pi\)
0.897793 + 0.440417i \(0.145170\pi\)
\(128\) 0 0
\(129\) −119.479 1.60318i −0.926196 0.0124278i
\(130\) 0 0
\(131\) 49.9104 137.128i 0.380995 1.04678i −0.589943 0.807445i \(-0.700850\pi\)
0.970938 0.239331i \(-0.0769282\pi\)
\(132\) 0 0
\(133\) −16.9500 + 96.1282i −0.127444 + 0.722768i
\(134\) 0 0
\(135\) −63.5165 + 154.821i −0.470493 + 1.14682i
\(136\) 0 0
\(137\) 85.6934 + 15.1101i 0.625499 + 0.110292i 0.477409 0.878681i \(-0.341576\pi\)
0.148091 + 0.988974i \(0.452687\pi\)
\(138\) 0 0
\(139\) 34.6380 + 12.6072i 0.249194 + 0.0906992i 0.463597 0.886046i \(-0.346558\pi\)
−0.214403 + 0.976745i \(0.568781\pi\)
\(140\) 0 0
\(141\) 150.484 + 89.5955i 1.06727 + 0.635429i
\(142\) 0 0
\(143\) −81.8163 47.2367i −0.572142 0.330326i
\(144\) 0 0
\(145\) −55.1402 95.5056i −0.380277 0.658659i
\(146\) 0 0
\(147\) −8.17024 + 42.9571i −0.0555798 + 0.292225i
\(148\) 0 0
\(149\) 63.6158 11.2172i 0.426952 0.0752832i 0.0439567 0.999033i \(-0.486004\pi\)
0.382995 + 0.923750i \(0.374893\pi\)
\(150\) 0 0
\(151\) 118.320 + 99.2826i 0.783579 + 0.657501i 0.944147 0.329524i \(-0.106888\pi\)
−0.160568 + 0.987025i \(0.551333\pi\)
\(152\) 0 0
\(153\) −68.1674 204.175i −0.445538 1.33448i
\(154\) 0 0
\(155\) 27.6018 + 75.8352i 0.178076 + 0.489259i
\(156\) 0 0
\(157\) −147.505 + 123.771i −0.939522 + 0.788352i −0.977502 0.210926i \(-0.932352\pi\)
0.0379802 + 0.999278i \(0.487908\pi\)
\(158\) 0 0
\(159\) −173.155 212.073i −1.08902 1.33379i
\(160\) 0 0
\(161\) 117.628i 0.730611i
\(162\) 0 0
\(163\) −171.309 −1.05098 −0.525488 0.850801i \(-0.676117\pi\)
−0.525488 + 0.850801i \(0.676117\pi\)
\(164\) 0 0
\(165\) −164.817 + 134.571i −0.998889 + 0.815581i
\(166\) 0 0
\(167\) −101.164 120.563i −0.605773 0.721932i 0.372782 0.927919i \(-0.378404\pi\)
−0.978555 + 0.205987i \(0.933960\pi\)
\(168\) 0 0
\(169\) 94.7623 34.4907i 0.560724 0.204087i
\(170\) 0 0
\(171\) 82.4709 + 73.0604i 0.482286 + 0.427254i
\(172\) 0 0
\(173\) 33.7496 40.2212i 0.195084 0.232492i −0.659631 0.751590i \(-0.729287\pi\)
0.854715 + 0.519097i \(0.173732\pi\)
\(174\) 0 0
\(175\) 18.5728 + 105.332i 0.106130 + 0.601896i
\(176\) 0 0
\(177\) −60.8951 11.5819i −0.344040 0.0654347i
\(178\) 0 0
\(179\) 57.9711 33.4697i 0.323861 0.186981i −0.329251 0.944242i \(-0.606796\pi\)
0.653112 + 0.757261i \(0.273463\pi\)
\(180\) 0 0
\(181\) 64.7294 112.115i 0.357621 0.619418i −0.629942 0.776642i \(-0.716921\pi\)
0.987563 + 0.157225i \(0.0502547\pi\)
\(182\) 0 0
\(183\) −53.6526 + 90.1147i −0.293184 + 0.492430i
\(184\) 0 0
\(185\) −36.1852 + 99.4180i −0.195596 + 0.537394i
\(186\) 0 0
\(187\) 47.5265 269.536i 0.254152 1.44137i
\(188\) 0 0
\(189\) 159.214 + 144.905i 0.842402 + 0.766696i
\(190\) 0 0
\(191\) 267.225 + 47.1189i 1.39908 + 0.246696i 0.821766 0.569825i \(-0.192989\pi\)
0.577315 + 0.816521i \(0.304100\pi\)
\(192\) 0 0
\(193\) −194.971 70.9637i −1.01021 0.367688i −0.216699 0.976238i \(-0.569529\pi\)
−0.793515 + 0.608551i \(0.791751\pi\)
\(194\) 0 0
\(195\) −2.05954 + 153.490i −0.0105617 + 0.787128i
\(196\) 0 0
\(197\) 154.871 + 89.4146i 0.786145 + 0.453881i 0.838604 0.544742i \(-0.183372\pi\)
−0.0524583 + 0.998623i \(0.516706\pi\)
\(198\) 0 0
\(199\) −12.8040 22.1772i −0.0643418 0.111443i 0.832060 0.554686i \(-0.187161\pi\)
−0.896402 + 0.443242i \(0.853828\pi\)
\(200\) 0 0
\(201\) 117.152 + 101.012i 0.582848 + 0.502546i
\(202\) 0 0
\(203\) −139.717 + 24.6359i −0.688262 + 0.121359i
\(204\) 0 0
\(205\) 145.930 + 122.450i 0.711853 + 0.597315i
\(206\) 0 0
\(207\) −113.162 69.4477i −0.546676 0.335496i
\(208\) 0 0
\(209\) 47.9140 + 131.643i 0.229254 + 0.629869i
\(210\) 0 0
\(211\) −275.995 + 231.587i −1.30803 + 1.09757i −0.319335 + 0.947642i \(0.603460\pi\)
−0.988697 + 0.149928i \(0.952096\pi\)
\(212\) 0 0
\(213\) 2.80288 7.39077i 0.0131591 0.0346985i
\(214\) 0 0
\(215\) 246.863i 1.14820i
\(216\) 0 0
\(217\) 103.821 0.478438
\(218\) 0 0
\(219\) −33.2138 204.362i −0.151661 0.933159i
\(220\) 0 0
\(221\) −126.919 151.257i −0.574296 0.684419i
\(222\) 0 0
\(223\) 8.44446 3.07353i 0.0378675 0.0137827i −0.323017 0.946393i \(-0.604697\pi\)
0.360884 + 0.932611i \(0.382475\pi\)
\(224\) 0 0
\(225\) 112.298 + 44.3202i 0.499101 + 0.196978i
\(226\) 0 0
\(227\) −46.1393 + 54.9867i −0.203257 + 0.242232i −0.858038 0.513587i \(-0.828316\pi\)
0.654781 + 0.755819i \(0.272761\pi\)
\(228\) 0 0
\(229\) 9.36599 + 53.1172i 0.0408995 + 0.231953i 0.998405 0.0564635i \(-0.0179825\pi\)
−0.957505 + 0.288416i \(0.906871\pi\)
\(230\) 0 0
\(231\) 90.1620 + 258.456i 0.390312 + 1.11886i
\(232\) 0 0
\(233\) −314.078 + 181.333i −1.34798 + 0.778254i −0.987962 0.154694i \(-0.950561\pi\)
−0.360013 + 0.932947i \(0.617228\pi\)
\(234\) 0 0
\(235\) 180.914 313.352i 0.769846 1.33341i
\(236\) 0 0
\(237\) −221.853 396.452i −0.936091 1.67279i
\(238\) 0 0
\(239\) 86.0424 236.399i 0.360010 0.989119i −0.619015 0.785379i \(-0.712468\pi\)
0.979025 0.203740i \(-0.0653097\pi\)
\(240\) 0 0
\(241\) 69.9633 396.781i 0.290304 1.64640i −0.395395 0.918511i \(-0.629392\pi\)
0.685699 0.727885i \(-0.259497\pi\)
\(242\) 0 0
\(243\) 233.403 67.6166i 0.960507 0.278257i
\(244\) 0 0
\(245\) 88.9667 + 15.6872i 0.363129 + 0.0640295i
\(246\) 0 0
\(247\) 94.9711 + 34.5667i 0.384499 + 0.139946i
\(248\) 0 0
\(249\) 141.549 79.2104i 0.568470 0.318114i
\(250\) 0 0
\(251\) −329.280 190.110i −1.31187 0.757409i −0.329465 0.944168i \(-0.606868\pi\)
−0.982406 + 0.186759i \(0.940202\pi\)
\(252\) 0 0
\(253\) −84.4099 146.202i −0.333636 0.577875i
\(254\) 0 0
\(255\) −419.892 + 146.479i −1.64663 + 0.574426i
\(256\) 0 0
\(257\) −21.3590 + 3.76618i −0.0831091 + 0.0146544i −0.215048 0.976603i \(-0.568991\pi\)
0.131939 + 0.991258i \(0.457880\pi\)
\(258\) 0 0
\(259\) 104.264 + 87.4877i 0.402563 + 0.337790i
\(260\) 0 0
\(261\) −58.7884 + 148.957i −0.225243 + 0.570716i
\(262\) 0 0
\(263\) 23.2155 + 63.7841i 0.0882719 + 0.242525i 0.975972 0.217898i \(-0.0699200\pi\)
−0.887700 + 0.460423i \(0.847698\pi\)
\(264\) 0 0
\(265\) −433.297 + 363.579i −1.63508 + 1.37200i
\(266\) 0 0
\(267\) 482.881 78.4799i 1.80854 0.293932i
\(268\) 0 0
\(269\) 290.581i 1.08023i 0.841592 + 0.540113i \(0.181619\pi\)
−0.841592 + 0.540113i \(0.818381\pi\)
\(270\) 0 0
\(271\) 414.644 1.53005 0.765026 0.644000i \(-0.222726\pi\)
0.765026 + 0.644000i \(0.222726\pi\)
\(272\) 0 0
\(273\) 184.646 + 70.0252i 0.676359 + 0.256503i
\(274\) 0 0
\(275\) 98.6704 + 117.591i 0.358801 + 0.427603i
\(276\) 0 0
\(277\) −164.568 + 59.8978i −0.594108 + 0.216238i −0.621535 0.783386i \(-0.713491\pi\)
0.0274272 + 0.999624i \(0.491269\pi\)
\(278\) 0 0
\(279\) 61.2958 99.8788i 0.219698 0.357989i
\(280\) 0 0
\(281\) 241.214 287.468i 0.858414 1.02302i −0.141041 0.990004i \(-0.545045\pi\)
0.999455 0.0330139i \(-0.0105106\pi\)
\(282\) 0 0
\(283\) −2.56593 14.5521i −0.00906688 0.0514208i 0.979939 0.199299i \(-0.0638666\pi\)
−0.989006 + 0.147879i \(0.952756\pi\)
\(284\) 0 0
\(285\) 148.641 172.392i 0.521547 0.604885i
\(286\) 0 0
\(287\) 212.237 122.535i 0.739501 0.426951i
\(288\) 0 0
\(289\) 141.513 245.108i 0.489665 0.848125i
\(290\) 0 0
\(291\) −171.021 2.29477i −0.587701 0.00788582i
\(292\) 0 0
\(293\) −45.4702 + 124.928i −0.155188 + 0.426376i −0.992784 0.119914i \(-0.961738\pi\)
0.837596 + 0.546290i \(0.183960\pi\)
\(294\) 0 0
\(295\) −22.2379 + 126.117i −0.0753826 + 0.427516i
\(296\) 0 0
\(297\) 301.874 + 65.8537i 1.01641 + 0.221730i
\(298\) 0 0
\(299\) −119.942 21.1490i −0.401143 0.0707323i
\(300\) 0 0
\(301\) 298.430 + 108.620i 0.991461 + 0.360862i
\(302\) 0 0
\(303\) 71.5924 + 42.6247i 0.236278 + 0.140676i
\(304\) 0 0
\(305\) 187.645 + 108.337i 0.615229 + 0.355203i
\(306\) 0 0
\(307\) 35.2589 + 61.0701i 0.114850 + 0.198926i 0.917720 0.397229i \(-0.130028\pi\)
−0.802870 + 0.596154i \(0.796695\pi\)
\(308\) 0 0
\(309\) 46.0189 241.956i 0.148928 0.783030i
\(310\) 0 0
\(311\) −60.0519 + 10.5888i −0.193093 + 0.0340475i −0.269358 0.963040i \(-0.586812\pi\)
0.0762652 + 0.997088i \(0.475700\pi\)
\(312\) 0 0
\(313\) 161.890 + 135.842i 0.517221 + 0.434000i 0.863662 0.504072i \(-0.168165\pi\)
−0.346441 + 0.938072i \(0.612610\pi\)
\(314\) 0 0
\(315\) 294.930 332.919i 0.936287 1.05688i
\(316\) 0 0
\(317\) 45.7588 + 125.721i 0.144349 + 0.396597i 0.990706 0.136020i \(-0.0434310\pi\)
−0.846357 + 0.532617i \(0.821209\pi\)
\(318\) 0 0
\(319\) −155.978 + 130.881i −0.488960 + 0.410286i
\(320\) 0 0
\(321\) −68.0466 83.3405i −0.211983 0.259628i
\(322\) 0 0
\(323\) 292.794i 0.906482i
\(324\) 0 0
\(325\) 110.743 0.340746
\(326\) 0 0
\(327\) −3.28925 + 2.68564i −0.0100589 + 0.00821296i
\(328\) 0 0
\(329\) −299.206 356.579i −0.909439 1.08383i
\(330\) 0 0
\(331\) −82.8821 + 30.1666i −0.250399 + 0.0911378i −0.464170 0.885746i \(-0.653647\pi\)
0.213771 + 0.976884i \(0.431425\pi\)
\(332\) 0 0
\(333\) 145.723 48.6521i 0.437606 0.146103i
\(334\) 0 0
\(335\) 205.421 244.812i 0.613198 0.730781i
\(336\) 0 0
\(337\) 7.15157 + 40.5586i 0.0212213 + 0.120352i 0.993578 0.113148i \(-0.0360934\pi\)
−0.972357 + 0.233500i \(0.924982\pi\)
\(338\) 0 0
\(339\) 439.223 + 83.5381i 1.29564 + 0.246425i
\(340\) 0 0
\(341\) 129.041 74.5018i 0.378419 0.218480i
\(342\) 0 0
\(343\) −137.240 + 237.706i −0.400116 + 0.693022i
\(344\) 0 0
\(345\) −140.327 + 235.693i −0.406746 + 0.683169i
\(346\) 0 0
\(347\) −117.292 + 322.257i −0.338017 + 0.928695i 0.647939 + 0.761692i \(0.275631\pi\)
−0.985956 + 0.167003i \(0.946591\pi\)
\(348\) 0 0
\(349\) −102.322 + 580.297i −0.293186 + 1.66274i 0.381298 + 0.924452i \(0.375477\pi\)
−0.674484 + 0.738289i \(0.735634\pi\)
\(350\) 0 0
\(351\) 176.381 136.292i 0.502510 0.388296i
\(352\) 0 0
\(353\) 124.087 + 21.8798i 0.351521 + 0.0619826i 0.346621 0.938005i \(-0.387329\pi\)
0.00490000 + 0.999988i \(0.498440\pi\)
\(354\) 0 0
\(355\) −15.3454 5.58528i −0.0432266 0.0157332i
\(356\) 0 0
\(357\) −7.67585 + 572.053i −0.0215010 + 1.60239i
\(358\) 0 0
\(359\) 298.332 + 172.242i 0.831007 + 0.479782i 0.854197 0.519949i \(-0.174049\pi\)
−0.0231901 + 0.999731i \(0.507382\pi\)
\(360\) 0 0
\(361\) 105.566 + 182.846i 0.292427 + 0.506499i
\(362\) 0 0
\(363\) 22.6129 + 19.4974i 0.0622945 + 0.0537119i
\(364\) 0 0
\(365\) −421.247 + 74.2772i −1.15410 + 0.203499i
\(366\) 0 0
\(367\) −258.712 217.085i −0.704937 0.591513i 0.218236 0.975896i \(-0.429970\pi\)
−0.923174 + 0.384383i \(0.874414\pi\)
\(368\) 0 0
\(369\) 7.42214 276.523i 0.0201142 0.749384i
\(370\) 0 0
\(371\) 248.876 + 683.782i 0.670826 + 1.84308i
\(372\) 0 0
\(373\) 75.9155 63.7007i 0.203527 0.170779i −0.535327 0.844645i \(-0.679812\pi\)
0.738854 + 0.673865i \(0.235367\pi\)
\(374\) 0 0
\(375\) −76.3890 + 201.426i −0.203704 + 0.537137i
\(376\) 0 0
\(377\) 146.894i 0.389640i
\(378\) 0 0
\(379\) −599.859 −1.58274 −0.791370 0.611337i \(-0.790632\pi\)
−0.791370 + 0.611337i \(0.790632\pi\)
\(380\) 0 0
\(381\) 8.24920 + 50.7567i 0.0216514 + 0.133220i
\(382\) 0 0
\(383\) −73.0625 87.0726i −0.190764 0.227343i 0.662182 0.749343i \(-0.269631\pi\)
−0.852946 + 0.522000i \(0.825186\pi\)
\(384\) 0 0
\(385\) 531.415 193.419i 1.38030 0.502388i
\(386\) 0 0
\(387\) 280.688 222.969i 0.725291 0.576148i
\(388\) 0 0
\(389\) 233.254 277.981i 0.599624 0.714604i −0.377801 0.925887i \(-0.623320\pi\)
0.977425 + 0.211283i \(0.0677640\pi\)
\(390\) 0 0
\(391\) −61.2696 347.477i −0.156700 0.888688i
\(392\) 0 0
\(393\) 144.198 + 413.355i 0.366917 + 1.05179i
\(394\) 0 0
\(395\) −812.835 + 469.291i −2.05781 + 1.18808i
\(396\) 0 0
\(397\) 239.208 414.320i 0.602539 1.04363i −0.389896 0.920859i \(-0.627489\pi\)
0.992435 0.122769i \(-0.0391775\pi\)
\(398\) 0 0
\(399\) −143.001 255.543i −0.358398 0.640458i
\(400\) 0 0
\(401\) −218.214 + 599.538i −0.544174 + 1.49511i 0.297286 + 0.954788i \(0.403919\pi\)
−0.841461 + 0.540319i \(0.818304\pi\)
\(402\) 0 0
\(403\) 18.6665 105.863i 0.0463188 0.262687i
\(404\) 0 0
\(405\) −146.151 480.286i −0.360867 1.18589i
\(406\) 0 0
\(407\) 192.372 + 33.9204i 0.472659 + 0.0833425i
\(408\) 0 0
\(409\) −575.541 209.480i −1.40719 0.512175i −0.476886 0.878965i \(-0.658235\pi\)
−0.930304 + 0.366790i \(0.880457\pi\)
\(410\) 0 0
\(411\) −227.803 + 127.478i −0.554266 + 0.310166i
\(412\) 0 0
\(413\) 142.677 + 82.3746i 0.345465 + 0.199454i
\(414\) 0 0
\(415\) −167.555 290.214i −0.403748 0.699311i
\(416\) 0 0
\(417\) −104.412 + 36.4239i −0.250388 + 0.0873476i
\(418\) 0 0
\(419\) −516.661 + 91.1012i −1.23308 + 0.217425i −0.751948 0.659223i \(-0.770886\pi\)
−0.481132 + 0.876648i \(0.659774\pi\)
\(420\) 0 0
\(421\) −282.105 236.715i −0.670084 0.562267i 0.243006 0.970025i \(-0.421866\pi\)
−0.913090 + 0.407757i \(0.866311\pi\)
\(422\) 0 0
\(423\) −519.690 + 77.3205i −1.22858 + 0.182791i
\(424\) 0 0
\(425\) 109.729 + 301.478i 0.258186 + 0.709361i
\(426\) 0 0
\(427\) 213.531 179.174i 0.500072 0.419610i
\(428\) 0 0
\(429\) 279.749 45.4661i 0.652097 0.105982i
\(430\) 0 0
\(431\) 178.021i 0.413043i −0.978442 0.206521i \(-0.933786\pi\)
0.978442 0.206521i \(-0.0662143\pi\)
\(432\) 0 0
\(433\) −710.746 −1.64144 −0.820722 0.571327i \(-0.806429\pi\)
−0.820722 + 0.571327i \(0.806429\pi\)
\(434\) 0 0
\(435\) 309.343 + 117.315i 0.711133 + 0.269690i
\(436\) 0 0
\(437\) 116.088 + 138.348i 0.265648 + 0.316587i
\(438\) 0 0
\(439\) 598.391 217.797i 1.36308 0.496120i 0.446073 0.894996i \(-0.352822\pi\)
0.917005 + 0.398877i \(0.130600\pi\)
\(440\) 0 0
\(441\) −62.5190 115.326i −0.141766 0.261509i
\(442\) 0 0
\(443\) 207.534 247.329i 0.468473 0.558305i −0.479134 0.877742i \(-0.659049\pi\)
0.947608 + 0.319437i \(0.103494\pi\)
\(444\) 0 0
\(445\) −175.507 995.352i −0.394399 2.23675i
\(446\) 0 0
\(447\) −126.547 + 146.768i −0.283104 + 0.328341i
\(448\) 0 0
\(449\) 22.4287 12.9492i 0.0499526 0.0288401i −0.474816 0.880085i \(-0.657485\pi\)
0.524768 + 0.851245i \(0.324152\pi\)
\(450\) 0 0
\(451\) 175.862 304.602i 0.389938 0.675392i
\(452\) 0 0
\(453\) −463.327 6.21696i −1.02280 0.0137240i
\(454\) 0 0
\(455\) 139.539 383.380i 0.306679 0.842593i
\(456\) 0 0
\(457\) −68.6711 + 389.453i −0.150265 + 0.852195i 0.812723 + 0.582650i \(0.197984\pi\)
−0.962988 + 0.269544i \(0.913127\pi\)
\(458\) 0 0
\(459\) 545.800 + 345.124i 1.18911 + 0.751903i
\(460\) 0 0
\(461\) −883.267 155.744i −1.91598 0.337839i −0.917743 0.397175i \(-0.869991\pi\)
−0.998238 + 0.0593356i \(0.981102\pi\)
\(462\) 0 0
\(463\) −279.650 101.784i −0.603997 0.219837i 0.0218778 0.999761i \(-0.493036\pi\)
−0.625874 + 0.779924i \(0.715258\pi\)
\(464\) 0 0
\(465\) −208.027 123.855i −0.447370 0.266356i
\(466\) 0 0
\(467\) 684.460 + 395.173i 1.46565 + 0.846196i 0.999263 0.0383833i \(-0.0122208\pi\)
0.466391 + 0.884579i \(0.345554\pi\)
\(468\) 0 0
\(469\) −205.565 356.048i −0.438304 0.759165i
\(470\) 0 0
\(471\) 107.934 567.489i 0.229158 1.20486i
\(472\) 0 0
\(473\) 448.868 79.1476i 0.948982 0.167331i
\(474\) 0 0
\(475\) −125.797 105.556i −0.264836 0.222223i
\(476\) 0 0
\(477\) 804.755 + 164.278i 1.68712 + 0.344398i
\(478\) 0 0
\(479\) 0.369996 + 1.01656i 0.000772435 + 0.00212225i 0.940078 0.340959i \(-0.110752\pi\)
−0.939306 + 0.343081i \(0.888529\pi\)
\(480\) 0 0
\(481\) 107.954 90.5844i 0.224437 0.188325i
\(482\) 0 0
\(483\) 223.183 + 273.345i 0.462076 + 0.565931i
\(484\) 0 0
\(485\) 353.356i 0.728569i
\(486\) 0 0
\(487\) −647.606 −1.32979 −0.664893 0.746939i \(-0.731523\pi\)
−0.664893 + 0.746939i \(0.731523\pi\)
\(488\) 0 0
\(489\) 398.088 325.034i 0.814086 0.664692i
\(490\) 0 0
\(491\) −200.752 239.247i −0.408863 0.487264i 0.521838 0.853045i \(-0.325247\pi\)
−0.930701 + 0.365781i \(0.880802\pi\)
\(492\) 0 0
\(493\) −399.896 + 145.550i −0.811147 + 0.295233i
\(494\) 0 0
\(495\) 127.672 625.432i 0.257923 1.26350i
\(496\) 0 0
\(497\) −13.5040 + 16.0934i −0.0271709 + 0.0323811i
\(498\) 0 0
\(499\) −7.96919 45.1955i −0.0159703 0.0905722i 0.975781 0.218751i \(-0.0701981\pi\)
−0.991751 + 0.128178i \(0.959087\pi\)
\(500\) 0 0
\(501\) 463.835 + 88.2192i 0.925819 + 0.176086i
\(502\) 0 0
\(503\) −493.829 + 285.113i −0.981768 + 0.566824i −0.902803 0.430053i \(-0.858495\pi\)
−0.0789646 + 0.996877i \(0.525161\pi\)
\(504\) 0 0
\(505\) 86.0690 149.076i 0.170434 0.295200i
\(506\) 0 0
\(507\) −154.768 + 259.947i −0.305261 + 0.512716i
\(508\) 0 0
\(509\) 177.877 488.713i 0.349464 0.960144i −0.633076 0.774090i \(-0.718208\pi\)
0.982540 0.186054i \(-0.0595700\pi\)
\(510\) 0 0
\(511\) −95.5556 + 541.923i −0.186997 + 1.06051i
\(512\) 0 0
\(513\) −330.267 13.3010i −0.643796 0.0259280i
\(514\) 0 0
\(515\) −501.105 88.3583i −0.973020 0.171570i
\(516\) 0 0
\(517\) −627.768 228.489i −1.21425 0.441952i
\(518\) 0 0
\(519\) −2.11336 + 157.501i −0.00407199 + 0.303470i
\(520\) 0 0
\(521\) −365.719 211.148i −0.701956 0.405275i 0.106119 0.994353i \(-0.466157\pi\)
−0.808076 + 0.589079i \(0.799491\pi\)
\(522\) 0 0
\(523\) −500.529 866.942i −0.957035 1.65763i −0.729641 0.683831i \(-0.760313\pi\)
−0.227394 0.973803i \(-0.573021\pi\)
\(524\) 0 0
\(525\) −243.011 209.531i −0.462879 0.399106i
\(526\) 0 0
\(527\) 306.690 54.0777i 0.581954 0.102614i
\(528\) 0 0
\(529\) 238.518 + 200.140i 0.450884 + 0.378337i
\(530\) 0 0
\(531\) 163.483 88.6255i 0.307878 0.166903i
\(532\) 0 0
\(533\) −86.7857 238.442i −0.162825 0.447358i
\(534\) 0 0
\(535\) −170.277 + 142.880i −0.318276 + 0.267065i
\(536\) 0 0
\(537\) −71.2094 + 187.769i −0.132606 + 0.349662i
\(538\) 0 0
\(539\) 166.797i 0.309456i
\(540\) 0 0
\(541\) −192.818 −0.356410 −0.178205 0.983993i \(-0.557029\pi\)
−0.178205 + 0.983993i \(0.557029\pi\)
\(542\) 0 0
\(543\) 62.3031 + 383.346i 0.114739 + 0.705979i
\(544\) 0 0
\(545\) 5.63912 + 6.72044i 0.0103470 + 0.0123311i
\(546\) 0 0
\(547\) −710.023 + 258.427i −1.29803 + 0.472444i −0.896355 0.443338i \(-0.853794\pi\)
−0.401676 + 0.915782i \(0.631572\pi\)
\(548\) 0 0
\(549\) −46.3019 311.207i −0.0843386 0.566861i
\(550\) 0 0
\(551\) 140.015 166.863i 0.254110 0.302837i
\(552\) 0 0
\(553\) 209.673 + 1189.11i 0.379155 + 2.15030i
\(554\) 0 0
\(555\) −104.544 299.684i −0.188368 0.539970i
\(556\) 0 0
\(557\) −741.183 + 427.922i −1.33067 + 0.768262i −0.985402 0.170242i \(-0.945545\pi\)
−0.345267 + 0.938505i \(0.612212\pi\)
\(558\) 0 0
\(559\) 164.412 284.769i 0.294118 0.509427i
\(560\) 0 0
\(561\) 400.964 + 716.522i 0.714730 + 1.27722i
\(562\) 0 0
\(563\) −53.2716 + 146.362i −0.0946209 + 0.259969i −0.977970 0.208748i \(-0.933061\pi\)
0.883349 + 0.468717i \(0.155283\pi\)
\(564\) 0 0
\(565\) 160.397 909.656i 0.283888 1.61001i
\(566\) 0 0
\(567\) −644.919 34.6455i −1.13742 0.0611031i
\(568\) 0 0
\(569\) 626.354 + 110.443i 1.10080 + 0.194100i 0.694395 0.719594i \(-0.255672\pi\)
0.406402 + 0.913694i \(0.366783\pi\)
\(570\) 0 0
\(571\) −943.621 343.450i −1.65258 0.601488i −0.663406 0.748260i \(-0.730890\pi\)
−0.989170 + 0.146772i \(0.953112\pi\)
\(572\) 0 0
\(573\) −710.377 + 397.525i −1.23975 + 0.693761i
\(574\) 0 0
\(575\) 171.380 + 98.9461i 0.298052 + 0.172080i
\(576\) 0 0
\(577\) −414.908 718.642i −0.719079 1.24548i −0.961365 0.275276i \(-0.911231\pi\)
0.242287 0.970205i \(-0.422103\pi\)
\(578\) 0 0
\(579\) 587.718 205.024i 1.01506 0.354101i
\(580\) 0 0
\(581\) −424.561 + 74.8615i −0.730741 + 0.128849i
\(582\) 0 0
\(583\) 800.013 + 671.291i 1.37224 + 1.15144i
\(584\) 0 0
\(585\) −286.439 360.587i −0.489639 0.616389i
\(586\) 0 0
\(587\) −100.401 275.849i −0.171040 0.469930i 0.824323 0.566120i \(-0.191556\pi\)
−0.995363 + 0.0961909i \(0.969334\pi\)
\(588\) 0 0
\(589\) −122.109 + 102.461i −0.207316 + 0.173958i
\(590\) 0 0
\(591\) −529.540 + 86.0631i −0.896006 + 0.145623i
\(592\) 0 0
\(593\) 720.027i 1.21421i 0.794621 + 0.607106i \(0.207670\pi\)
−0.794621 + 0.607106i \(0.792330\pi\)
\(594\) 0 0
\(595\) 1181.95 1.98647
\(596\) 0 0
\(597\) 71.8320 + 27.2416i 0.120322 + 0.0456308i
\(598\) 0 0
\(599\) 297.913 + 355.039i 0.497351 + 0.592719i 0.955071 0.296377i \(-0.0957784\pi\)
−0.457721 + 0.889096i \(0.651334\pi\)
\(600\) 0 0
\(601\) 512.198 186.425i 0.852244 0.310191i 0.121289 0.992617i \(-0.461297\pi\)
0.730955 + 0.682426i \(0.239075\pi\)
\(602\) 0 0
\(603\) −463.894 12.4514i −0.769310 0.0206490i
\(604\) 0 0
\(605\) 39.6507 47.2538i 0.0655383 0.0781055i
\(606\) 0 0
\(607\) 176.997 + 1003.80i 0.291593 + 1.65371i 0.680735 + 0.732529i \(0.261660\pi\)
−0.389142 + 0.921178i \(0.627229\pi\)
\(608\) 0 0
\(609\) 277.932 322.342i 0.456374 0.529297i
\(610\) 0 0
\(611\) −417.387 + 240.979i −0.683122 + 0.394400i
\(612\) 0 0
\(613\) −496.963 + 860.765i −0.810706 + 1.40418i 0.101664 + 0.994819i \(0.467583\pi\)
−0.912370 + 0.409366i \(0.865750\pi\)
\(614\) 0 0
\(615\) −571.442 7.66765i −0.929174 0.0124677i
\(616\) 0 0
\(617\) 323.050 887.573i 0.523582 1.43853i −0.342924 0.939363i \(-0.611417\pi\)
0.866506 0.499166i \(-0.166360\pi\)
\(618\) 0 0
\(619\) 81.4780 462.084i 0.131628 0.746502i −0.845520 0.533944i \(-0.820709\pi\)
0.977148 0.212558i \(-0.0681794\pi\)
\(620\) 0 0
\(621\) 394.733 53.3260i 0.635640 0.0858712i
\(622\) 0 0
\(623\) −1280.49 225.785i −2.05536 0.362416i
\(624\) 0 0
\(625\) 733.350 + 266.917i 1.17336 + 0.427068i
\(626\) 0 0
\(627\) −361.115 215.001i −0.575942 0.342905i
\(628\) 0 0
\(629\) 353.568 + 204.132i 0.562111 + 0.324535i
\(630\) 0 0
\(631\) 510.282 + 883.835i 0.808689 + 1.40069i 0.913773 + 0.406226i \(0.133156\pi\)
−0.105084 + 0.994463i \(0.533511\pi\)
\(632\) 0 0
\(633\) 201.953 1061.82i 0.319042 1.67744i
\(634\) 0 0
\(635\) 104.624 18.4480i 0.164762 0.0290520i
\(636\) 0 0
\(637\) −92.1800 77.3482i −0.144710 0.121426i
\(638\) 0 0
\(639\) 7.50959 + 22.4927i 0.0117521 + 0.0351999i
\(640\) 0 0
\(641\) 384.982 + 1057.73i 0.600596 + 1.65012i 0.750069 + 0.661359i \(0.230020\pi\)
−0.149473 + 0.988766i \(0.547758\pi\)
\(642\) 0 0
\(643\) 163.564 137.247i 0.254377 0.213448i −0.506677 0.862136i \(-0.669126\pi\)
0.761054 + 0.648688i \(0.224682\pi\)
\(644\) 0 0
\(645\) −468.387 573.660i −0.726181 0.889395i
\(646\) 0 0
\(647\) 267.943i 0.414132i −0.978327 0.207066i \(-0.933609\pi\)
0.978327 0.207066i \(-0.0663914\pi\)
\(648\) 0 0
\(649\) 236.447 0.364326
\(650\) 0 0
\(651\) −241.259 + 196.985i −0.370598 + 0.302589i
\(652\) 0 0
\(653\) 34.1737 + 40.7266i 0.0523333 + 0.0623684i 0.791576 0.611071i \(-0.209261\pi\)
−0.739243 + 0.673439i \(0.764816\pi\)
\(654\) 0 0
\(655\) 849.906 309.340i 1.29757 0.472275i
\(656\) 0 0
\(657\) 464.929 + 411.878i 0.707655 + 0.626907i
\(658\) 0 0
\(659\) 322.292 384.092i 0.489062 0.582841i −0.463917 0.885879i \(-0.653556\pi\)
0.952979 + 0.303038i \(0.0980008\pi\)
\(660\) 0 0
\(661\) 100.807 + 571.703i 0.152506 + 0.864906i 0.961030 + 0.276443i \(0.0891557\pi\)
−0.808524 + 0.588463i \(0.799733\pi\)
\(662\) 0 0
\(663\) 581.923 + 110.679i 0.877711 + 0.166936i
\(664\) 0 0
\(665\) −523.933 + 302.493i −0.787869 + 0.454876i
\(666\) 0 0
\(667\) −131.247 + 227.326i −0.196772 + 0.340819i
\(668\) 0 0
\(669\) −13.7916 + 23.1644i −0.0206153 + 0.0346254i
\(670\) 0 0
\(671\) 136.826 375.927i 0.203914 0.560249i
\(672\) 0 0
\(673\) −20.6831 + 117.300i −0.0307327 + 0.174294i −0.996311 0.0858201i \(-0.972649\pi\)
0.965578 + 0.260114i \(0.0837601\pi\)
\(674\) 0 0
\(675\) −345.048 + 110.077i −0.511183 + 0.163078i
\(676\) 0 0
\(677\) −460.585 81.2136i −0.680333 0.119961i −0.177206 0.984174i \(-0.556706\pi\)
−0.503127 + 0.864213i \(0.667817\pi\)
\(678\) 0 0
\(679\) 427.168 + 155.476i 0.629113 + 0.228979i
\(680\) 0 0
\(681\) 2.88919 215.321i 0.00424257 0.316183i
\(682\) 0 0
\(683\) 271.489 + 156.744i 0.397495 + 0.229494i 0.685402 0.728164i \(-0.259626\pi\)
−0.287908 + 0.957658i \(0.592960\pi\)
\(684\) 0 0
\(685\) 269.657 + 467.059i 0.393660 + 0.681839i
\(686\) 0 0
\(687\) −122.547 105.663i −0.178380 0.153803i
\(688\) 0 0
\(689\) 741.976 130.830i 1.07689 0.189884i
\(690\) 0 0
\(691\) 515.245 + 432.342i 0.745651 + 0.625675i 0.934349 0.356360i \(-0.115982\pi\)
−0.188698 + 0.982035i \(0.560427\pi\)
\(692\) 0 0
\(693\) −699.901 429.530i −1.00996 0.619813i
\(694\) 0 0
\(695\) 78.1382 + 214.683i 0.112429 + 0.308896i
\(696\) 0 0
\(697\) 563.127 472.520i 0.807930 0.677934i
\(698\) 0 0
\(699\) 385.801 1017.30i 0.551933 1.45536i
\(700\) 0 0
\(701\) 906.580i 1.29327i −0.762801 0.646633i \(-0.776176\pi\)
0.762801 0.646633i \(-0.223824\pi\)
\(702\) 0 0
\(703\) −208.972 −0.297257
\(704\) 0 0
\(705\) 174.133 + 1071.43i 0.246997 + 1.51975i
\(706\) 0 0
\(707\) −142.346 169.641i −0.201338 0.239945i
\(708\) 0 0
\(709\) 27.2901 9.93278i 0.0384910 0.0140096i −0.322703 0.946500i \(-0.604591\pi\)
0.361194 + 0.932491i \(0.382369\pi\)
\(710\) 0 0
\(711\) 1267.75 + 500.340i 1.78306 + 0.703714i
\(712\) 0 0
\(713\) 123.473 147.150i 0.173175 0.206381i
\(714\) 0 0
\(715\) −101.678 576.642i −0.142206 0.806492i
\(716\) 0 0
\(717\) 248.589 + 712.598i 0.346707 + 0.993860i
\(718\) 0 0
\(719\) 837.314 483.423i 1.16455 0.672355i 0.212162 0.977234i \(-0.431949\pi\)
0.952391 + 0.304879i \(0.0986161\pi\)
\(720\) 0 0
\(721\) −327.301 + 566.902i −0.453955 + 0.786272i
\(722\) 0 0
\(723\) 590.255 + 1054.79i 0.816397 + 1.45890i
\(724\) 0 0
\(725\) 81.6331 224.285i 0.112597 0.309359i
\(726\) 0 0
\(727\) −152.352 + 864.032i −0.209563 + 1.18849i 0.680533 + 0.732717i \(0.261748\pi\)
−0.890096 + 0.455773i \(0.849363\pi\)
\(728\) 0 0
\(729\) −414.089 + 599.976i −0.568024 + 0.823012i
\(730\) 0 0
\(731\) 938.145 + 165.420i 1.28337 + 0.226293i
\(732\) 0 0
\(733\) −34.0124 12.3795i −0.0464017 0.0168888i 0.318715 0.947851i \(-0.396749\pi\)
−0.365117 + 0.930962i \(0.618971\pi\)
\(734\) 0 0
\(735\) −236.505 + 132.347i −0.321775 + 0.180065i
\(736\) 0 0
\(737\) −510.999 295.026i −0.693350 0.400306i
\(738\) 0 0
\(739\) −237.815 411.907i −0.321806 0.557384i 0.659055 0.752095i \(-0.270957\pi\)
−0.980861 + 0.194711i \(0.937623\pi\)
\(740\) 0 0
\(741\) −286.279 + 99.8680i −0.386342 + 0.134775i
\(742\) 0 0
\(743\) −50.1096 + 8.83567i −0.0674422 + 0.0118919i −0.207267 0.978284i \(-0.566457\pi\)
0.139825 + 0.990176i \(0.455346\pi\)
\(744\) 0 0
\(745\) 306.700 + 257.352i 0.411677 + 0.345438i
\(746\) 0 0
\(747\) −178.641 + 452.638i −0.239145 + 0.605941i
\(748\) 0 0
\(749\) 97.8037 + 268.713i 0.130579 + 0.358763i
\(750\) 0 0
\(751\) −36.1543 + 30.3371i −0.0481416 + 0.0403956i −0.666541 0.745468i \(-0.732226\pi\)
0.618399 + 0.785864i \(0.287781\pi\)
\(752\) 0 0
\(753\) 1125.89 182.984i 1.49520 0.243006i
\(754\) 0 0
\(755\) 957.307i 1.26796i
\(756\) 0 0
\(757\) 973.584 1.28611 0.643054 0.765821i \(-0.277667\pi\)
0.643054 + 0.765821i \(0.277667\pi\)
\(758\) 0 0
\(759\) 473.549 + 179.589i 0.623912 + 0.236613i
\(760\) 0 0
\(761\) −10.4814 12.4913i −0.0137733 0.0164143i 0.759114 0.650958i \(-0.225633\pi\)
−0.772887 + 0.634544i \(0.781188\pi\)
\(762\) 0 0
\(763\) 10.6055 3.86008i 0.0138997 0.00505908i
\(764\) 0 0
\(765\) 697.822 1137.07i 0.912186 1.48637i
\(766\) 0 0
\(767\) 109.647 130.672i 0.142956 0.170368i
\(768\) 0 0
\(769\) 24.6634 + 139.873i 0.0320720 + 0.181890i 0.996636 0.0819614i \(-0.0261184\pi\)
−0.964563 + 0.263851i \(0.915007\pi\)
\(770\) 0 0
\(771\) 42.4884 49.2775i 0.0551081 0.0639138i
\(772\) 0 0
\(773\) 991.099 572.211i 1.28215 0.740248i 0.304906 0.952382i \(-0.401375\pi\)
0.977240 + 0.212135i \(0.0680416\pi\)
\(774\) 0 0
\(775\) −87.3317 + 151.263i −0.112686 + 0.195178i
\(776\) 0 0
\(777\) −408.283 5.47838i −0.525461 0.00705068i
\(778\) 0 0
\(779\) −128.691 + 353.577i −0.165201 + 0.453886i
\(780\) 0 0
\(781\) −5.23571 + 29.6932i −0.00670385 + 0.0380194i
\(782\) 0 0
\(783\) −146.012 457.689i −0.186478 0.584532i
\(784\) 0 0
\(785\) −1175.30 207.237i −1.49720 0.263997i
\(786\) 0 0
\(787\) −243.549 88.6445i −0.309465 0.112636i 0.182619 0.983184i \(-0.441542\pi\)
−0.492084 + 0.870548i \(0.663765\pi\)
\(788\) 0 0
\(789\) −174.969 104.173i −0.221761 0.132032i
\(790\) 0 0
\(791\) −1029.10 594.150i −1.30101 0.751138i
\(792\) 0 0
\(793\) −144.305 249.944i −0.181974 0.315188i
\(794\) 0 0
\(795\) 317.056 1667.00i 0.398812 2.09686i
\(796\) 0 0
\(797\) −1045.29 + 184.314i −1.31154 + 0.231259i −0.785319 0.619091i \(-0.787501\pi\)
−0.526217 + 0.850350i \(0.676390\pi\)
\(798\) 0 0
\(799\) −1069.59 897.495i −1.33866 1.12327i
\(800\) 0 0
\(801\) −973.213 + 1098.57i −1.21500 + 1.37149i
\(802\) 0 0
\(803\) 270.115 + 742.135i 0.336382 + 0.924203i
\(804\) 0 0
\(805\) 558.485 468.625i 0.693770 0.582142i
\(806\) 0 0
\(807\) −551.335 675.252i −0.683191 0.836743i
\(808\) 0 0
\(809\) 1471.80i 1.81928i −0.415398 0.909640i \(-0.636358\pi\)
0.415398 0.909640i \(-0.363642\pi\)
\(810\) 0 0
\(811\) −128.574 −0.158537 −0.0792685 0.996853i \(-0.525258\pi\)
−0.0792685 + 0.996853i \(0.525258\pi\)
\(812\) 0 0
\(813\) −963.549 + 786.727i −1.18518 + 0.967684i
\(814\) 0 0
\(815\) −682.486 813.355i −0.837406 0.997981i
\(816\) 0 0
\(817\) −458.195 + 166.769i −0.560826 + 0.204124i
\(818\) 0 0
\(819\) −561.943 + 187.614i −0.686133 + 0.229077i
\(820\) 0 0
\(821\) 956.042 1139.37i 1.16448 1.38778i 0.257678 0.966231i \(-0.417043\pi\)
0.906806 0.421547i \(-0.138513\pi\)
\(822\) 0 0
\(823\) 208.329 + 1181.49i 0.253134 + 1.43559i 0.800818 + 0.598907i \(0.204398\pi\)
−0.547685 + 0.836685i \(0.684491\pi\)
\(824\) 0 0
\(825\) −452.402 86.0446i −0.548366 0.104296i
\(826\) 0 0
\(827\) 609.332 351.798i 0.736798 0.425391i −0.0841057 0.996457i \(-0.526803\pi\)
0.820904 + 0.571066i \(0.193470\pi\)
\(828\) 0 0
\(829\) 112.799 195.374i 0.136066 0.235674i −0.789938 0.613187i \(-0.789887\pi\)
0.926004 + 0.377513i \(0.123221\pi\)
\(830\) 0 0
\(831\) 268.775 451.434i 0.323436 0.543242i
\(832\) 0 0
\(833\) 119.231 327.585i 0.143135 0.393260i
\(834\) 0 0
\(835\) 169.385 960.629i 0.202856 1.15045i
\(836\) 0 0
\(837\) 47.0665 + 348.398i 0.0562324 + 0.416246i
\(838\) 0 0
\(839\) 703.465 + 124.040i 0.838456 + 0.147842i 0.576356 0.817198i \(-0.304474\pi\)
0.262100 + 0.965041i \(0.415585\pi\)
\(840\) 0 0
\(841\) −492.779 179.357i −0.585944 0.213266i
\(842\) 0 0
\(843\) −15.1046 + 1125.69i −0.0179176 + 1.33533i
\(844\) 0 0
\(845\) 541.285 + 312.511i 0.640574 + 0.369836i
\(846\) 0 0
\(847\) −39.6783 68.7249i −0.0468457 0.0811392i
\(848\) 0 0
\(849\) 33.5732 + 28.9477i 0.0395444 + 0.0340962i
\(850\) 0 0
\(851\) 248.000 43.7291i 0.291422 0.0513855i
\(852\) 0 0
\(853\) 199.629 + 167.509i 0.234032 + 0.196376i 0.752260 0.658866i \(-0.228964\pi\)
−0.518228 + 0.855242i \(0.673408\pi\)
\(854\) 0 0
\(855\) −18.3225 + 682.630i −0.0214298 + 0.798397i
\(856\) 0 0
\(857\) 354.046 + 972.733i 0.413122 + 1.13504i 0.955521 + 0.294923i \(0.0952940\pi\)
−0.542399 + 0.840121i \(0.682484\pi\)
\(858\) 0 0
\(859\) 427.947 359.090i 0.498192 0.418033i −0.358759 0.933430i \(-0.616800\pi\)
0.856951 + 0.515397i \(0.172356\pi\)
\(860\) 0 0
\(861\) −260.703 + 687.435i −0.302791 + 0.798415i
\(862\) 0 0
\(863\) 251.585i 0.291523i −0.989320 0.145762i \(-0.953437\pi\)
0.989320 0.145762i \(-0.0465633\pi\)
\(864\) 0 0
\(865\) 325.422 0.376210
\(866\) 0 0
\(867\) 136.209 + 838.083i 0.157104 + 0.966647i
\(868\) 0 0
\(869\) 1113.91 + 1327.51i 1.28183 + 1.52763i
\(870\) 0 0
\(871\) −400.010 + 145.592i −0.459253 + 0.167155i
\(872\) 0 0
\(873\) 401.772 319.155i 0.460220 0.365584i
\(874\) 0 0
\(875\) 368.034 438.605i 0.420610 0.501263i
\(876\) 0 0
\(877\) −84.6067 479.828i −0.0964729 0.547125i −0.994286 0.106748i \(-0.965956\pi\)
0.897813 0.440376i \(-0.145155\pi\)
\(878\) 0 0
\(879\) −131.370 376.581i −0.149454 0.428420i
\(880\) 0 0
\(881\) −53.6224 + 30.9589i −0.0608654 + 0.0351407i −0.530124 0.847920i \(-0.677855\pi\)
0.469258 + 0.883061i \(0.344521\pi\)
\(882\) 0 0
\(883\) −50.9265 + 88.2073i −0.0576744 + 0.0998950i −0.893421 0.449220i \(-0.851702\pi\)
0.835747 + 0.549115i \(0.185035\pi\)
\(884\) 0 0
\(885\) −187.613 335.264i −0.211992 0.378830i
\(886\) 0 0
\(887\) −430.135 + 1181.79i −0.484933 + 1.33234i 0.420284 + 0.907393i \(0.361930\pi\)
−0.905217 + 0.424950i \(0.860292\pi\)
\(888\) 0 0
\(889\) 23.7328 134.595i 0.0266961 0.151401i
\(890\) 0 0
\(891\) −826.442 + 419.731i −0.927544 + 0.471079i
\(892\) 0 0
\(893\) 703.820 + 124.102i 0.788152 + 0.138972i
\(894\) 0 0
\(895\) 389.863 + 141.899i 0.435602 + 0.158546i
\(896\) 0 0
\(897\) 318.847 178.426i 0.355460 0.198914i
\(898\) 0 0
\(899\) −200.642 115.841i −0.223184 0.128855i
\(900\) 0 0
\(901\) 1091.35 + 1890.27i 1.21127 + 2.09797i
\(902\) 0 0
\(903\) −899.581 + 313.817i −0.996213 + 0.347527i
\(904\) 0 0
\(905\) 790.184 139.331i 0.873132 0.153957i
\(906\) 0 0
\(907\) 639.102 + 536.271i 0.704633 + 0.591258i 0.923088 0.384590i \(-0.125657\pi\)
−0.218454 + 0.975847i \(0.570101\pi\)
\(908\) 0 0
\(909\) −247.240 + 36.7849i −0.271992 + 0.0404674i
\(910\) 0 0
\(911\) 244.801 + 672.586i 0.268717 + 0.738294i 0.998507 + 0.0546228i \(0.0173956\pi\)
−0.729790 + 0.683671i \(0.760382\pi\)
\(912\) 0 0
\(913\) −473.973 + 397.711i −0.519138 + 0.435609i
\(914\) 0 0
\(915\) −641.602 + 104.276i −0.701205 + 0.113963i
\(916\) 0 0
\(917\) 1163.55i 1.26887i
\(918\) 0 0
\(919\) 714.401 0.777367 0.388684 0.921371i \(-0.372930\pi\)
0.388684 + 0.921371i \(0.372930\pi\)
\(920\) 0 0
\(921\) −197.806 75.0162i −0.214773 0.0814508i
\(922\) 0 0
\(923\) 13.9819 + 16.6630i 0.0151484 + 0.0180531i
\(924\) 0 0
\(925\) −215.170 + 78.3155i −0.232616 + 0.0846654i
\(926\) 0 0
\(927\) 352.138 + 649.572i 0.379869 + 0.700725i
\(928\) 0 0
\(929\) −207.867 + 247.726i −0.223753 + 0.266659i −0.866229 0.499647i \(-0.833463\pi\)
0.642476 + 0.766306i \(0.277907\pi\)
\(930\) 0 0
\(931\) 30.9852 + 175.726i 0.0332816 + 0.188750i
\(932\) 0 0
\(933\) 119.458 138.546i 0.128036 0.148495i
\(934\) 0 0
\(935\) 1469.07 848.166i 1.57119 0.907129i
\(936\) 0 0
\(937\) 530.062 918.094i 0.565701 0.979823i −0.431283 0.902217i \(-0.641939\pi\)
0.996984 0.0776063i \(-0.0247277\pi\)
\(938\) 0 0
\(939\) −633.941 8.50627i −0.675124 0.00905886i
\(940\) 0 0
\(941\) −444.757 + 1221.96i −0.472643 + 1.29858i 0.442977 + 0.896533i \(0.353922\pi\)
−0.915620 + 0.402044i \(0.868300\pi\)
\(942\) 0 0
\(943\) 78.7374 446.542i 0.0834967 0.473533i
\(944\) 0 0
\(945\) −53.6937 + 1333.22i −0.0568187 + 1.41082i
\(946\) 0 0
\(947\) −1618.54 285.392i −1.70912 0.301364i −0.768254 0.640145i \(-0.778874\pi\)
−0.940865 + 0.338781i \(0.889985\pi\)
\(948\) 0 0
\(949\) 535.400 + 194.870i 0.564172 + 0.205342i
\(950\) 0 0
\(951\) −344.872 205.330i −0.362641 0.215910i
\(952\) 0 0
\(953\) 404.262 + 233.401i 0.424199 + 0.244912i 0.696872 0.717195i \(-0.254574\pi\)
−0.272673 + 0.962107i \(0.587908\pi\)
\(954\) 0 0
\(955\) 840.892 + 1456.47i 0.880515 + 1.52510i
\(956\) 0 0
\(957\) 114.134 600.087i 0.119262 0.627051i
\(958\) 0 0
\(959\) 683.271 120.479i 0.712483 0.125630i
\(960\) 0 0
\(961\) −606.291 508.739i −0.630896 0.529385i
\(962\) 0 0
\(963\) 316.253 + 64.5581i 0.328404 + 0.0670385i
\(964\) 0 0
\(965\) −439.827 1208.41i −0.455779 1.25224i
\(966\) 0 0
\(967\) 878.060 736.780i 0.908025 0.761923i −0.0637176 0.997968i \(-0.520296\pi\)
0.971742 + 0.236045i \(0.0758512\pi\)
\(968\) 0 0
\(969\) −555.534 680.394i −0.573306 0.702161i
\(970\) 0 0
\(971\) 1439.65i 1.48264i −0.671150 0.741322i \(-0.734199\pi\)
0.671150 0.741322i \(-0.265801\pi\)
\(972\) 0 0
\(973\) 293.908 0.302064
\(974\) 0 0
\(975\) −257.343 + 210.118i −0.263942 + 0.215506i
\(976\) 0 0
\(977\) −885.175 1054.91i −0.906013 1.07974i −0.996479 0.0838447i \(-0.973280\pi\)
0.0904659 0.995900i \(-0.471164\pi\)
\(978\) 0 0
\(979\) −1753.57 + 638.247i −1.79118 + 0.651937i
\(980\) 0 0
\(981\) 2.54795 12.4818i 0.00259730 0.0127235i
\(982\) 0 0
\(983\) 792.551 944.525i 0.806257 0.960860i −0.193538 0.981093i \(-0.561996\pi\)
0.999795 + 0.0202328i \(0.00644073\pi\)
\(984\) 0 0
\(985\) 192.466 + 1091.53i 0.195397 + 1.10815i
\(986\) 0 0
\(987\) 1371.85 + 260.919i 1.38992 + 0.264356i
\(988\) 0 0
\(989\) 508.871 293.797i 0.514531 0.297064i
\(990\) 0 0
\(991\) −25.7878 + 44.6657i −0.0260220 + 0.0450714i −0.878743 0.477295i \(-0.841617\pi\)
0.852721 + 0.522366i \(0.174951\pi\)
\(992\) 0 0
\(993\) 135.365 227.358i 0.136319 0.228961i
\(994\) 0 0
\(995\) 54.2842 149.145i 0.0545570 0.149894i
\(996\) 0 0
\(997\) −143.357 + 813.019i −0.143789 + 0.815465i 0.824543 + 0.565799i \(0.191432\pi\)
−0.968332 + 0.249667i \(0.919679\pi\)
\(998\) 0 0
\(999\) −246.320 + 389.546i −0.246567 + 0.389936i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.3.bc.a.353.1 30
4.3 odd 2 27.3.f.a.2.3 30
12.11 even 2 81.3.f.a.8.3 30
27.14 odd 18 inner 432.3.bc.a.257.1 30
36.7 odd 6 243.3.f.c.188.3 30
36.11 even 6 243.3.f.b.188.3 30
36.23 even 6 243.3.f.a.107.3 30
36.31 odd 6 243.3.f.d.107.3 30
108.11 even 18 729.3.b.a.728.15 30
108.23 even 18 243.3.f.d.134.3 30
108.31 odd 18 243.3.f.a.134.3 30
108.43 odd 18 729.3.b.a.728.16 30
108.59 even 18 243.3.f.c.53.3 30
108.67 odd 18 81.3.f.a.71.3 30
108.95 even 18 27.3.f.a.14.3 yes 30
108.103 odd 18 243.3.f.b.53.3 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.f.a.2.3 30 4.3 odd 2
27.3.f.a.14.3 yes 30 108.95 even 18
81.3.f.a.8.3 30 12.11 even 2
81.3.f.a.71.3 30 108.67 odd 18
243.3.f.a.107.3 30 36.23 even 6
243.3.f.a.134.3 30 108.31 odd 18
243.3.f.b.53.3 30 108.103 odd 18
243.3.f.b.188.3 30 36.11 even 6
243.3.f.c.53.3 30 108.59 even 18
243.3.f.c.188.3 30 36.7 odd 6
243.3.f.d.107.3 30 36.31 odd 6
243.3.f.d.134.3 30 108.23 even 18
432.3.bc.a.257.1 30 27.14 odd 18 inner
432.3.bc.a.353.1 30 1.1 even 1 trivial
729.3.b.a.728.15 30 108.11 even 18
729.3.b.a.728.16 30 108.43 odd 18