Properties

Label 432.2.v.a.395.17
Level $432$
Weight $2$
Character 432.395
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 395.17
Character \(\chi\) \(=\) 432.395
Dual form 432.2.v.a.35.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.09161 + 0.899102i) q^{2} +(0.383232 + 1.96294i) q^{4} +(0.726024 + 2.70956i) q^{5} +(-0.00424642 - 0.00735502i) q^{7} +(-1.34654 + 2.48733i) q^{8} +(-1.64363 + 3.61055i) q^{10} +(-0.804193 + 3.00129i) q^{11} +(-1.72108 - 6.42317i) q^{13} +(0.00197747 - 0.0118468i) q^{14} +(-3.70627 + 1.50452i) q^{16} -3.37812i q^{17} +(1.35881 + 1.35881i) q^{19} +(-5.04046 + 2.46353i) q^{20} +(-3.57633 + 2.55319i) q^{22} +(5.38718 + 3.11029i) q^{23} +(-2.48446 + 1.43441i) q^{25} +(3.89633 - 8.55903i) q^{26} +(0.0128101 - 0.0111542i) q^{28} +(-0.878030 + 3.27685i) q^{29} +(6.70211 + 3.86947i) q^{31} +(-5.39852 - 1.68996i) q^{32} +(3.03727 - 3.68759i) q^{34} +(0.0168459 - 0.0168459i) q^{35} +(0.769697 + 0.769697i) q^{37} +(0.261585 + 2.70501i) q^{38} +(-7.71719 - 1.84267i) q^{40} +(2.64756 - 4.58570i) q^{41} +(-5.99790 - 1.60713i) q^{43} +(-6.19954 - 0.428394i) q^{44} +(3.08424 + 8.23886i) q^{46} +(0.0955284 + 0.165460i) q^{47} +(3.49996 - 6.06212i) q^{49} +(-4.00175 - 0.667972i) q^{50} +(11.9487 - 5.83994i) q^{52} +(0.750557 - 0.750557i) q^{53} -8.71603 q^{55} +(0.0240124 - 0.000658413i) q^{56} +(-3.90469 + 2.78761i) q^{58} +(9.08809 - 2.43515i) q^{59} +(9.85796 + 2.64143i) q^{61} +(3.83706 + 10.2498i) q^{62} +(-4.37364 - 6.69860i) q^{64} +(16.1544 - 9.32674i) q^{65} +(-7.77154 + 2.08238i) q^{67} +(6.63104 - 1.29460i) q^{68} +(0.0335353 - 0.00324299i) q^{70} -1.02260i q^{71} -7.30911i q^{73} +(0.148174 + 1.53225i) q^{74} +(-2.14653 + 3.18801i) q^{76} +(0.0254895 - 0.00682989i) q^{77} +(4.36074 - 2.51768i) q^{79} +(-6.76742 - 8.95003i) q^{80} +(7.01311 - 2.62538i) q^{82} +(-12.5030 - 3.35017i) q^{83} +(9.15320 - 2.45259i) q^{85} +(-5.10240 - 7.14709i) q^{86} +(-6.38232 - 6.04166i) q^{88} -18.1774 q^{89} +(-0.0399341 + 0.0399341i) q^{91} +(-4.04078 + 11.7667i) q^{92} +(-0.0444856 + 0.266508i) q^{94} +(-2.69525 + 4.66831i) q^{95} +(1.64497 + 2.84917i) q^{97} +(9.27106 - 3.47065i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.09161 + 0.899102i 0.771886 + 0.635761i
\(3\) 0 0
\(4\) 0.383232 + 1.96294i 0.191616 + 0.981470i
\(5\) 0.726024 + 2.70956i 0.324688 + 1.21175i 0.914625 + 0.404302i \(0.132486\pi\)
−0.589938 + 0.807449i \(0.700848\pi\)
\(6\) 0 0
\(7\) −0.00424642 0.00735502i −0.00160500 0.00277994i 0.865222 0.501389i \(-0.167178\pi\)
−0.866827 + 0.498609i \(0.833844\pi\)
\(8\) −1.34654 + 2.48733i −0.476075 + 0.879405i
\(9\) 0 0
\(10\) −1.64363 + 3.61055i −0.519762 + 1.14176i
\(11\) −0.804193 + 3.00129i −0.242473 + 0.904923i 0.732163 + 0.681129i \(0.238511\pi\)
−0.974637 + 0.223794i \(0.928156\pi\)
\(12\) 0 0
\(13\) −1.72108 6.42317i −0.477342 1.78147i −0.612312 0.790616i \(-0.709760\pi\)
0.134969 0.990850i \(-0.456906\pi\)
\(14\) 0.00197747 0.0118468i 0.000528501 0.00316619i
\(15\) 0 0
\(16\) −3.70627 + 1.50452i −0.926567 + 0.376130i
\(17\) 3.37812i 0.819314i −0.912240 0.409657i \(-0.865648\pi\)
0.912240 0.409657i \(-0.134352\pi\)
\(18\) 0 0
\(19\) 1.35881 + 1.35881i 0.311733 + 0.311733i 0.845581 0.533848i \(-0.179254\pi\)
−0.533848 + 0.845581i \(0.679254\pi\)
\(20\) −5.04046 + 2.46353i −1.12708 + 0.550862i
\(21\) 0 0
\(22\) −3.57633 + 2.55319i −0.762477 + 0.544342i
\(23\) 5.38718 + 3.11029i 1.12331 + 0.648541i 0.942243 0.334931i \(-0.108713\pi\)
0.181062 + 0.983472i \(0.442046\pi\)
\(24\) 0 0
\(25\) −2.48446 + 1.43441i −0.496893 + 0.286881i
\(26\) 3.89633 8.55903i 0.764133 1.67856i
\(27\) 0 0
\(28\) 0.0128101 0.0111542i 0.00242088 0.00210794i
\(29\) −0.878030 + 3.27685i −0.163046 + 0.608496i 0.835235 + 0.549893i \(0.185331\pi\)
−0.998281 + 0.0586036i \(0.981335\pi\)
\(30\) 0 0
\(31\) 6.70211 + 3.86947i 1.20374 + 0.694977i 0.961384 0.275212i \(-0.0887479\pi\)
0.242352 + 0.970188i \(0.422081\pi\)
\(32\) −5.39852 1.68996i −0.954333 0.298745i
\(33\) 0 0
\(34\) 3.03727 3.68759i 0.520888 0.632417i
\(35\) 0.0168459 0.0168459i 0.00284747 0.00284747i
\(36\) 0 0
\(37\) 0.769697 + 0.769697i 0.126537 + 0.126537i 0.767539 0.641002i \(-0.221481\pi\)
−0.641002 + 0.767539i \(0.721481\pi\)
\(38\) 0.261585 + 2.70501i 0.0424346 + 0.438810i
\(39\) 0 0
\(40\) −7.71719 1.84267i −1.22020 0.291352i
\(41\) 2.64756 4.58570i 0.413479 0.716166i −0.581789 0.813340i \(-0.697647\pi\)
0.995267 + 0.0971739i \(0.0309803\pi\)
\(42\) 0 0
\(43\) −5.99790 1.60713i −0.914672 0.245086i −0.229365 0.973340i \(-0.573665\pi\)
−0.685306 + 0.728255i \(0.740332\pi\)
\(44\) −6.19954 0.428394i −0.934617 0.0645828i
\(45\) 0 0
\(46\) 3.08424 + 8.23886i 0.454747 + 1.21475i
\(47\) 0.0955284 + 0.165460i 0.0139343 + 0.0241348i 0.872908 0.487884i \(-0.162231\pi\)
−0.858974 + 0.512019i \(0.828898\pi\)
\(48\) 0 0
\(49\) 3.49996 6.06212i 0.499995 0.866016i
\(50\) −4.00175 0.667972i −0.565932 0.0944655i
\(51\) 0 0
\(52\) 11.9487 5.83994i 1.65699 0.809854i
\(53\) 0.750557 0.750557i 0.103097 0.103097i −0.653677 0.756774i \(-0.726774\pi\)
0.756774 + 0.653677i \(0.226774\pi\)
\(54\) 0 0
\(55\) −8.71603 −1.17527
\(56\) 0.0240124 0.000658413i 0.00320879 8.79842e-5i
\(57\) 0 0
\(58\) −3.90469 + 2.78761i −0.512711 + 0.366031i
\(59\) 9.08809 2.43515i 1.18317 0.317029i 0.386986 0.922086i \(-0.373516\pi\)
0.796182 + 0.605057i \(0.206850\pi\)
\(60\) 0 0
\(61\) 9.85796 + 2.64143i 1.26218 + 0.338201i 0.827031 0.562156i \(-0.190028\pi\)
0.435152 + 0.900357i \(0.356695\pi\)
\(62\) 3.83706 + 10.2498i 0.487307 + 1.30173i
\(63\) 0 0
\(64\) −4.37364 6.69860i −0.546705 0.837325i
\(65\) 16.1544 9.32674i 2.00371 1.15684i
\(66\) 0 0
\(67\) −7.77154 + 2.08238i −0.949445 + 0.254403i −0.700127 0.714019i \(-0.746873\pi\)
−0.249318 + 0.968422i \(0.580206\pi\)
\(68\) 6.63104 1.29460i 0.804132 0.156993i
\(69\) 0 0
\(70\) 0.0335353 0.00324299i 0.00400823 0.000387611i
\(71\) 1.02260i 0.121360i −0.998157 0.0606801i \(-0.980673\pi\)
0.998157 0.0606801i \(-0.0193269\pi\)
\(72\) 0 0
\(73\) 7.30911i 0.855467i −0.903905 0.427734i \(-0.859312\pi\)
0.903905 0.427734i \(-0.140688\pi\)
\(74\) 0.148174 + 1.53225i 0.0172249 + 0.178120i
\(75\) 0 0
\(76\) −2.14653 + 3.18801i −0.246224 + 0.365690i
\(77\) 0.0254895 0.00682989i 0.00290480 0.000778338i
\(78\) 0 0
\(79\) 4.36074 2.51768i 0.490622 0.283261i −0.234211 0.972186i \(-0.575251\pi\)
0.724832 + 0.688925i \(0.241917\pi\)
\(80\) −6.76742 8.95003i −0.756621 1.00064i
\(81\) 0 0
\(82\) 7.01311 2.62538i 0.774469 0.289925i
\(83\) −12.5030 3.35017i −1.37238 0.367729i −0.504034 0.863684i \(-0.668151\pi\)
−0.868348 + 0.495955i \(0.834818\pi\)
\(84\) 0 0
\(85\) 9.15320 2.45259i 0.992804 0.266021i
\(86\) −5.10240 7.14709i −0.550206 0.770691i
\(87\) 0 0
\(88\) −6.38232 6.04166i −0.680358 0.644043i
\(89\) −18.1774 −1.92680 −0.963399 0.268070i \(-0.913614\pi\)
−0.963399 + 0.268070i \(0.913614\pi\)
\(90\) 0 0
\(91\) −0.0399341 + 0.0399341i −0.00418623 + 0.00418623i
\(92\) −4.04078 + 11.7667i −0.421280 + 1.22676i
\(93\) 0 0
\(94\) −0.0444856 + 0.266508i −0.00458833 + 0.0274882i
\(95\) −2.69525 + 4.66831i −0.276527 + 0.478959i
\(96\) 0 0
\(97\) 1.64497 + 2.84917i 0.167021 + 0.289289i 0.937371 0.348332i \(-0.113252\pi\)
−0.770350 + 0.637621i \(0.779918\pi\)
\(98\) 9.27106 3.47065i 0.936519 0.350589i
\(99\) 0 0
\(100\) −3.76778 4.32714i −0.376778 0.432714i
\(101\) −2.66775 0.714822i −0.265451 0.0711275i 0.123638 0.992327i \(-0.460544\pi\)
−0.389090 + 0.921200i \(0.627210\pi\)
\(102\) 0 0
\(103\) 5.52502 9.56961i 0.544396 0.942922i −0.454249 0.890875i \(-0.650092\pi\)
0.998645 0.0520466i \(-0.0165744\pi\)
\(104\) 18.2941 + 4.36817i 1.79388 + 0.428334i
\(105\) 0 0
\(106\) 1.49414 0.144490i 0.145124 0.0140341i
\(107\) 1.93562 + 1.93562i 0.187124 + 0.187124i 0.794451 0.607328i \(-0.207759\pi\)
−0.607328 + 0.794451i \(0.707759\pi\)
\(108\) 0 0
\(109\) 5.98392 5.98392i 0.573155 0.573155i −0.359853 0.933009i \(-0.617173\pi\)
0.933009 + 0.359853i \(0.117173\pi\)
\(110\) −9.51452 7.83660i −0.907174 0.747190i
\(111\) 0 0
\(112\) 0.0268042 + 0.0208708i 0.00253276 + 0.00197211i
\(113\) −11.7864 6.80488i −1.10877 0.640149i −0.170260 0.985399i \(-0.554461\pi\)
−0.938511 + 0.345250i \(0.887794\pi\)
\(114\) 0 0
\(115\) −4.51629 + 16.8550i −0.421146 + 1.57174i
\(116\) −6.76876 0.467727i −0.628463 0.0434274i
\(117\) 0 0
\(118\) 12.1101 + 5.51288i 1.11483 + 0.507502i
\(119\) −0.0248461 + 0.0143449i −0.00227764 + 0.00131500i
\(120\) 0 0
\(121\) 1.16526 + 0.672766i 0.105933 + 0.0611605i
\(122\) 8.38615 + 11.7467i 0.759246 + 1.06350i
\(123\) 0 0
\(124\) −5.02707 + 14.6388i −0.451444 + 1.31460i
\(125\) 4.22728 + 4.22728i 0.378100 + 0.378100i
\(126\) 0 0
\(127\) 7.01184i 0.622200i −0.950377 0.311100i \(-0.899303\pi\)
0.950377 0.311100i \(-0.100697\pi\)
\(128\) 1.24840 11.2446i 0.110344 0.993893i
\(129\) 0 0
\(130\) 26.0200 + 4.34327i 2.28211 + 0.380930i
\(131\) 2.15546 + 8.04427i 0.188323 + 0.702831i 0.993895 + 0.110333i \(0.0351916\pi\)
−0.805572 + 0.592498i \(0.798142\pi\)
\(132\) 0 0
\(133\) 0.00422400 0.0157642i 0.000366268 0.00136693i
\(134\) −10.3558 4.71426i −0.894603 0.407250i
\(135\) 0 0
\(136\) 8.40250 + 4.54878i 0.720508 + 0.390055i
\(137\) −2.71852 4.70861i −0.232259 0.402284i 0.726214 0.687469i \(-0.241278\pi\)
−0.958472 + 0.285185i \(0.907945\pi\)
\(138\) 0 0
\(139\) 3.64349 + 13.5977i 0.309037 + 1.15334i 0.929414 + 0.369038i \(0.120313\pi\)
−0.620378 + 0.784303i \(0.713021\pi\)
\(140\) 0.0395233 + 0.0266115i 0.00334033 + 0.00224909i
\(141\) 0 0
\(142\) 0.919421 1.11628i 0.0771561 0.0936762i
\(143\) 20.6619 1.72783
\(144\) 0 0
\(145\) −9.51629 −0.790285
\(146\) 6.57164 7.97871i 0.543873 0.660323i
\(147\) 0 0
\(148\) −1.21590 + 1.80584i −0.0999461 + 0.148439i
\(149\) −2.45769 9.17223i −0.201342 0.751419i −0.990533 0.137271i \(-0.956167\pi\)
0.789191 0.614147i \(-0.210500\pi\)
\(150\) 0 0
\(151\) −2.26744 3.92732i −0.184522 0.319601i 0.758893 0.651215i \(-0.225740\pi\)
−0.943415 + 0.331614i \(0.892407\pi\)
\(152\) −5.20952 + 1.55012i −0.422548 + 0.125731i
\(153\) 0 0
\(154\) 0.0339654 + 0.0154621i 0.00273701 + 0.00124597i
\(155\) −5.61865 + 20.9691i −0.451301 + 1.68428i
\(156\) 0 0
\(157\) 5.12011 + 19.1085i 0.408629 + 1.52502i 0.797263 + 0.603632i \(0.206280\pi\)
−0.388634 + 0.921392i \(0.627053\pi\)
\(158\) 7.02388 + 1.17243i 0.558790 + 0.0932733i
\(159\) 0 0
\(160\) 0.659586 15.8546i 0.0521449 1.25341i
\(161\) 0.0528305i 0.00416362i
\(162\) 0 0
\(163\) −6.31776 6.31776i −0.494845 0.494845i 0.414984 0.909829i \(-0.363787\pi\)
−0.909829 + 0.414984i \(0.863787\pi\)
\(164\) 10.0161 + 3.43961i 0.782125 + 0.268588i
\(165\) 0 0
\(166\) −10.6363 14.8985i −0.825535 1.15635i
\(167\) −10.2973 5.94513i −0.796827 0.460048i 0.0455334 0.998963i \(-0.485501\pi\)
−0.842360 + 0.538915i \(0.818835\pi\)
\(168\) 0 0
\(169\) −27.0366 + 15.6096i −2.07974 + 1.20074i
\(170\) 12.1969 + 5.55238i 0.935457 + 0.425848i
\(171\) 0 0
\(172\) 0.856120 12.3894i 0.0652786 0.944685i
\(173\) 0.125524 0.468462i 0.00954341 0.0356165i −0.960990 0.276583i \(-0.910798\pi\)
0.970533 + 0.240967i \(0.0774645\pi\)
\(174\) 0 0
\(175\) 0.0211002 + 0.0121822i 0.00159502 + 0.000920887i
\(176\) −1.53495 12.3335i −0.115701 0.929673i
\(177\) 0 0
\(178\) −19.8426 16.3433i −1.48727 1.22498i
\(179\) −6.91661 + 6.91661i −0.516971 + 0.516971i −0.916654 0.399682i \(-0.869120\pi\)
0.399682 + 0.916654i \(0.369120\pi\)
\(180\) 0 0
\(181\) −2.19753 2.19753i −0.163341 0.163341i 0.620704 0.784045i \(-0.286847\pi\)
−0.784045 + 0.620704i \(0.786847\pi\)
\(182\) −0.0794974 + 0.00768770i −0.00589274 + 0.000569850i
\(183\) 0 0
\(184\) −14.9904 + 9.21157i −1.10511 + 0.679086i
\(185\) −1.52672 + 2.64436i −0.112247 + 0.194417i
\(186\) 0 0
\(187\) 10.1387 + 2.71666i 0.741416 + 0.198662i
\(188\) −0.288179 + 0.250926i −0.0210176 + 0.0183007i
\(189\) 0 0
\(190\) −7.13946 + 2.67268i −0.517951 + 0.193896i
\(191\) 6.33144 + 10.9664i 0.458127 + 0.793499i 0.998862 0.0476936i \(-0.0151871\pi\)
−0.540735 + 0.841193i \(0.681854\pi\)
\(192\) 0 0
\(193\) 4.99499 8.65157i 0.359547 0.622754i −0.628338 0.777940i \(-0.716265\pi\)
0.987885 + 0.155187i \(0.0495979\pi\)
\(194\) −0.766026 + 4.58918i −0.0549975 + 0.329484i
\(195\) 0 0
\(196\) 13.2409 + 4.54703i 0.945776 + 0.324788i
\(197\) −0.273888 + 0.273888i −0.0195137 + 0.0195137i −0.716796 0.697283i \(-0.754392\pi\)
0.697283 + 0.716796i \(0.254392\pi\)
\(198\) 0 0
\(199\) −18.0544 −1.27984 −0.639920 0.768441i \(-0.721033\pi\)
−0.639920 + 0.768441i \(0.721033\pi\)
\(200\) −0.222406 8.11118i −0.0157265 0.573547i
\(201\) 0 0
\(202\) −2.26945 3.17889i −0.159678 0.223666i
\(203\) 0.0278298 0.00745698i 0.00195327 0.000523377i
\(204\) 0 0
\(205\) 14.3474 + 3.84438i 1.00207 + 0.268503i
\(206\) 14.6352 5.47874i 1.01968 0.381722i
\(207\) 0 0
\(208\) 16.0426 + 21.2166i 1.11235 + 1.47110i
\(209\) −5.17094 + 2.98544i −0.357681 + 0.206507i
\(210\) 0 0
\(211\) −2.33428 + 0.625467i −0.160698 + 0.0430589i −0.338271 0.941049i \(-0.609842\pi\)
0.177573 + 0.984108i \(0.443175\pi\)
\(212\) 1.76094 + 1.18566i 0.120942 + 0.0814316i
\(213\) 0 0
\(214\) 0.372626 + 3.85327i 0.0254722 + 0.263404i
\(215\) 17.4185i 1.18793i
\(216\) 0 0
\(217\) 0.0657256i 0.00446175i
\(218\) 11.9123 1.15196i 0.806800 0.0780207i
\(219\) 0 0
\(220\) −3.34026 17.1090i −0.225200 1.15349i
\(221\) −21.6982 + 5.81402i −1.45958 + 0.391093i
\(222\) 0 0
\(223\) 0.0284597 0.0164312i 0.00190581 0.00110032i −0.499047 0.866575i \(-0.666316\pi\)
0.500953 + 0.865475i \(0.332983\pi\)
\(224\) 0.0104947 + 0.0468825i 0.000701209 + 0.00313247i
\(225\) 0 0
\(226\) −6.74788 18.0254i −0.448863 1.19903i
\(227\) −17.9063 4.79797i −1.18848 0.318453i −0.390196 0.920732i \(-0.627593\pi\)
−0.798285 + 0.602279i \(0.794259\pi\)
\(228\) 0 0
\(229\) −26.3567 + 7.06225i −1.74170 + 0.466687i −0.982823 0.184549i \(-0.940918\pi\)
−0.758875 + 0.651236i \(0.774251\pi\)
\(230\) −20.0844 + 14.3385i −1.32433 + 0.945455i
\(231\) 0 0
\(232\) −6.96832 6.59638i −0.457493 0.433073i
\(233\) 7.42838 0.486649 0.243325 0.969945i \(-0.421762\pi\)
0.243325 + 0.969945i \(0.421762\pi\)
\(234\) 0 0
\(235\) −0.378968 + 0.378968i −0.0247211 + 0.0247211i
\(236\) 8.26289 + 16.9061i 0.537868 + 1.10050i
\(237\) 0 0
\(238\) −0.0400199 0.00668012i −0.00259410 0.000433008i
\(239\) −2.67225 + 4.62848i −0.172854 + 0.299391i −0.939416 0.342778i \(-0.888632\pi\)
0.766563 + 0.642169i \(0.221965\pi\)
\(240\) 0 0
\(241\) −10.9314 18.9337i −0.704151 1.21963i −0.966997 0.254788i \(-0.917994\pi\)
0.262845 0.964838i \(-0.415339\pi\)
\(242\) 0.667131 + 1.78209i 0.0428848 + 0.114557i
\(243\) 0 0
\(244\) −1.40709 + 20.3629i −0.0900799 + 1.30360i
\(245\) 18.9667 + 5.08211i 1.21174 + 0.324684i
\(246\) 0 0
\(247\) 6.38925 11.0665i 0.406538 0.704145i
\(248\) −18.6493 + 11.4600i −1.18423 + 0.727709i
\(249\) 0 0
\(250\) 0.813793 + 8.41531i 0.0514688 + 0.532231i
\(251\) −18.4081 18.4081i −1.16191 1.16191i −0.984057 0.177854i \(-0.943085\pi\)
−0.177854 0.984057i \(-0.556915\pi\)
\(252\) 0 0
\(253\) −13.6672 + 13.6672i −0.859251 + 0.859251i
\(254\) 6.30436 7.65421i 0.395571 0.480268i
\(255\) 0 0
\(256\) 11.4728 11.1523i 0.717052 0.697020i
\(257\) 6.96658 + 4.02216i 0.434563 + 0.250895i 0.701289 0.712877i \(-0.252608\pi\)
−0.266726 + 0.963773i \(0.585942\pi\)
\(258\) 0 0
\(259\) 0.00239268 0.00892960i 0.000148674 0.000554858i
\(260\) 24.4987 + 28.1358i 1.51935 + 1.74491i
\(261\) 0 0
\(262\) −4.87970 + 10.7192i −0.301469 + 0.662234i
\(263\) 3.65553 2.11052i 0.225409 0.130140i −0.383043 0.923730i \(-0.625124\pi\)
0.608452 + 0.793590i \(0.291791\pi\)
\(264\) 0 0
\(265\) 2.57860 + 1.48876i 0.158402 + 0.0914535i
\(266\) 0.0187846 0.0134106i 0.00115176 0.000822255i
\(267\) 0 0
\(268\) −7.06588 14.4570i −0.431618 0.883104i
\(269\) 13.7834 + 13.7834i 0.840386 + 0.840386i 0.988909 0.148523i \(-0.0474518\pi\)
−0.148523 + 0.988909i \(0.547452\pi\)
\(270\) 0 0
\(271\) 14.3202i 0.869889i 0.900457 + 0.434945i \(0.143232\pi\)
−0.900457 + 0.434945i \(0.856768\pi\)
\(272\) 5.08245 + 12.5202i 0.308169 + 0.759149i
\(273\) 0 0
\(274\) 1.26596 7.58420i 0.0764792 0.458178i
\(275\) −2.30708 8.61014i −0.139122 0.519211i
\(276\) 0 0
\(277\) 1.71354 6.39501i 0.102956 0.384239i −0.895149 0.445767i \(-0.852931\pi\)
0.998105 + 0.0615286i \(0.0195975\pi\)
\(278\) −8.24843 + 18.1193i −0.494708 + 1.08672i
\(279\) 0 0
\(280\) 0.0192176 + 0.0645849i 0.00114847 + 0.00385969i
\(281\) −1.84037 3.18761i −0.109787 0.190157i 0.805897 0.592056i \(-0.201684\pi\)
−0.915684 + 0.401899i \(0.868350\pi\)
\(282\) 0 0
\(283\) −1.12390 4.19445i −0.0668089 0.249334i 0.924442 0.381321i \(-0.124531\pi\)
−0.991251 + 0.131987i \(0.957864\pi\)
\(284\) 2.00730 0.391892i 0.119111 0.0232545i
\(285\) 0 0
\(286\) 22.5547 + 18.5771i 1.33369 + 1.09849i
\(287\) −0.0449706 −0.00265453
\(288\) 0 0
\(289\) 5.58832 0.328725
\(290\) −10.3881 8.55612i −0.610010 0.502433i
\(291\) 0 0
\(292\) 14.3474 2.80108i 0.839615 0.163921i
\(293\) −3.93269 14.6770i −0.229750 0.857439i −0.980446 0.196791i \(-0.936948\pi\)
0.750695 0.660649i \(-0.229719\pi\)
\(294\) 0 0
\(295\) 13.1963 + 22.8567i 0.768320 + 1.33077i
\(296\) −2.95092 + 0.878062i −0.171519 + 0.0510363i
\(297\) 0 0
\(298\) 5.56393 12.2222i 0.322310 0.708015i
\(299\) 10.7061 39.9558i 0.619152 2.31071i
\(300\) 0 0
\(301\) 0.0136491 + 0.0509393i 0.000786723 + 0.00293609i
\(302\) 1.05590 6.32577i 0.0607602 0.364007i
\(303\) 0 0
\(304\) −7.08049 2.99176i −0.406094 0.171589i
\(305\) 28.6285i 1.63926i
\(306\) 0 0
\(307\) 23.4294 + 23.4294i 1.33718 + 1.33718i 0.898776 + 0.438408i \(0.144457\pi\)
0.438408 + 0.898776i \(0.355543\pi\)
\(308\) 0.0231751 + 0.0474169i 0.00132052 + 0.00270183i
\(309\) 0 0
\(310\) −24.9867 + 17.8384i −1.41915 + 1.01315i
\(311\) 25.9086 + 14.9583i 1.46914 + 0.848210i 0.999401 0.0345940i \(-0.0110138\pi\)
0.469741 + 0.882804i \(0.344347\pi\)
\(312\) 0 0
\(313\) 13.0513 7.53519i 0.737705 0.425914i −0.0835293 0.996505i \(-0.526619\pi\)
0.821234 + 0.570591i \(0.193286\pi\)
\(314\) −11.5913 + 25.4626i −0.654136 + 1.43694i
\(315\) 0 0
\(316\) 6.61322 + 7.59502i 0.372023 + 0.427253i
\(317\) −5.40325 + 20.1652i −0.303477 + 1.13259i 0.630772 + 0.775969i \(0.282739\pi\)
−0.934248 + 0.356623i \(0.883928\pi\)
\(318\) 0 0
\(319\) −9.12868 5.27045i −0.511108 0.295088i
\(320\) 14.9749 16.7140i 0.837121 0.934340i
\(321\) 0 0
\(322\) 0.0475000 0.0576703i 0.00264707 0.00321384i
\(323\) 4.59023 4.59023i 0.255407 0.255407i
\(324\) 0 0
\(325\) 13.4894 + 13.4894i 0.748257 + 0.748257i
\(326\) −1.21623 12.5769i −0.0673608 0.696567i
\(327\) 0 0
\(328\) 7.84111 + 12.7602i 0.432953 + 0.704564i
\(329\) 0.000811309 0.00140523i 4.47289e−5 7.74727e-5i
\(330\) 0 0
\(331\) −18.4453 4.94242i −1.01385 0.271660i −0.286612 0.958047i \(-0.592529\pi\)
−0.727236 + 0.686387i \(0.759196\pi\)
\(332\) 1.78463 25.8265i 0.0979446 1.41741i
\(333\) 0 0
\(334\) −5.89534 15.7481i −0.322579 0.861696i
\(335\) −11.2846 19.5456i −0.616546 1.06789i
\(336\) 0 0
\(337\) −9.91944 + 17.1810i −0.540346 + 0.935907i 0.458538 + 0.888675i \(0.348373\pi\)
−0.998884 + 0.0472324i \(0.984960\pi\)
\(338\) −43.5481 7.26906i −2.36871 0.395385i
\(339\) 0 0
\(340\) 8.32209 + 17.0273i 0.451329 + 0.923434i
\(341\) −17.0032 + 17.0032i −0.920774 + 0.920774i
\(342\) 0 0
\(343\) −0.118899 −0.00641996
\(344\) 12.0739 12.7547i 0.650982 0.687687i
\(345\) 0 0
\(346\) 0.558219 0.398520i 0.0300100 0.0214245i
\(347\) −20.9225 + 5.60618i −1.12318 + 0.300955i −0.772170 0.635416i \(-0.780829\pi\)
−0.351011 + 0.936372i \(0.614162\pi\)
\(348\) 0 0
\(349\) 1.59139 + 0.426410i 0.0851849 + 0.0228252i 0.301160 0.953574i \(-0.402626\pi\)
−0.215975 + 0.976399i \(0.569293\pi\)
\(350\) 0.0120802 + 0.0322694i 0.000645712 + 0.00172487i
\(351\) 0 0
\(352\) 9.41351 14.8435i 0.501742 0.791160i
\(353\) 3.91868 2.26245i 0.208570 0.120418i −0.392076 0.919933i \(-0.628243\pi\)
0.600647 + 0.799514i \(0.294910\pi\)
\(354\) 0 0
\(355\) 2.77079 0.742431i 0.147058 0.0394042i
\(356\) −6.96615 35.6811i −0.369205 1.89110i
\(357\) 0 0
\(358\) −13.7690 + 1.33151i −0.727713 + 0.0703727i
\(359\) 11.0661i 0.584046i −0.956411 0.292023i \(-0.905672\pi\)
0.956411 0.292023i \(-0.0943284\pi\)
\(360\) 0 0
\(361\) 15.3073i 0.805645i
\(362\) −0.423045 4.37465i −0.0222348 0.229926i
\(363\) 0 0
\(364\) −0.0936923 0.0630842i −0.00491081 0.00330651i
\(365\) 19.8045 5.30659i 1.03661 0.277760i
\(366\) 0 0
\(367\) 4.77772 2.75842i 0.249395 0.143988i −0.370092 0.928995i \(-0.620674\pi\)
0.619487 + 0.785007i \(0.287341\pi\)
\(368\) −24.6458 3.42244i −1.28475 0.178407i
\(369\) 0 0
\(370\) −4.04413 + 1.51393i −0.210244 + 0.0787056i
\(371\) −0.00870755 0.00233318i −0.000452074 0.000121133i
\(372\) 0 0
\(373\) −8.16763 + 2.18851i −0.422904 + 0.113317i −0.463993 0.885839i \(-0.653584\pi\)
0.0410893 + 0.999155i \(0.486917\pi\)
\(374\) 8.62498 + 12.0813i 0.445987 + 0.624708i
\(375\) 0 0
\(376\) −0.540187 + 0.0148118i −0.0278580 + 0.000763860i
\(377\) 22.5589 1.16184
\(378\) 0 0
\(379\) 20.4820 20.4820i 1.05209 1.05209i 0.0535254 0.998566i \(-0.482954\pi\)
0.998566 0.0535254i \(-0.0170458\pi\)
\(380\) −10.1965 3.50157i −0.523071 0.179627i
\(381\) 0 0
\(382\) −2.94842 + 17.6636i −0.150854 + 0.903750i
\(383\) 2.14427 3.71398i 0.109567 0.189776i −0.806028 0.591878i \(-0.798387\pi\)
0.915595 + 0.402102i \(0.131720\pi\)
\(384\) 0 0
\(385\) 0.0370120 + 0.0641066i 0.00188630 + 0.00326718i
\(386\) 13.2312 4.95315i 0.673452 0.252109i
\(387\) 0 0
\(388\) −4.96234 + 4.32086i −0.251925 + 0.219359i
\(389\) 15.6680 + 4.19823i 0.794400 + 0.212859i 0.633124 0.774051i \(-0.281772\pi\)
0.161276 + 0.986909i \(0.448439\pi\)
\(390\) 0 0
\(391\) 10.5069 18.1985i 0.531358 0.920339i
\(392\) 10.3656 + 16.8685i 0.523544 + 0.851987i
\(393\) 0 0
\(394\) −0.545232 + 0.0527260i −0.0274684 + 0.00265630i
\(395\) 9.98779 + 9.98779i 0.502540 + 0.502540i
\(396\) 0 0
\(397\) −2.22738 + 2.22738i −0.111789 + 0.111789i −0.760789 0.649000i \(-0.775188\pi\)
0.649000 + 0.760789i \(0.275188\pi\)
\(398\) −19.7084 16.2327i −0.987891 0.813673i
\(399\) 0 0
\(400\) 7.04999 9.05422i 0.352500 0.452711i
\(401\) −7.43343 4.29169i −0.371208 0.214317i 0.302778 0.953061i \(-0.402086\pi\)
−0.673986 + 0.738744i \(0.735419\pi\)
\(402\) 0 0
\(403\) 13.3193 49.7085i 0.663484 2.47616i
\(404\) 0.380786 5.51058i 0.0189448 0.274162i
\(405\) 0 0
\(406\) 0.0370839 + 0.0168817i 0.00184045 + 0.000837826i
\(407\) −2.92907 + 1.69110i −0.145189 + 0.0838246i
\(408\) 0 0
\(409\) 32.0886 + 18.5263i 1.58668 + 0.916068i 0.993850 + 0.110739i \(0.0353218\pi\)
0.592828 + 0.805329i \(0.298012\pi\)
\(410\) 12.2053 + 17.0963i 0.602777 + 0.844328i
\(411\) 0 0
\(412\) 20.9019 + 7.17790i 1.02976 + 0.353630i
\(413\) −0.0565024 0.0565024i −0.00278030 0.00278030i
\(414\) 0 0
\(415\) 36.3099i 1.78238i
\(416\) −1.56359 + 37.5842i −0.0766612 + 1.84272i
\(417\) 0 0
\(418\) −8.32888 1.39026i −0.407379 0.0679997i
\(419\) 5.35101 + 19.9702i 0.261414 + 0.975609i 0.964409 + 0.264415i \(0.0851788\pi\)
−0.702995 + 0.711195i \(0.748155\pi\)
\(420\) 0 0
\(421\) 2.50791 9.35966i 0.122228 0.456162i −0.877497 0.479581i \(-0.840789\pi\)
0.999726 + 0.0234192i \(0.00745525\pi\)
\(422\) −3.11048 1.41598i −0.151416 0.0689290i
\(423\) 0 0
\(424\) 0.856228 + 2.87754i 0.0415821 + 0.139746i
\(425\) 4.84559 + 8.39281i 0.235046 + 0.407111i
\(426\) 0 0
\(427\) −0.0224333 0.0837222i −0.00108562 0.00405160i
\(428\) −3.05772 + 4.54130i −0.147800 + 0.219512i
\(429\) 0 0
\(430\) 15.6610 19.0142i 0.755240 0.916947i
\(431\) −25.3669 −1.22188 −0.610941 0.791676i \(-0.709209\pi\)
−0.610941 + 0.791676i \(0.709209\pi\)
\(432\) 0 0
\(433\) −10.5243 −0.505764 −0.252882 0.967497i \(-0.581378\pi\)
−0.252882 + 0.967497i \(0.581378\pi\)
\(434\) 0.0590940 0.0717468i 0.00283660 0.00344396i
\(435\) 0 0
\(436\) 14.0393 + 9.45285i 0.672360 + 0.452709i
\(437\) 3.09387 + 11.5465i 0.148000 + 0.552343i
\(438\) 0 0
\(439\) 1.65348 + 2.86391i 0.0789163 + 0.136687i 0.902783 0.430097i \(-0.141521\pi\)
−0.823866 + 0.566784i \(0.808187\pi\)
\(440\) 11.7365 21.6797i 0.559516 1.03354i
\(441\) 0 0
\(442\) −28.9134 13.1623i −1.37527 0.626065i
\(443\) 1.45346 5.42439i 0.0690560 0.257721i −0.922764 0.385366i \(-0.874075\pi\)
0.991820 + 0.127645i \(0.0407419\pi\)
\(444\) 0 0
\(445\) −13.1972 49.2527i −0.625608 2.33480i
\(446\) 0.0458403 + 0.00765168i 0.00217060 + 0.000362317i
\(447\) 0 0
\(448\) −0.0306960 + 0.0606134i −0.00145025 + 0.00286371i
\(449\) 3.76456i 0.177661i 0.996047 + 0.0888303i \(0.0283129\pi\)
−0.996047 + 0.0888303i \(0.971687\pi\)
\(450\) 0 0
\(451\) 11.6339 + 11.6339i 0.547818 + 0.547818i
\(452\) 8.84065 25.7438i 0.415829 1.21089i
\(453\) 0 0
\(454\) −15.2328 21.3371i −0.714912 1.00140i
\(455\) −0.137197 0.0792106i −0.00643189 0.00371345i
\(456\) 0 0
\(457\) −18.4633 + 10.6598i −0.863675 + 0.498643i −0.865241 0.501356i \(-0.832835\pi\)
0.00156649 + 0.999999i \(0.499501\pi\)
\(458\) −35.1209 15.9881i −1.64109 0.747075i
\(459\) 0 0
\(460\) −34.8162 2.40583i −1.62331 0.112172i
\(461\) 10.0471 37.4962i 0.467938 1.74637i −0.179021 0.983845i \(-0.557293\pi\)
0.646959 0.762525i \(-0.276040\pi\)
\(462\) 0 0
\(463\) −7.29597 4.21233i −0.339073 0.195764i 0.320789 0.947151i \(-0.396052\pi\)
−0.659862 + 0.751387i \(0.729385\pi\)
\(464\) −1.67588 13.4659i −0.0778008 0.625139i
\(465\) 0 0
\(466\) 8.10891 + 6.67887i 0.375638 + 0.309393i
\(467\) 19.4539 19.4539i 0.900219 0.900219i −0.0952358 0.995455i \(-0.530361\pi\)
0.995455 + 0.0952358i \(0.0303605\pi\)
\(468\) 0 0
\(469\) 0.0483172 + 0.0483172i 0.00223108 + 0.00223108i
\(470\) −0.754416 + 0.0729550i −0.0347986 + 0.00336516i
\(471\) 0 0
\(472\) −6.18049 + 25.8841i −0.284480 + 1.19141i
\(473\) 9.64695 16.7090i 0.443567 0.768281i
\(474\) 0 0
\(475\) −5.32501 1.42683i −0.244328 0.0654676i
\(476\) −0.0376800 0.0432740i −0.00172706 0.00198346i
\(477\) 0 0
\(478\) −7.07854 + 2.64987i −0.323765 + 0.121202i
\(479\) 10.4276 + 18.0611i 0.476450 + 0.825235i 0.999636 0.0269835i \(-0.00859016\pi\)
−0.523186 + 0.852218i \(0.675257\pi\)
\(480\) 0 0
\(481\) 3.61918 6.26860i 0.165020 0.285824i
\(482\) 5.09051 30.4966i 0.231866 1.38908i
\(483\) 0 0
\(484\) −0.874033 + 2.54517i −0.0397288 + 0.115689i
\(485\) −6.52570 + 6.52570i −0.296317 + 0.296317i
\(486\) 0 0
\(487\) 34.0126 1.54126 0.770629 0.637284i \(-0.219942\pi\)
0.770629 + 0.637284i \(0.219942\pi\)
\(488\) −19.8443 + 20.9632i −0.898309 + 0.948961i
\(489\) 0 0
\(490\) 16.1349 + 22.6007i 0.728902 + 1.02100i
\(491\) −1.41342 + 0.378725i −0.0637868 + 0.0170916i −0.290571 0.956853i \(-0.593845\pi\)
0.226785 + 0.973945i \(0.427179\pi\)
\(492\) 0 0
\(493\) 11.0696 + 2.96609i 0.498550 + 0.133586i
\(494\) 16.9245 6.33574i 0.761469 0.285059i
\(495\) 0 0
\(496\) −30.6615 4.25781i −1.37674 0.191181i
\(497\) −0.00752124 + 0.00434239i −0.000337374 + 0.000194783i
\(498\) 0 0
\(499\) −35.2078 + 9.43390i −1.57612 + 0.422319i −0.937721 0.347389i \(-0.887068\pi\)
−0.638396 + 0.769708i \(0.720402\pi\)
\(500\) −6.67788 + 9.91793i −0.298644 + 0.443543i
\(501\) 0 0
\(502\) −3.54374 36.6453i −0.158165 1.63556i
\(503\) 10.8529i 0.483908i −0.970288 0.241954i \(-0.922212\pi\)
0.970288 0.241954i \(-0.0777882\pi\)
\(504\) 0 0
\(505\) 7.74741i 0.344755i
\(506\) −27.2075 + 2.63107i −1.20952 + 0.116965i
\(507\) 0 0
\(508\) 13.7638 2.68716i 0.610671 0.119223i
\(509\) −3.94598 + 1.05732i −0.174903 + 0.0468650i −0.345207 0.938526i \(-0.612191\pi\)
0.170305 + 0.985391i \(0.445525\pi\)
\(510\) 0 0
\(511\) −0.0537587 + 0.0310376i −0.00237814 + 0.00137302i
\(512\) 22.5509 1.85875i 0.996620 0.0821460i
\(513\) 0 0
\(514\) 3.98847 + 10.6543i 0.175924 + 0.469941i
\(515\) 29.9407 + 8.02259i 1.31934 + 0.353517i
\(516\) 0 0
\(517\) −0.573417 + 0.153647i −0.0252189 + 0.00675737i
\(518\) 0.0106405 0.00759639i 0.000467516 0.000333766i
\(519\) 0 0
\(520\) 1.44612 + 52.7402i 0.0634167 + 2.31281i
\(521\) −13.4286 −0.588318 −0.294159 0.955757i \(-0.595039\pi\)
−0.294159 + 0.955757i \(0.595039\pi\)
\(522\) 0 0
\(523\) 23.5806 23.5806i 1.03111 1.03111i 0.0316083 0.999500i \(-0.489937\pi\)
0.999500 0.0316083i \(-0.0100629\pi\)
\(524\) −14.9644 + 7.31385i −0.653722 + 0.319507i
\(525\) 0 0
\(526\) 5.88799 + 0.982823i 0.256728 + 0.0428531i
\(527\) 13.0715 22.6405i 0.569404 0.986237i
\(528\) 0 0
\(529\) 7.84782 + 13.5928i 0.341210 + 0.590992i
\(530\) 1.47629 + 3.94357i 0.0641258 + 0.171298i
\(531\) 0 0
\(532\) 0.0325629 + 0.00225013i 0.00141178 + 9.75554e-5i
\(533\) −34.0114 9.11332i −1.47320 0.394742i
\(534\) 0 0
\(535\) −3.83937 + 6.64999i −0.165991 + 0.287504i
\(536\) 5.28515 22.1344i 0.228284 0.956061i
\(537\) 0 0
\(538\) 2.65343 + 27.4387i 0.114397 + 1.18297i
\(539\) 15.3795 + 15.3795i 0.662443 + 0.662443i
\(540\) 0 0
\(541\) −31.9545 + 31.9545i −1.37383 + 1.37383i −0.519148 + 0.854684i \(0.673751\pi\)
−0.854684 + 0.519148i \(0.826249\pi\)
\(542\) −12.8753 + 15.6321i −0.553042 + 0.671455i
\(543\) 0 0
\(544\) −5.70888 + 18.2368i −0.244766 + 0.781898i
\(545\) 20.5582 + 11.8693i 0.880618 + 0.508425i
\(546\) 0 0
\(547\) 2.76131 10.3053i 0.118065 0.440625i −0.881433 0.472309i \(-0.843421\pi\)
0.999498 + 0.0316846i \(0.0100872\pi\)
\(548\) 8.20090 7.14078i 0.350325 0.305039i
\(549\) 0 0
\(550\) 5.22296 11.4732i 0.222708 0.489220i
\(551\) −5.64571 + 3.25955i −0.240515 + 0.138862i
\(552\) 0 0
\(553\) −0.0370351 0.0213822i −0.00157489 0.000909265i
\(554\) 7.62028 5.44022i 0.323755 0.231133i
\(555\) 0 0
\(556\) −25.2951 + 12.3630i −1.07275 + 0.524309i
\(557\) −11.6850 11.6850i −0.495109 0.495109i 0.414802 0.909912i \(-0.363851\pi\)
−0.909912 + 0.414802i \(0.863851\pi\)
\(558\) 0 0
\(559\) 41.2915i 1.74645i
\(560\) −0.0370903 + 0.0877802i −0.00156735 + 0.00370939i
\(561\) 0 0
\(562\) 0.857020 5.13431i 0.0361512 0.216578i
\(563\) −2.31677 8.64631i −0.0976403 0.364398i 0.899766 0.436372i \(-0.143737\pi\)
−0.997407 + 0.0719737i \(0.977070\pi\)
\(564\) 0 0
\(565\) 9.88100 36.8764i 0.415697 1.55140i
\(566\) 2.54438 5.58921i 0.106948 0.234932i
\(567\) 0 0
\(568\) 2.54354 + 1.37697i 0.106725 + 0.0577765i
\(569\) −6.28570 10.8872i −0.263510 0.456413i 0.703662 0.710535i \(-0.251547\pi\)
−0.967172 + 0.254122i \(0.918214\pi\)
\(570\) 0 0
\(571\) −3.72510 13.9023i −0.155890 0.581791i −0.999027 0.0440924i \(-0.985960\pi\)
0.843137 0.537699i \(-0.180706\pi\)
\(572\) 7.91828 + 40.5580i 0.331080 + 1.69582i
\(573\) 0 0
\(574\) −0.0490904 0.0404331i −0.00204899 0.00168765i
\(575\) −17.8457 −0.744216
\(576\) 0 0
\(577\) 17.0561 0.710056 0.355028 0.934856i \(-0.384471\pi\)
0.355028 + 0.934856i \(0.384471\pi\)
\(578\) 6.10028 + 5.02447i 0.253738 + 0.208990i
\(579\) 0 0
\(580\) −3.64694 18.6799i −0.151431 0.775641i
\(581\) 0.0284525 + 0.106186i 0.00118041 + 0.00440534i
\(582\) 0 0
\(583\) 1.64905 + 2.85623i 0.0682965 + 0.118293i
\(584\) 18.1802 + 9.84204i 0.752302 + 0.407266i
\(585\) 0 0
\(586\) 8.90315 19.5575i 0.367786 0.807912i
\(587\) −4.63428 + 17.2954i −0.191277 + 0.713856i 0.801922 + 0.597428i \(0.203811\pi\)
−0.993199 + 0.116427i \(0.962856\pi\)
\(588\) 0 0
\(589\) 3.84904 + 14.3648i 0.158597 + 0.591891i
\(590\) −6.14525 + 36.8155i −0.252996 + 1.51567i
\(591\) 0 0
\(592\) −4.01073 1.69468i −0.164840 0.0696508i
\(593\) 25.5455i 1.04903i −0.851402 0.524514i \(-0.824247\pi\)
0.851402 0.524514i \(-0.175753\pi\)
\(594\) 0 0
\(595\) −0.0569073 0.0569073i −0.00233297 0.00233297i
\(596\) 17.0627 8.33939i 0.698914 0.341595i
\(597\) 0 0
\(598\) 47.6113 33.9904i 1.94697 1.38997i
\(599\) −1.66118 0.959083i −0.0678740 0.0391871i 0.465679 0.884954i \(-0.345810\pi\)
−0.533553 + 0.845767i \(0.679143\pi\)
\(600\) 0 0
\(601\) 7.76786 4.48478i 0.316858 0.182938i −0.333133 0.942880i \(-0.608106\pi\)
0.649991 + 0.759942i \(0.274773\pi\)
\(602\) −0.0309000 + 0.0678779i −0.00125939 + 0.00276650i
\(603\) 0 0
\(604\) 6.84015 5.95593i 0.278322 0.242343i
\(605\) −0.976888 + 3.64579i −0.0397161 + 0.148223i
\(606\) 0 0
\(607\) 20.1239 + 11.6185i 0.816802 + 0.471581i 0.849312 0.527890i \(-0.177017\pi\)
−0.0325103 + 0.999471i \(0.510350\pi\)
\(608\) −5.03924 9.63192i −0.204368 0.390626i
\(609\) 0 0
\(610\) −25.7399 + 31.2512i −1.04218 + 1.26532i
\(611\) 0.898366 0.898366i 0.0363440 0.0363440i
\(612\) 0 0
\(613\) 18.6158 + 18.6158i 0.751886 + 0.751886i 0.974831 0.222945i \(-0.0715670\pi\)
−0.222945 + 0.974831i \(0.571567\pi\)
\(614\) 4.51038 + 46.6411i 0.182024 + 1.88228i
\(615\) 0 0
\(616\) −0.0173345 + 0.0725976i −0.000698427 + 0.00292504i
\(617\) −18.3062 + 31.7073i −0.736981 + 1.27649i 0.216868 + 0.976201i \(0.430416\pi\)
−0.953849 + 0.300288i \(0.902917\pi\)
\(618\) 0 0
\(619\) −25.6443 6.87138i −1.03073 0.276184i −0.296465 0.955044i \(-0.595808\pi\)
−0.734268 + 0.678860i \(0.762474\pi\)
\(620\) −43.3143 2.99306i −1.73954 0.120204i
\(621\) 0 0
\(622\) 14.8331 + 39.6232i 0.594752 + 1.58875i
\(623\) 0.0771889 + 0.133695i 0.00309251 + 0.00535638i
\(624\) 0 0
\(625\) −15.5570 + 26.9455i −0.622280 + 1.07782i
\(626\) 21.0219 + 3.50898i 0.840204 + 0.140247i
\(627\) 0 0
\(628\) −35.5467 + 17.3734i −1.41847 + 0.693276i
\(629\) 2.60013 2.60013i 0.103674 0.103674i
\(630\) 0 0
\(631\) −28.2467 −1.12449 −0.562243 0.826972i \(-0.690061\pi\)
−0.562243 + 0.826972i \(0.690061\pi\)
\(632\) 0.390369 + 14.2368i 0.0155280 + 0.566308i
\(633\) 0 0
\(634\) −24.0288 + 17.1545i −0.954307 + 0.681293i
\(635\) 18.9990 5.09076i 0.753952 0.202021i
\(636\) 0 0
\(637\) −44.9617 12.0475i −1.78145 0.477338i
\(638\) −5.22631 13.9609i −0.206911 0.552717i
\(639\) 0 0
\(640\) 31.3743 4.78124i 1.24018 0.188995i
\(641\) −14.4080 + 8.31845i −0.569081 + 0.328559i −0.756782 0.653667i \(-0.773230\pi\)
0.187701 + 0.982226i \(0.439896\pi\)
\(642\) 0 0
\(643\) 5.68404 1.52303i 0.224157 0.0600626i −0.144993 0.989433i \(-0.546316\pi\)
0.369149 + 0.929370i \(0.379649\pi\)
\(644\) 0.103703 0.0202463i 0.00408647 0.000797816i
\(645\) 0 0
\(646\) 9.13783 0.883664i 0.359523 0.0347673i
\(647\) 37.4518i 1.47238i 0.676773 + 0.736192i \(0.263378\pi\)
−0.676773 + 0.736192i \(0.736622\pi\)
\(648\) 0 0
\(649\) 29.2343i 1.14755i
\(650\) 2.59684 + 26.8535i 0.101856 + 1.05328i
\(651\) 0 0
\(652\) 9.98022 14.8226i 0.390856 0.580496i
\(653\) 21.2854 5.70340i 0.832962 0.223191i 0.182956 0.983121i \(-0.441433\pi\)
0.650005 + 0.759930i \(0.274767\pi\)
\(654\) 0 0
\(655\) −20.2315 + 11.6807i −0.790510 + 0.456401i
\(656\) −2.91326 + 20.9791i −0.113744 + 0.819098i
\(657\) 0 0
\(658\) 0.00214908 0.000804514i 8.37797e−5 3.13632e-5i
\(659\) 23.8609 + 6.39350i 0.929487 + 0.249055i 0.691636 0.722246i \(-0.256890\pi\)
0.237851 + 0.971302i \(0.423557\pi\)
\(660\) 0 0
\(661\) 3.57782 0.958674i 0.139161 0.0372881i −0.188566 0.982060i \(-0.560384\pi\)
0.327727 + 0.944772i \(0.393717\pi\)
\(662\) −15.6914 21.9794i −0.609864 0.854255i
\(663\) 0 0
\(664\) 25.1688 26.5879i 0.976739 1.03181i
\(665\) 0.0457807 0.00177530
\(666\) 0 0
\(667\) −14.9221 + 14.9221i −0.577785 + 0.577785i
\(668\) 7.72370 22.4913i 0.298839 0.870214i
\(669\) 0 0
\(670\) 5.25502 31.4822i 0.203019 1.21626i
\(671\) −15.8554 + 27.4624i −0.612091 + 1.06017i
\(672\) 0 0
\(673\) 17.3782 + 30.0999i 0.669880 + 1.16027i 0.977937 + 0.208898i \(0.0669877\pi\)
−0.308058 + 0.951368i \(0.599679\pi\)
\(674\) −26.2756 + 9.83636i −1.01210 + 0.378883i
\(675\) 0 0
\(676\) −41.0020 47.0892i −1.57700 1.81112i
\(677\) 24.4928 + 6.56283i 0.941335 + 0.252230i 0.696681 0.717381i \(-0.254659\pi\)
0.244654 + 0.969611i \(0.421326\pi\)
\(678\) 0 0
\(679\) 0.0139705 0.0241976i 0.000536137 0.000928617i
\(680\) −6.22477 + 26.0696i −0.238709 + 0.999723i
\(681\) 0 0
\(682\) −33.8485 + 3.27328i −1.29613 + 0.125340i
\(683\) 1.88928 + 1.88928i 0.0722912 + 0.0722912i 0.742328 0.670037i \(-0.233722\pi\)
−0.670037 + 0.742328i \(0.733722\pi\)
\(684\) 0 0
\(685\) 10.7845 10.7845i 0.412056 0.412056i
\(686\) −0.129792 0.106903i −0.00495548 0.00408156i
\(687\) 0 0
\(688\) 24.6478 3.06751i 0.939688 0.116948i
\(689\) −6.11273 3.52918i −0.232876 0.134451i
\(690\) 0 0
\(691\) −5.19868 + 19.4017i −0.197767 + 0.738077i 0.793766 + 0.608223i \(0.208117\pi\)
−0.991533 + 0.129854i \(0.958549\pi\)
\(692\) 0.967668 + 0.0668667i 0.0367852 + 0.00254189i
\(693\) 0 0
\(694\) −27.8798 12.6917i −1.05830 0.481771i
\(695\) −34.1985 + 19.7445i −1.29722 + 0.748951i
\(696\) 0 0
\(697\) −15.4910 8.94375i −0.586765 0.338769i
\(698\) 1.35379 + 1.89629i 0.0512416 + 0.0717757i
\(699\) 0 0
\(700\) −0.0158267 + 0.0460870i −0.000598192 + 0.00174192i
\(701\) 10.9010 + 10.9010i 0.411725 + 0.411725i 0.882339 0.470614i \(-0.155968\pi\)
−0.470614 + 0.882339i \(0.655968\pi\)
\(702\) 0 0
\(703\) 2.09175i 0.0788918i
\(704\) 23.6217 7.73960i 0.890276 0.291697i
\(705\) 0 0
\(706\) 6.31185 + 1.05358i 0.237550 + 0.0396518i
\(707\) 0.00607088 + 0.0226568i 0.000228319 + 0.000852098i
\(708\) 0 0
\(709\) −4.14803 + 15.4807i −0.155783 + 0.581389i 0.843254 + 0.537515i \(0.180637\pi\)
−0.999037 + 0.0438741i \(0.986030\pi\)
\(710\) 3.69215 + 1.68078i 0.138564 + 0.0630784i
\(711\) 0 0
\(712\) 24.4766 45.2132i 0.917300 1.69444i
\(713\) 24.0703 + 41.6911i 0.901441 + 1.56134i
\(714\) 0 0
\(715\) 15.0010 + 55.9845i 0.561006 + 2.09370i
\(716\) −16.2275 10.9262i −0.606452 0.408332i
\(717\) 0 0
\(718\) 9.94954 12.0799i 0.371314 0.450817i
\(719\) −21.7763 −0.812119 −0.406060 0.913847i \(-0.633097\pi\)
−0.406060 + 0.913847i \(0.633097\pi\)
\(720\) 0 0
\(721\) −0.0938463 −0.00349502
\(722\) 13.7628 16.7096i 0.512198 0.621866i
\(723\) 0 0
\(724\) 3.47145 5.15578i 0.129016 0.191613i
\(725\) −2.51890 9.40068i −0.0935497 0.349132i
\(726\) 0 0
\(727\) −2.62325 4.54360i −0.0972908 0.168513i 0.813272 0.581884i \(-0.197684\pi\)
−0.910562 + 0.413372i \(0.864351\pi\)
\(728\) −0.0455564 0.153102i −0.00168843 0.00567435i
\(729\) 0 0
\(730\) 26.3899 + 12.0135i 0.976736 + 0.444639i
\(731\) −5.42908 + 20.2616i −0.200802 + 0.749403i
\(732\) 0 0
\(733\) −3.41408 12.7415i −0.126102 0.470618i 0.873775 0.486331i \(-0.161665\pi\)
−0.999877 + 0.0157124i \(0.994998\pi\)
\(734\) 7.69552 + 1.28454i 0.284047 + 0.0474131i
\(735\) 0 0
\(736\) −23.8266 25.8951i −0.878258 0.954506i
\(737\) 24.9993i 0.920860i
\(738\) 0 0
\(739\) −23.2424 23.2424i −0.854984 0.854984i 0.135758 0.990742i \(-0.456653\pi\)
−0.990742 + 0.135758i \(0.956653\pi\)
\(740\) −5.77580 1.98346i −0.212323 0.0729134i
\(741\) 0 0
\(742\) −0.00740750 0.0103759i −0.000271938 0.000380911i
\(743\) −24.5336 14.1645i −0.900049 0.519643i −0.0228329 0.999739i \(-0.507269\pi\)
−0.877216 + 0.480096i \(0.840602\pi\)
\(744\) 0 0
\(745\) 23.0683 13.3185i 0.845159 0.487953i
\(746\) −10.8836 4.95453i −0.398476 0.181398i
\(747\) 0 0
\(748\) −1.44717 + 20.9428i −0.0529136 + 0.765744i
\(749\) 0.00601707 0.0224560i 0.000219859 0.000820525i
\(750\) 0 0
\(751\) −22.5527 13.0208i −0.822960 0.475136i 0.0284763 0.999594i \(-0.490934\pi\)
−0.851436 + 0.524458i \(0.824268\pi\)
\(752\) −0.602992 0.469515i −0.0219889 0.0171214i
\(753\) 0 0
\(754\) 24.6256 + 20.2828i 0.896812 + 0.738656i
\(755\) 8.99509 8.99509i 0.327365 0.327365i
\(756\) 0 0
\(757\) 4.87465 + 4.87465i 0.177172 + 0.177172i 0.790122 0.612950i \(-0.210017\pi\)
−0.612950 + 0.790122i \(0.710017\pi\)
\(758\) 40.7739 3.94299i 1.48097 0.143216i
\(759\) 0 0
\(760\) −7.98237 12.9901i −0.289551 0.471199i
\(761\) −3.18964 + 5.52462i −0.115624 + 0.200267i −0.918029 0.396513i \(-0.870220\pi\)
0.802405 + 0.596780i \(0.203554\pi\)
\(762\) 0 0
\(763\) −0.0694221 0.0186016i −0.00251325 0.000673423i
\(764\) −19.0999 + 16.6309i −0.691012 + 0.601685i
\(765\) 0 0
\(766\) 5.67996 2.12631i 0.205225 0.0768267i
\(767\) −31.2827 54.1832i −1.12955 1.95644i
\(768\) 0 0
\(769\) −9.57641 + 16.5868i −0.345334 + 0.598136i −0.985414 0.170172i \(-0.945568\pi\)
0.640080 + 0.768308i \(0.278901\pi\)
\(770\) −0.0172357 + 0.103257i −0.000621131 + 0.00372113i
\(771\) 0 0
\(772\) 18.8967 + 6.48930i 0.680109 + 0.233555i
\(773\) 26.0627 26.0627i 0.937411 0.937411i −0.0607427 0.998153i \(-0.519347\pi\)
0.998153 + 0.0607427i \(0.0193469\pi\)
\(774\) 0 0
\(775\) −22.2015 −0.797503
\(776\) −9.30185 + 0.255054i −0.333917 + 0.00915592i
\(777\) 0 0
\(778\) 13.3287 + 18.6700i 0.477859 + 0.669351i
\(779\) 9.82864 2.63358i 0.352148 0.0943577i
\(780\) 0 0
\(781\) 3.06912 + 0.822367i 0.109822 + 0.0294266i
\(782\) 27.8318 10.4189i 0.995264 0.372580i
\(783\) 0 0
\(784\) −3.85122 + 27.7336i −0.137544 + 0.990485i
\(785\) −48.0583 + 27.7464i −1.71527 + 0.990313i
\(786\) 0 0
\(787\) 11.0575 2.96285i 0.394158 0.105614i −0.0562956 0.998414i \(-0.517929\pi\)
0.450454 + 0.892800i \(0.351262\pi\)
\(788\) −0.642587 0.432663i −0.0228912 0.0154130i
\(789\) 0 0
\(790\) 1.92275 + 19.8828i 0.0684082 + 0.707399i
\(791\) 0.115586i 0.00410975i
\(792\) 0 0
\(793\) 67.8655i 2.40997i
\(794\) −4.43408 + 0.428793i −0.157360 + 0.0152173i
\(795\) 0 0
\(796\) −6.91901 35.4397i −0.245238 1.25613i
\(797\) 4.17990 1.12000i 0.148060 0.0396725i −0.184028 0.982921i \(-0.558914\pi\)
0.332088 + 0.943249i \(0.392247\pi\)
\(798\) 0 0
\(799\) 0.558944 0.322706i 0.0197740 0.0114165i
\(800\) 15.8365 3.54503i 0.559906 0.125336i
\(801\) 0 0
\(802\) −4.25575 11.3683i −0.150276 0.401427i
\(803\) 21.9368 + 5.87794i 0.774132 + 0.207428i
\(804\) 0 0
\(805\) 0.143147 0.0383562i 0.00504528 0.00135188i
\(806\) 59.2325 42.2869i 2.08638 1.48949i
\(807\) 0 0
\(808\) 5.37025 5.67305i 0.188925 0.199577i
\(809\) 22.7884 0.801198 0.400599 0.916253i \(-0.368802\pi\)
0.400599 + 0.916253i \(0.368802\pi\)
\(810\) 0 0
\(811\) −14.9053 + 14.9053i −0.523396 + 0.523396i −0.918595 0.395200i \(-0.870675\pi\)
0.395200 + 0.918595i \(0.370675\pi\)
\(812\) 0.0253029 + 0.0517705i 0.000887957 + 0.00181679i
\(813\) 0 0
\(814\) −4.71787 0.787508i −0.165361 0.0276022i
\(815\) 12.5315 21.7052i 0.438959 0.760299i
\(816\) 0 0
\(817\) −5.96623 10.3338i −0.208732 0.361535i
\(818\) 18.3712 + 49.0744i 0.642333 + 1.71585i
\(819\) 0 0
\(820\) −2.04790 + 29.6364i −0.0715158 + 1.03495i
\(821\) −43.8854 11.7591i −1.53161 0.410394i −0.608067 0.793886i \(-0.708055\pi\)
−0.923544 + 0.383492i \(0.874721\pi\)
\(822\) 0 0
\(823\) −22.8842 + 39.6366i −0.797694 + 1.38165i 0.123421 + 0.992354i \(0.460614\pi\)
−0.921115 + 0.389292i \(0.872720\pi\)
\(824\) 16.3631 + 26.6284i 0.570036 + 0.927646i
\(825\) 0 0
\(826\) −0.0108773 0.112480i −0.000378468 0.00391369i
\(827\) −22.0262 22.0262i −0.765925 0.765925i 0.211461 0.977386i \(-0.432178\pi\)
−0.977386 + 0.211461i \(0.932178\pi\)
\(828\) 0 0
\(829\) 28.3392 28.3392i 0.984261 0.984261i −0.0156173 0.999878i \(-0.504971\pi\)
0.999878 + 0.0156173i \(0.00497134\pi\)
\(830\) 32.6463 39.6363i 1.13317 1.37580i
\(831\) 0 0
\(832\) −35.4988 + 39.6215i −1.23070 + 1.37363i
\(833\) −20.4785 11.8233i −0.709539 0.409653i
\(834\) 0 0
\(835\) 8.63262 32.2174i 0.298744 1.11493i
\(836\) −7.84191 9.00613i −0.271218 0.311483i
\(837\) 0 0
\(838\) −12.1140 + 26.6108i −0.418473 + 0.919256i
\(839\) −15.8724 + 9.16393i −0.547976 + 0.316374i −0.748305 0.663355i \(-0.769132\pi\)
0.200329 + 0.979729i \(0.435799\pi\)
\(840\) 0 0
\(841\) 15.1479 + 8.74565i 0.522342 + 0.301574i
\(842\) 11.1530 7.96225i 0.384356 0.274397i
\(843\) 0 0
\(844\) −2.12232 4.34234i −0.0730534 0.149470i
\(845\) −61.9244 61.9244i −2.13026 2.13026i
\(846\) 0 0
\(847\) 0.0114274i 0.000392650i
\(848\) −1.65254 + 3.91100i −0.0567483 + 0.134304i
\(849\) 0 0
\(850\) −2.25649 + 13.5184i −0.0773969 + 0.463676i
\(851\) 1.75252 + 6.54048i 0.0600755 + 0.224205i
\(852\) 0 0
\(853\) 6.36992 23.7728i 0.218102 0.813967i −0.766950 0.641707i \(-0.778227\pi\)
0.985052 0.172260i \(-0.0551068\pi\)
\(854\) 0.0507863 0.111562i 0.00173787 0.00381757i
\(855\) 0 0
\(856\) −7.42093 + 2.20814i −0.253642 + 0.0754726i
\(857\) −0.838395 1.45214i −0.0286390 0.0496043i 0.851351 0.524597i \(-0.175784\pi\)
−0.879990 + 0.474993i \(0.842451\pi\)
\(858\) 0 0
\(859\) 3.61213 + 13.4806i 0.123244 + 0.459954i 0.999771 0.0213994i \(-0.00681216\pi\)
−0.876527 + 0.481353i \(0.840145\pi\)
\(860\) 34.1914 6.67531i 1.16592 0.227626i
\(861\) 0 0
\(862\) −27.6908 22.8075i −0.943154 0.776825i
\(863\) 31.6409 1.07707 0.538535 0.842603i \(-0.318978\pi\)
0.538535 + 0.842603i \(0.318978\pi\)
\(864\) 0 0
\(865\) 1.36046 0.0462570
\(866\) −11.4884 9.46238i −0.390392 0.321545i
\(867\) 0 0
\(868\) 0.129015 0.0251881i 0.00437907 0.000854941i
\(869\) 4.04940 + 15.1126i 0.137366 + 0.512658i
\(870\) 0 0
\(871\) 26.7509 + 46.3340i 0.906421 + 1.56997i
\(872\) 6.82639 + 22.9416i 0.231171 + 0.776900i
\(873\) 0 0
\(874\) −7.00416 + 15.3860i −0.236919 + 0.520438i
\(875\) 0.0131409 0.0490426i 0.000444244 0.00165794i
\(876\) 0 0
\(877\) −7.88760 29.4369i −0.266345 0.994014i −0.961422 0.275078i \(-0.911296\pi\)
0.695077 0.718936i \(-0.255370\pi\)
\(878\) −0.769991 + 4.61293i −0.0259859 + 0.155679i
\(879\) 0 0
\(880\) 32.3039 13.1135i 1.08897 0.442054i
\(881\) 10.2116i 0.344037i 0.985094 + 0.172019i \(0.0550290\pi\)
−0.985094 + 0.172019i \(0.944971\pi\)
\(882\) 0 0
\(883\) 7.98299 + 7.98299i 0.268649 + 0.268649i 0.828556 0.559907i \(-0.189163\pi\)
−0.559907 + 0.828556i \(0.689163\pi\)
\(884\) −19.7280 40.3642i −0.663525 1.35759i
\(885\) 0 0
\(886\) 6.46370 4.61452i 0.217152 0.155028i
\(887\) −9.34850 5.39736i −0.313892 0.181226i 0.334775 0.942298i \(-0.391340\pi\)
−0.648667 + 0.761073i \(0.724673\pi\)
\(888\) 0 0
\(889\) −0.0515723 + 0.0297753i −0.00172968 + 0.000998630i
\(890\) 29.8769 65.6304i 1.00148 2.19994i
\(891\) 0 0
\(892\) 0.0431602 + 0.0495678i 0.00144511 + 0.00165965i
\(893\) −0.0950241 + 0.354635i −0.00317986 + 0.0118674i
\(894\) 0 0
\(895\) −23.7626 13.7193i −0.794295 0.458586i
\(896\) −0.0880057 + 0.0385674i −0.00294006 + 0.00128845i
\(897\) 0 0
\(898\) −3.38472 + 4.10944i −0.112950 + 0.137134i
\(899\) −18.5643 + 18.5643i −0.619155 + 0.619155i
\(900\) 0 0
\(901\) −2.53547 2.53547i −0.0844688 0.0844688i
\(902\) 2.23963 + 23.1597i 0.0745716 + 0.771134i
\(903\) 0 0
\(904\) 32.7969 20.1536i 1.09081 0.670299i
\(905\) 4.35887 7.54978i 0.144894 0.250963i
\(906\) 0 0
\(907\) 7.67746 + 2.05717i 0.254926 + 0.0683072i 0.384019 0.923325i \(-0.374540\pi\)
−0.129093 + 0.991633i \(0.541206\pi\)
\(908\) 2.55588 36.9877i 0.0848199 1.22748i
\(909\) 0 0
\(910\) −0.0785472 0.209821i −0.00260382 0.00695550i
\(911\) 17.5142 + 30.3354i 0.580270 + 1.00506i 0.995447 + 0.0953171i \(0.0303865\pi\)
−0.415176 + 0.909741i \(0.636280\pi\)
\(912\) 0 0
\(913\) 20.1096 34.8309i 0.665532 1.15274i
\(914\) −29.7389 4.96402i −0.983676 0.164195i
\(915\) 0 0
\(916\) −23.9635 49.0301i −0.791776 1.62000i
\(917\) 0.0500128 0.0500128i 0.00165157 0.00165157i
\(918\) 0 0
\(919\) 25.9311 0.855387 0.427694 0.903924i \(-0.359326\pi\)
0.427694 + 0.903924i \(0.359326\pi\)
\(920\) −35.8427 33.9295i −1.18170 1.11862i
\(921\) 0 0
\(922\) 44.6804 31.8979i 1.47147 1.05050i
\(923\) −6.56833 + 1.75998i −0.216199 + 0.0579304i
\(924\) 0 0
\(925\) −3.01634 0.808226i −0.0991767 0.0265743i
\(926\) −4.17705 11.1580i −0.137266 0.366676i
\(927\) 0 0
\(928\) 10.2778 16.2063i 0.337386 0.531999i
\(929\) 23.3443 13.4779i 0.765903 0.442194i −0.0655082 0.997852i \(-0.520867\pi\)
0.831411 + 0.555658i \(0.187534\pi\)
\(930\) 0 0
\(931\) 12.9931 3.48148i 0.425831 0.114101i
\(932\) 2.84679 + 14.5815i 0.0932497 + 0.477632i
\(933\) 0 0
\(934\) 38.7271 3.74506i 1.26719 0.122542i
\(935\) 29.4438i 0.962914i
\(936\) 0 0
\(937\) 5.72005i 0.186866i 0.995626 + 0.0934330i \(0.0297841\pi\)
−0.995626 + 0.0934330i \(0.970216\pi\)
\(938\) 0.00930153 + 0.0961857i 0.000303706 + 0.00314057i
\(939\) 0 0
\(940\) −0.889123 0.598659i −0.0290000 0.0195261i
\(941\) −22.9223 + 6.14201i −0.747245 + 0.200224i −0.612296 0.790629i \(-0.709754\pi\)
−0.134949 + 0.990853i \(0.543087\pi\)
\(942\) 0 0
\(943\) 28.5257 16.4693i 0.928925 0.536315i
\(944\) −30.0192 + 22.6985i −0.977040 + 0.738774i
\(945\) 0 0
\(946\) 25.5538 9.56615i 0.830826 0.311022i
\(947\) −52.2601 14.0030i −1.69822 0.455038i −0.725732 0.687977i \(-0.758499\pi\)
−0.972491 + 0.232940i \(0.925166\pi\)
\(948\) 0 0
\(949\) −46.9477 + 12.5796i −1.52399 + 0.408351i
\(950\) −4.52998 6.34527i −0.146972 0.205868i
\(951\) 0 0
\(952\) −0.00222420 0.0811166i −7.20867e−5 0.00262901i
\(953\) 2.80246 0.0907805 0.0453902 0.998969i \(-0.485547\pi\)
0.0453902 + 0.998969i \(0.485547\pi\)
\(954\) 0 0
\(955\) −25.1173 + 25.1173i −0.812775 + 0.812775i
\(956\) −10.1095 3.47169i −0.326965 0.112283i
\(957\) 0 0
\(958\) −4.85591 + 29.0912i −0.156887 + 0.939895i
\(959\) −0.0230880 + 0.0399895i −0.000745550 + 0.00129133i
\(960\) 0 0
\(961\) 14.4456 + 25.0204i 0.465986 + 0.807111i
\(962\) 9.58685 3.58887i 0.309093 0.115710i
\(963\) 0 0
\(964\) 32.9764 28.7136i 1.06210 0.924803i
\(965\) 27.0684 + 7.25296i 0.871363 + 0.233481i
\(966\) 0 0
\(967\) −7.66141 + 13.2699i −0.246374 + 0.426733i −0.962517 0.271221i \(-0.912573\pi\)
0.716143 + 0.697954i \(0.245906\pi\)
\(968\) −3.24247 + 1.99249i −0.104217 + 0.0640411i
\(969\) 0 0
\(970\) −12.9908 + 1.25626i −0.417109 + 0.0403361i
\(971\) 22.7938 + 22.7938i 0.731487 + 0.731487i 0.970914 0.239428i \(-0.0769598\pi\)
−0.239428 + 0.970914i \(0.576960\pi\)
\(972\) 0 0
\(973\) 0.0845395 0.0845395i 0.00271021 0.00271021i
\(974\) 37.1286 + 30.5808i 1.18968 + 0.979872i
\(975\) 0 0
\(976\) −40.5103 + 5.04166i −1.29670 + 0.161380i
\(977\) 20.2451 + 11.6885i 0.647699 + 0.373949i 0.787574 0.616220i \(-0.211337\pi\)
−0.139875 + 0.990169i \(0.544670\pi\)
\(978\) 0 0
\(979\) 14.6181 54.5556i 0.467197 1.74360i
\(980\) −2.70724 + 39.1781i −0.0864797 + 1.25150i
\(981\) 0 0
\(982\) −1.88342 0.857389i −0.0601023 0.0273604i
\(983\) 30.2556 17.4681i 0.965005 0.557146i 0.0672949 0.997733i \(-0.478563\pi\)
0.897710 + 0.440587i \(0.145230\pi\)
\(984\) 0 0
\(985\) −0.940963 0.543265i −0.0299816 0.0173099i
\(986\) 9.41688 + 13.1905i 0.299895 + 0.420071i
\(987\) 0 0
\(988\) 24.1715 + 8.30069i 0.768997 + 0.264080i
\(989\) −27.3131 27.3131i −0.868507 0.868507i
\(990\) 0 0
\(991\) 58.5560i 1.86009i 0.367440 + 0.930047i \(0.380234\pi\)
−0.367440 + 0.930047i \(0.619766\pi\)
\(992\) −29.6423 32.2157i −0.941143 1.02285i
\(993\) 0 0
\(994\) −0.0121145 0.00202216i −0.000384249 6.41390e-5i
\(995\) −13.1079 48.9194i −0.415549 1.55085i
\(996\) 0 0
\(997\) −11.7727 + 43.9362i −0.372844 + 1.39147i 0.483624 + 0.875276i \(0.339320\pi\)
−0.856469 + 0.516199i \(0.827347\pi\)
\(998\) −46.9153 21.3572i −1.48508 0.676051i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.395.17 88
3.2 odd 2 144.2.u.a.59.6 yes 88
4.3 odd 2 1728.2.z.a.719.18 88
9.2 odd 6 inner 432.2.v.a.251.9 88
9.7 even 3 144.2.u.a.11.14 88
12.11 even 2 576.2.y.a.527.16 88
16.3 odd 4 inner 432.2.v.a.179.9 88
16.13 even 4 1728.2.z.a.1583.18 88
36.7 odd 6 576.2.y.a.335.5 88
36.11 even 6 1728.2.z.a.143.18 88
48.29 odd 4 576.2.y.a.239.5 88
48.35 even 4 144.2.u.a.131.14 yes 88
144.29 odd 12 1728.2.z.a.1007.18 88
144.61 even 12 576.2.y.a.47.16 88
144.83 even 12 inner 432.2.v.a.35.17 88
144.115 odd 12 144.2.u.a.83.6 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.14 88 9.7 even 3
144.2.u.a.59.6 yes 88 3.2 odd 2
144.2.u.a.83.6 yes 88 144.115 odd 12
144.2.u.a.131.14 yes 88 48.35 even 4
432.2.v.a.35.17 88 144.83 even 12 inner
432.2.v.a.179.9 88 16.3 odd 4 inner
432.2.v.a.251.9 88 9.2 odd 6 inner
432.2.v.a.395.17 88 1.1 even 1 trivial
576.2.y.a.47.16 88 144.61 even 12
576.2.y.a.239.5 88 48.29 odd 4
576.2.y.a.335.5 88 36.7 odd 6
576.2.y.a.527.16 88 12.11 even 2
1728.2.z.a.143.18 88 36.11 even 6
1728.2.z.a.719.18 88 4.3 odd 2
1728.2.z.a.1007.18 88 144.29 odd 12
1728.2.z.a.1583.18 88 16.13 even 4