Properties

Label 432.2.v.a.395.12
Level $432$
Weight $2$
Character 432.395
Analytic conductor $3.450$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,2,Mod(35,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.v (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 395.12
Character \(\chi\) \(=\) 432.395
Dual form 432.2.v.a.35.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0112605 + 1.41417i) q^{2} +(-1.99975 + 0.0318485i) q^{4} +(0.759273 + 2.83365i) q^{5} +(1.41719 + 2.45465i) q^{7} +(-0.0675573 - 2.82762i) q^{8} +(-3.99870 + 1.10565i) q^{10} +(-0.212907 + 0.794578i) q^{11} +(-0.864050 - 3.22468i) q^{13} +(-3.45533 + 2.03179i) q^{14} +(3.99797 - 0.127378i) q^{16} +7.28589i q^{17} +(-0.951758 - 0.951758i) q^{19} +(-1.60860 - 5.64239i) q^{20} +(-1.12606 - 0.292138i) q^{22} +(-5.13217 - 2.96306i) q^{23} +(-3.12293 + 1.80302i) q^{25} +(4.55051 - 1.25822i) q^{26} +(-2.91220 - 4.86354i) q^{28} +(0.473770 - 1.76813i) q^{29} +(-2.05610 - 1.18709i) q^{31} +(0.225153 + 5.65237i) q^{32} +(-10.3035 + 0.0820428i) q^{34} +(-5.87957 + 5.87957i) q^{35} +(6.03704 + 6.03704i) q^{37} +(1.33523 - 1.35666i) q^{38} +(7.96118 - 2.33837i) q^{40} +(-4.60866 + 7.98243i) q^{41} +(-1.50209 - 0.402483i) q^{43} +(0.400453 - 1.59574i) q^{44} +(4.13248 - 7.29113i) q^{46} +(-2.85832 - 4.95075i) q^{47} +(-0.516861 + 0.895230i) q^{49} +(-2.58494 - 4.39604i) q^{50} +(1.83058 + 6.42102i) q^{52} +(4.50856 - 4.50856i) q^{53} -2.41321 q^{55} +(6.84507 - 4.17311i) q^{56} +(2.50577 + 0.650080i) q^{58} +(10.6553 - 2.85508i) q^{59} +(8.08106 + 2.16531i) q^{61} +(1.65559 - 2.92104i) q^{62} +(-7.99087 + 0.382053i) q^{64} +(8.48155 - 4.89682i) q^{65} +(11.1746 - 2.99423i) q^{67} +(-0.232045 - 14.5699i) q^{68} +(-8.38090 - 8.24849i) q^{70} -2.98978i q^{71} +12.7280i q^{73} +(-8.46941 + 8.60537i) q^{74} +(1.93359 + 1.87296i) q^{76} +(-2.25214 + 0.603459i) q^{77} +(8.94529 - 5.16457i) q^{79} +(3.39650 + 11.2321i) q^{80} +(-11.3404 - 6.42753i) q^{82} +(3.74713 + 1.00404i) q^{83} +(-20.6456 + 5.53198i) q^{85} +(0.552264 - 2.12873i) q^{86} +(2.26115 + 0.548339i) q^{88} +9.25017 q^{89} +(6.69092 - 6.69092i) q^{91} +(10.3574 + 5.76192i) q^{92} +(6.96901 - 4.09789i) q^{94} +(1.97430 - 3.41959i) q^{95} +(0.148868 + 0.257847i) q^{97} +(-1.27183 - 0.720848i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{2} - 2 q^{4} + 6 q^{5} - 4 q^{7} - 8 q^{10} + 6 q^{11} - 2 q^{13} + 6 q^{14} - 2 q^{16} - 8 q^{19} + 48 q^{20} - 2 q^{22} + 12 q^{23} + 8 q^{28} + 6 q^{29} + 6 q^{32} + 2 q^{34} - 8 q^{37} + 6 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0112605 + 1.41417i 0.00796238 + 0.999968i
\(3\) 0 0
\(4\) −1.99975 + 0.0318485i −0.999873 + 0.0159242i
\(5\) 0.759273 + 2.83365i 0.339557 + 1.26725i 0.898843 + 0.438270i \(0.144409\pi\)
−0.559286 + 0.828975i \(0.688925\pi\)
\(6\) 0 0
\(7\) 1.41719 + 2.45465i 0.535648 + 0.927769i 0.999132 + 0.0416640i \(0.0132659\pi\)
−0.463484 + 0.886105i \(0.653401\pi\)
\(8\) −0.0675573 2.82762i −0.0238851 0.999715i
\(9\) 0 0
\(10\) −3.99870 + 1.10565i −1.26450 + 0.349637i
\(11\) −0.212907 + 0.794578i −0.0641937 + 0.239574i −0.990566 0.137034i \(-0.956243\pi\)
0.926373 + 0.376608i \(0.122910\pi\)
\(12\) 0 0
\(13\) −0.864050 3.22468i −0.239644 0.894365i −0.976000 0.217770i \(-0.930122\pi\)
0.736356 0.676595i \(-0.236545\pi\)
\(14\) −3.45533 + 2.03179i −0.923475 + 0.543018i
\(15\) 0 0
\(16\) 3.99797 0.127378i 0.999493 0.0318445i
\(17\) 7.28589i 1.76709i 0.468348 + 0.883544i \(0.344849\pi\)
−0.468348 + 0.883544i \(0.655151\pi\)
\(18\) 0 0
\(19\) −0.951758 0.951758i −0.218348 0.218348i 0.589454 0.807802i \(-0.299343\pi\)
−0.807802 + 0.589454i \(0.799343\pi\)
\(20\) −1.60860 5.64239i −0.359694 1.26168i
\(21\) 0 0
\(22\) −1.12606 0.292138i −0.240078 0.0622841i
\(23\) −5.13217 2.96306i −1.07013 0.617841i −0.141915 0.989879i \(-0.545326\pi\)
−0.928218 + 0.372038i \(0.878659\pi\)
\(24\) 0 0
\(25\) −3.12293 + 1.80302i −0.624585 + 0.360605i
\(26\) 4.55051 1.25822i 0.892428 0.246758i
\(27\) 0 0
\(28\) −2.91220 4.86354i −0.550354 0.919122i
\(29\) 0.473770 1.76813i 0.0879768 0.328334i −0.907884 0.419221i \(-0.862303\pi\)
0.995861 + 0.0908866i \(0.0289701\pi\)
\(30\) 0 0
\(31\) −2.05610 1.18709i −0.369286 0.213207i 0.303860 0.952717i \(-0.401724\pi\)
−0.673147 + 0.739509i \(0.735058\pi\)
\(32\) 0.225153 + 5.65237i 0.0398018 + 0.999208i
\(33\) 0 0
\(34\) −10.3035 + 0.0820428i −1.76703 + 0.0140702i
\(35\) −5.87957 + 5.87957i −0.993828 + 0.993828i
\(36\) 0 0
\(37\) 6.03704 + 6.03704i 0.992483 + 0.992483i 0.999972 0.00748933i \(-0.00238395\pi\)
−0.00748933 + 0.999972i \(0.502384\pi\)
\(38\) 1.33523 1.35666i 0.216603 0.220080i
\(39\) 0 0
\(40\) 7.96118 2.33837i 1.25877 0.369729i
\(41\) −4.60866 + 7.98243i −0.719751 + 1.24665i 0.241347 + 0.970439i \(0.422411\pi\)
−0.961098 + 0.276207i \(0.910923\pi\)
\(42\) 0 0
\(43\) −1.50209 0.402483i −0.229066 0.0613780i 0.142460 0.989801i \(-0.454499\pi\)
−0.371526 + 0.928423i \(0.621165\pi\)
\(44\) 0.400453 1.59574i 0.0603706 0.240566i
\(45\) 0 0
\(46\) 4.13248 7.29113i 0.609301 1.07502i
\(47\) −2.85832 4.95075i −0.416928 0.722141i 0.578701 0.815540i \(-0.303560\pi\)
−0.995629 + 0.0933994i \(0.970227\pi\)
\(48\) 0 0
\(49\) −0.516861 + 0.895230i −0.0738373 + 0.127890i
\(50\) −2.58494 4.39604i −0.365566 0.621694i
\(51\) 0 0
\(52\) 1.83058 + 6.42102i 0.253856 + 0.890435i
\(53\) 4.50856 4.50856i 0.619298 0.619298i −0.326053 0.945351i \(-0.605719\pi\)
0.945351 + 0.326053i \(0.105719\pi\)
\(54\) 0 0
\(55\) −2.41321 −0.325397
\(56\) 6.84507 4.17311i 0.914711 0.557655i
\(57\) 0 0
\(58\) 2.50577 + 0.650080i 0.329024 + 0.0853597i
\(59\) 10.6553 2.85508i 1.38720 0.371700i 0.513471 0.858107i \(-0.328360\pi\)
0.873732 + 0.486407i \(0.161693\pi\)
\(60\) 0 0
\(61\) 8.08106 + 2.16531i 1.03467 + 0.277240i 0.735904 0.677086i \(-0.236757\pi\)
0.298769 + 0.954325i \(0.403424\pi\)
\(62\) 1.65559 2.92104i 0.210260 0.370972i
\(63\) 0 0
\(64\) −7.99087 + 0.382053i −0.998859 + 0.0477566i
\(65\) 8.48155 4.89682i 1.05201 0.607376i
\(66\) 0 0
\(67\) 11.1746 2.99423i 1.36520 0.365804i 0.499476 0.866328i \(-0.333526\pi\)
0.865723 + 0.500524i \(0.166859\pi\)
\(68\) −0.232045 14.5699i −0.0281396 1.76686i
\(69\) 0 0
\(70\) −8.38090 8.24849i −1.00171 0.985883i
\(71\) 2.98978i 0.354821i −0.984137 0.177411i \(-0.943228\pi\)
0.984137 0.177411i \(-0.0567721\pi\)
\(72\) 0 0
\(73\) 12.7280i 1.48970i 0.667229 + 0.744852i \(0.267480\pi\)
−0.667229 + 0.744852i \(0.732520\pi\)
\(74\) −8.46941 + 8.60537i −0.984549 + 1.00035i
\(75\) 0 0
\(76\) 1.93359 + 1.87296i 0.221798 + 0.214844i
\(77\) −2.25214 + 0.603459i −0.256655 + 0.0687705i
\(78\) 0 0
\(79\) 8.94529 5.16457i 1.00642 0.581059i 0.0962815 0.995354i \(-0.469305\pi\)
0.910143 + 0.414295i \(0.135972\pi\)
\(80\) 3.39650 + 11.2321i 0.379740 + 1.25579i
\(81\) 0 0
\(82\) −11.3404 6.42753i −1.25234 0.709802i
\(83\) 3.74713 + 1.00404i 0.411301 + 0.110208i 0.458536 0.888676i \(-0.348374\pi\)
−0.0472343 + 0.998884i \(0.515041\pi\)
\(84\) 0 0
\(85\) −20.6456 + 5.53198i −2.23933 + 0.600028i
\(86\) 0.552264 2.12873i 0.0595522 0.229547i
\(87\) 0 0
\(88\) 2.26115 + 0.548339i 0.241039 + 0.0584532i
\(89\) 9.25017 0.980516 0.490258 0.871577i \(-0.336903\pi\)
0.490258 + 0.871577i \(0.336903\pi\)
\(90\) 0 0
\(91\) 6.69092 6.69092i 0.701399 0.701399i
\(92\) 10.3574 + 5.76192i 1.07984 + 0.600722i
\(93\) 0 0
\(94\) 6.96901 4.09789i 0.718798 0.422665i
\(95\) 1.97430 3.41959i 0.202559 0.350843i
\(96\) 0 0
\(97\) 0.148868 + 0.257847i 0.0151153 + 0.0261804i 0.873484 0.486853i \(-0.161855\pi\)
−0.858369 + 0.513033i \(0.828522\pi\)
\(98\) −1.27183 0.720848i −0.128474 0.0728167i
\(99\) 0 0
\(100\) 6.18764 3.70505i 0.618764 0.370505i
\(101\) −7.90610 2.11843i −0.786687 0.210792i −0.156956 0.987606i \(-0.550168\pi\)
−0.629731 + 0.776814i \(0.716835\pi\)
\(102\) 0 0
\(103\) −5.72414 + 9.91450i −0.564016 + 0.976905i 0.433124 + 0.901334i \(0.357411\pi\)
−0.997140 + 0.0755707i \(0.975922\pi\)
\(104\) −9.05979 + 2.66106i −0.888386 + 0.260938i
\(105\) 0 0
\(106\) 6.42663 + 6.32509i 0.624209 + 0.614347i
\(107\) −0.174948 0.174948i −0.0169128 0.0169128i 0.698600 0.715513i \(-0.253807\pi\)
−0.715513 + 0.698600i \(0.753807\pi\)
\(108\) 0 0
\(109\) 1.50900 1.50900i 0.144536 0.144536i −0.631136 0.775672i \(-0.717411\pi\)
0.775672 + 0.631136i \(0.217411\pi\)
\(110\) −0.0271739 3.41268i −0.00259093 0.325386i
\(111\) 0 0
\(112\) 5.97856 + 9.63309i 0.564921 + 0.910241i
\(113\) 0.513633 + 0.296546i 0.0483185 + 0.0278967i 0.523965 0.851740i \(-0.324452\pi\)
−0.475646 + 0.879637i \(0.657786\pi\)
\(114\) 0 0
\(115\) 4.49955 16.7925i 0.419585 1.56591i
\(116\) −0.891107 + 3.55090i −0.0827372 + 0.329693i
\(117\) 0 0
\(118\) 4.15755 + 15.0363i 0.382734 + 1.38420i
\(119\) −17.8843 + 10.3255i −1.63945 + 0.946537i
\(120\) 0 0
\(121\) 8.94025 + 5.16166i 0.812750 + 0.469242i
\(122\) −2.97112 + 11.4524i −0.268993 + 1.03685i
\(123\) 0 0
\(124\) 4.14948 + 2.30839i 0.372635 + 0.207300i
\(125\) 2.89158 + 2.89158i 0.258631 + 0.258631i
\(126\) 0 0
\(127\) 14.1816i 1.25841i 0.777240 + 0.629205i \(0.216619\pi\)
−0.777240 + 0.629205i \(0.783381\pi\)
\(128\) −0.630268 11.2961i −0.0557084 0.998447i
\(129\) 0 0
\(130\) 7.02044 + 11.9392i 0.615733 + 1.04714i
\(131\) −1.03481 3.86197i −0.0904119 0.337422i 0.905872 0.423551i \(-0.139217\pi\)
−0.996284 + 0.0861298i \(0.972550\pi\)
\(132\) 0 0
\(133\) 0.987407 3.68505i 0.0856190 0.319535i
\(134\) 4.36018 + 15.7691i 0.376662 + 1.36224i
\(135\) 0 0
\(136\) 20.6017 0.492215i 1.76658 0.0422071i
\(137\) 3.98207 + 6.89714i 0.340211 + 0.589262i 0.984472 0.175543i \(-0.0561682\pi\)
−0.644261 + 0.764806i \(0.722835\pi\)
\(138\) 0 0
\(139\) −2.76404 10.3155i −0.234443 0.874952i −0.978399 0.206724i \(-0.933720\pi\)
0.743957 0.668228i \(-0.232947\pi\)
\(140\) 11.5704 11.9449i 0.977876 1.00953i
\(141\) 0 0
\(142\) 4.22805 0.0336664i 0.354810 0.00282522i
\(143\) 2.74622 0.229651
\(144\) 0 0
\(145\) 5.36998 0.445953
\(146\) −17.9996 + 0.143324i −1.48966 + 0.0118616i
\(147\) 0 0
\(148\) −12.2648 11.8803i −1.00816 0.976552i
\(149\) −1.13642 4.24117i −0.0930990 0.347450i 0.903625 0.428324i \(-0.140896\pi\)
−0.996724 + 0.0808734i \(0.974229\pi\)
\(150\) 0 0
\(151\) −6.93783 12.0167i −0.564592 0.977903i −0.997087 0.0762664i \(-0.975700\pi\)
0.432495 0.901636i \(-0.357633\pi\)
\(152\) −2.62691 + 2.75551i −0.213071 + 0.223501i
\(153\) 0 0
\(154\) −0.878752 3.17811i −0.0708119 0.256099i
\(155\) 1.80265 6.72758i 0.144792 0.540372i
\(156\) 0 0
\(157\) −1.61187 6.01560i −0.128642 0.480097i 0.871302 0.490748i \(-0.163276\pi\)
−0.999943 + 0.0106509i \(0.996610\pi\)
\(158\) 7.40430 + 12.5920i 0.589054 + 1.00177i
\(159\) 0 0
\(160\) −15.8459 + 4.92970i −1.25273 + 0.389727i
\(161\) 16.7969i 1.32378i
\(162\) 0 0
\(163\) 3.39010 + 3.39010i 0.265533 + 0.265533i 0.827297 0.561764i \(-0.189877\pi\)
−0.561764 + 0.827297i \(0.689877\pi\)
\(164\) 8.96191 16.1096i 0.699808 1.25795i
\(165\) 0 0
\(166\) −1.37769 + 5.31039i −0.106929 + 0.412166i
\(167\) −8.58610 4.95718i −0.664412 0.383598i 0.129544 0.991574i \(-0.458649\pi\)
−0.793956 + 0.607975i \(0.791982\pi\)
\(168\) 0 0
\(169\) 1.60636 0.927433i 0.123566 0.0713410i
\(170\) −8.05564 29.1341i −0.617839 2.23449i
\(171\) 0 0
\(172\) 3.01661 + 0.757024i 0.230014 + 0.0577225i
\(173\) 1.94330 7.25249i 0.147746 0.551396i −0.851872 0.523751i \(-0.824532\pi\)
0.999618 0.0276457i \(-0.00880101\pi\)
\(174\) 0 0
\(175\) −8.85157 5.11046i −0.669116 0.386314i
\(176\) −0.749983 + 3.20382i −0.0565321 + 0.241497i
\(177\) 0 0
\(178\) 0.104162 + 13.0813i 0.00780724 + 0.980485i
\(179\) −0.604756 + 0.604756i −0.0452016 + 0.0452016i −0.729346 0.684145i \(-0.760176\pi\)
0.684145 + 0.729346i \(0.260176\pi\)
\(180\) 0 0
\(181\) −10.1716 10.1716i −0.756048 0.756048i 0.219553 0.975601i \(-0.429540\pi\)
−0.975601 + 0.219553i \(0.929540\pi\)
\(182\) 9.53744 + 9.38675i 0.706962 + 0.695792i
\(183\) 0 0
\(184\) −8.03170 + 14.7120i −0.592105 + 1.08458i
\(185\) −12.5231 + 21.6906i −0.920714 + 1.59472i
\(186\) 0 0
\(187\) −5.78921 1.55121i −0.423349 0.113436i
\(188\) 5.87358 + 9.80921i 0.428375 + 0.715410i
\(189\) 0 0
\(190\) 4.85811 + 2.75349i 0.352444 + 0.199759i
\(191\) 5.80282 + 10.0508i 0.419877 + 0.727249i 0.995927 0.0901660i \(-0.0287398\pi\)
−0.576049 + 0.817415i \(0.695406\pi\)
\(192\) 0 0
\(193\) 5.09572 8.82605i 0.366798 0.635313i −0.622265 0.782807i \(-0.713787\pi\)
0.989063 + 0.147494i \(0.0471206\pi\)
\(194\) −0.362963 + 0.213428i −0.0260592 + 0.0153232i
\(195\) 0 0
\(196\) 1.00508 1.80669i 0.0717914 0.129050i
\(197\) 4.32430 4.32430i 0.308094 0.308094i −0.536076 0.844170i \(-0.680094\pi\)
0.844170 + 0.536076i \(0.180094\pi\)
\(198\) 0 0
\(199\) −27.7260 −1.96544 −0.982720 0.185097i \(-0.940740\pi\)
−0.982720 + 0.185097i \(0.940740\pi\)
\(200\) 5.30924 + 8.70864i 0.375420 + 0.615794i
\(201\) 0 0
\(202\) 2.90680 11.2044i 0.204521 0.788340i
\(203\) 5.01156 1.34284i 0.351743 0.0942492i
\(204\) 0 0
\(205\) −26.1186 6.99846i −1.82420 0.488793i
\(206\) −14.0852 7.98326i −0.981365 0.556220i
\(207\) 0 0
\(208\) −3.86520 12.7821i −0.268003 0.886280i
\(209\) 0.958882 0.553611i 0.0663272 0.0382940i
\(210\) 0 0
\(211\) −19.0391 + 5.10152i −1.31071 + 0.351203i −0.845489 0.533993i \(-0.820691\pi\)
−0.465219 + 0.885196i \(0.654024\pi\)
\(212\) −8.87238 + 9.15956i −0.609358 + 0.629081i
\(213\) 0 0
\(214\) 0.245435 0.249375i 0.0167776 0.0170470i
\(215\) 4.56197i 0.311124i
\(216\) 0 0
\(217\) 6.72933i 0.456817i
\(218\) 2.15098 + 2.11699i 0.145683 + 0.143381i
\(219\) 0 0
\(220\) 4.82580 0.0768570i 0.325356 0.00518170i
\(221\) 23.4947 6.29538i 1.58042 0.423473i
\(222\) 0 0
\(223\) 10.9074 6.29741i 0.730416 0.421706i −0.0881582 0.996106i \(-0.528098\pi\)
0.818574 + 0.574401i \(0.194765\pi\)
\(224\) −13.5555 + 8.56316i −0.905714 + 0.572150i
\(225\) 0 0
\(226\) −0.413582 + 0.729702i −0.0275111 + 0.0485391i
\(227\) 11.6445 + 3.12014i 0.772874 + 0.207091i 0.623641 0.781711i \(-0.285653\pi\)
0.149233 + 0.988802i \(0.452320\pi\)
\(228\) 0 0
\(229\) −5.47149 + 1.46608i −0.361566 + 0.0968814i −0.435029 0.900417i \(-0.643262\pi\)
0.0734624 + 0.997298i \(0.476595\pi\)
\(230\) 23.7982 + 6.17403i 1.56920 + 0.407103i
\(231\) 0 0
\(232\) −5.03161 1.22019i −0.330342 0.0801094i
\(233\) −10.1291 −0.663580 −0.331790 0.943353i \(-0.607653\pi\)
−0.331790 + 0.943353i \(0.607653\pi\)
\(234\) 0 0
\(235\) 11.8584 11.8584i 0.773558 0.773558i
\(236\) −21.2170 + 6.04879i −1.38111 + 0.393743i
\(237\) 0 0
\(238\) −14.8034 25.1751i −0.959561 1.63186i
\(239\) −0.263562 + 0.456503i −0.0170484 + 0.0295287i −0.874424 0.485163i \(-0.838760\pi\)
0.857375 + 0.514692i \(0.172094\pi\)
\(240\) 0 0
\(241\) 9.74338 + 16.8760i 0.627626 + 1.08708i 0.988027 + 0.154283i \(0.0493068\pi\)
−0.360400 + 0.932798i \(0.617360\pi\)
\(242\) −7.19878 + 12.7012i −0.462755 + 0.816461i
\(243\) 0 0
\(244\) −16.2290 4.07271i −1.03896 0.260728i
\(245\) −2.92920 0.784878i −0.187140 0.0501440i
\(246\) 0 0
\(247\) −2.24675 + 3.89148i −0.142957 + 0.247609i
\(248\) −3.21773 + 5.89406i −0.204326 + 0.374273i
\(249\) 0 0
\(250\) −4.05662 + 4.12174i −0.256563 + 0.260682i
\(251\) −17.9199 17.9199i −1.13110 1.13110i −0.989995 0.141101i \(-0.954936\pi\)
−0.141101 0.989995i \(-0.545064\pi\)
\(252\) 0 0
\(253\) 3.44706 3.44706i 0.216715 0.216715i
\(254\) −20.0551 + 0.159691i −1.25837 + 0.0100199i
\(255\) 0 0
\(256\) 15.9675 1.01851i 0.997972 0.0636566i
\(257\) −14.6152 8.43809i −0.911671 0.526353i −0.0307025 0.999529i \(-0.509774\pi\)
−0.880968 + 0.473175i \(0.843108\pi\)
\(258\) 0 0
\(259\) −6.26316 + 23.3744i −0.389174 + 1.45242i
\(260\) −16.8050 + 10.0625i −1.04220 + 0.624052i
\(261\) 0 0
\(262\) 5.44982 1.50688i 0.336691 0.0930957i
\(263\) 18.8065 10.8579i 1.15966 0.669528i 0.208435 0.978036i \(-0.433163\pi\)
0.951222 + 0.308508i \(0.0998297\pi\)
\(264\) 0 0
\(265\) 16.1989 + 9.35243i 0.995090 + 0.574515i
\(266\) 5.22241 + 1.35486i 0.320206 + 0.0830721i
\(267\) 0 0
\(268\) −22.2511 + 6.34360i −1.35920 + 0.387497i
\(269\) 3.50729 + 3.50729i 0.213843 + 0.213843i 0.805898 0.592055i \(-0.201683\pi\)
−0.592055 + 0.805898i \(0.701683\pi\)
\(270\) 0 0
\(271\) 2.25749i 0.137133i −0.997647 0.0685665i \(-0.978157\pi\)
0.997647 0.0685665i \(-0.0218425\pi\)
\(272\) 0.928061 + 29.1288i 0.0562720 + 1.76619i
\(273\) 0 0
\(274\) −9.70888 + 5.70898i −0.586535 + 0.344892i
\(275\) −0.767751 2.86529i −0.0462971 0.172783i
\(276\) 0 0
\(277\) 4.75826 17.7581i 0.285896 1.06698i −0.662286 0.749251i \(-0.730414\pi\)
0.948182 0.317727i \(-0.102920\pi\)
\(278\) 14.5568 4.02498i 0.873058 0.241402i
\(279\) 0 0
\(280\) 17.0224 + 16.2280i 1.01728 + 0.969807i
\(281\) −4.38270 7.59106i −0.261450 0.452845i 0.705177 0.709031i \(-0.250867\pi\)
−0.966627 + 0.256186i \(0.917534\pi\)
\(282\) 0 0
\(283\) 4.18474 + 15.6177i 0.248757 + 0.928375i 0.971458 + 0.237213i \(0.0762340\pi\)
−0.722700 + 0.691161i \(0.757099\pi\)
\(284\) 0.0952199 + 5.97879i 0.00565026 + 0.354776i
\(285\) 0 0
\(286\) 0.0309238 + 3.88362i 0.00182856 + 0.229643i
\(287\) −26.1254 −1.54213
\(288\) 0 0
\(289\) −36.0842 −2.12260
\(290\) 0.0604687 + 7.59406i 0.00355084 + 0.445939i
\(291\) 0 0
\(292\) −0.405369 25.4529i −0.0237224 1.48952i
\(293\) −3.24540 12.1120i −0.189598 0.707589i −0.993599 0.112962i \(-0.963966\pi\)
0.804001 0.594628i \(-0.202700\pi\)
\(294\) 0 0
\(295\) 16.1806 + 28.0256i 0.942070 + 1.63171i
\(296\) 16.6626 17.4783i 0.968494 1.01591i
\(297\) 0 0
\(298\) 5.98494 1.65485i 0.346698 0.0958626i
\(299\) −5.12047 + 19.1098i −0.296124 + 1.10515i
\(300\) 0 0
\(301\) −1.14079 4.25749i −0.0657540 0.245397i
\(302\) 16.9155 9.94657i 0.973376 0.572361i
\(303\) 0 0
\(304\) −3.92633 3.68387i −0.225191 0.211284i
\(305\) 24.5429i 1.40532i
\(306\) 0 0
\(307\) 18.9168 + 18.9168i 1.07964 + 1.07964i 0.996542 + 0.0830950i \(0.0264805\pi\)
0.0830950 + 0.996542i \(0.473519\pi\)
\(308\) 4.48449 1.27849i 0.255527 0.0728488i
\(309\) 0 0
\(310\) 9.53423 + 2.47349i 0.541508 + 0.140485i
\(311\) 5.08666 + 2.93678i 0.288438 + 0.166530i 0.637237 0.770668i \(-0.280077\pi\)
−0.348799 + 0.937197i \(0.613411\pi\)
\(312\) 0 0
\(313\) 14.3490 8.28438i 0.811051 0.468261i −0.0362694 0.999342i \(-0.511547\pi\)
0.847321 + 0.531081i \(0.178214\pi\)
\(314\) 8.48892 2.34720i 0.479057 0.132460i
\(315\) 0 0
\(316\) −17.7238 + 10.6127i −0.997044 + 0.597012i
\(317\) 1.80531 6.73750i 0.101396 0.378416i −0.896515 0.443013i \(-0.853910\pi\)
0.997911 + 0.0645973i \(0.0205763\pi\)
\(318\) 0 0
\(319\) 1.30405 + 0.752894i 0.0730128 + 0.0421540i
\(320\) −7.14986 22.3532i −0.399689 1.24958i
\(321\) 0 0
\(322\) 23.7537 0.189142i 1.32374 0.0105404i
\(323\) 6.93441 6.93441i 0.385841 0.385841i
\(324\) 0 0
\(325\) 8.51253 + 8.51253i 0.472190 + 0.472190i
\(326\) −4.75600 + 4.83235i −0.263410 + 0.267639i
\(327\) 0 0
\(328\) 22.8826 + 12.4923i 1.26348 + 0.689769i
\(329\) 8.10156 14.0323i 0.446653 0.773626i
\(330\) 0 0
\(331\) −21.7853 5.83736i −1.19743 0.320850i −0.395612 0.918418i \(-0.629467\pi\)
−0.801819 + 0.597567i \(0.796134\pi\)
\(332\) −7.52530 1.88849i −0.413004 0.103644i
\(333\) 0 0
\(334\) 6.91361 12.1980i 0.378296 0.667445i
\(335\) 16.9692 + 29.3915i 0.927126 + 1.60583i
\(336\) 0 0
\(337\) 5.04210 8.73317i 0.274661 0.475726i −0.695389 0.718634i \(-0.744768\pi\)
0.970049 + 0.242908i \(0.0781012\pi\)
\(338\) 1.32963 + 2.26122i 0.0723226 + 0.122994i
\(339\) 0 0
\(340\) 41.1099 11.7201i 2.22950 0.635611i
\(341\) 1.38099 1.38099i 0.0747849 0.0747849i
\(342\) 0 0
\(343\) 16.9107 0.913093
\(344\) −1.03659 + 4.27452i −0.0558893 + 0.230467i
\(345\) 0 0
\(346\) 10.2781 + 2.66648i 0.552555 + 0.143351i
\(347\) 28.7569 7.70540i 1.54375 0.413647i 0.616277 0.787530i \(-0.288640\pi\)
0.927476 + 0.373882i \(0.121974\pi\)
\(348\) 0 0
\(349\) 8.65259 + 2.31845i 0.463163 + 0.124104i 0.482852 0.875702i \(-0.339601\pi\)
−0.0196892 + 0.999806i \(0.506268\pi\)
\(350\) 7.12737 12.5752i 0.380974 0.672171i
\(351\) 0 0
\(352\) −4.53919 1.02453i −0.241939 0.0546074i
\(353\) −28.1794 + 16.2694i −1.49984 + 0.865933i −1.00000 0.000184008i \(-0.999941\pi\)
−0.499841 + 0.866117i \(0.666608\pi\)
\(354\) 0 0
\(355\) 8.47197 2.27006i 0.449645 0.120482i
\(356\) −18.4980 + 0.294604i −0.980392 + 0.0156140i
\(357\) 0 0
\(358\) −0.862037 0.848417i −0.0455601 0.0448402i
\(359\) 0.581843i 0.0307085i −0.999882 0.0153542i \(-0.995112\pi\)
0.999882 0.0153542i \(-0.00488760\pi\)
\(360\) 0 0
\(361\) 17.1883i 0.904648i
\(362\) 14.2698 14.4989i 0.750004 0.762044i
\(363\) 0 0
\(364\) −13.1671 + 13.5932i −0.690141 + 0.712480i
\(365\) −36.0668 + 9.66406i −1.88782 + 0.505840i
\(366\) 0 0
\(367\) −3.68240 + 2.12603i −0.192220 + 0.110978i −0.593021 0.805187i \(-0.702065\pi\)
0.400802 + 0.916165i \(0.368732\pi\)
\(368\) −20.8957 11.1925i −1.08926 0.583450i
\(369\) 0 0
\(370\) −30.8152 17.4655i −1.60200 0.907987i
\(371\) 17.4564 + 4.67743i 0.906291 + 0.242840i
\(372\) 0 0
\(373\) 6.02298 1.61385i 0.311858 0.0835621i −0.0994955 0.995038i \(-0.531723\pi\)
0.411353 + 0.911476i \(0.365056\pi\)
\(374\) 2.12849 8.20439i 0.110062 0.424239i
\(375\) 0 0
\(376\) −13.8057 + 8.41669i −0.711976 + 0.434058i
\(377\) −6.11102 −0.314733
\(378\) 0 0
\(379\) −8.99791 + 8.99791i −0.462192 + 0.462192i −0.899373 0.437182i \(-0.855977\pi\)
0.437182 + 0.899373i \(0.355977\pi\)
\(380\) −3.83919 + 6.90119i −0.196946 + 0.354024i
\(381\) 0 0
\(382\) −14.1482 + 8.31934i −0.723883 + 0.425655i
\(383\) 4.35960 7.55105i 0.222765 0.385840i −0.732882 0.680356i \(-0.761825\pi\)
0.955647 + 0.294516i \(0.0951584\pi\)
\(384\) 0 0
\(385\) −3.41998 5.92357i −0.174298 0.301893i
\(386\) 12.5389 + 7.10683i 0.638213 + 0.361728i
\(387\) 0 0
\(388\) −0.305910 0.510887i −0.0155302 0.0259364i
\(389\) −26.9041 7.20893i −1.36409 0.365507i −0.498774 0.866732i \(-0.666216\pi\)
−0.865317 + 0.501225i \(0.832883\pi\)
\(390\) 0 0
\(391\) 21.5886 37.3925i 1.09178 1.89102i
\(392\) 2.56629 + 1.40101i 0.129617 + 0.0707616i
\(393\) 0 0
\(394\) 6.16398 + 6.06659i 0.310537 + 0.305631i
\(395\) 21.4265 + 21.4265i 1.07808 + 1.07808i
\(396\) 0 0
\(397\) 3.82319 3.82319i 0.191880 0.191880i −0.604628 0.796508i \(-0.706678\pi\)
0.796508 + 0.604628i \(0.206678\pi\)
\(398\) −0.312208 39.2092i −0.0156496 1.96538i
\(399\) 0 0
\(400\) −12.2557 + 7.60623i −0.612785 + 0.380311i
\(401\) 24.9442 + 14.4015i 1.24565 + 0.719178i 0.970239 0.242148i \(-0.0778518\pi\)
0.275414 + 0.961326i \(0.411185\pi\)
\(402\) 0 0
\(403\) −2.05141 + 7.65596i −0.102188 + 0.381371i
\(404\) 15.8777 + 3.98453i 0.789944 + 0.198238i
\(405\) 0 0
\(406\) 1.95544 + 7.07207i 0.0970469 + 0.350981i
\(407\) −6.08222 + 3.51157i −0.301485 + 0.174062i
\(408\) 0 0
\(409\) −9.11179 5.26069i −0.450549 0.260125i 0.257513 0.966275i \(-0.417097\pi\)
−0.708062 + 0.706150i \(0.750430\pi\)
\(410\) 9.60289 37.0149i 0.474253 1.82804i
\(411\) 0 0
\(412\) 11.1311 20.0088i 0.548388 0.985763i
\(413\) 22.1088 + 22.1088i 1.08790 + 1.08790i
\(414\) 0 0
\(415\) 11.3804i 0.558642i
\(416\) 18.0325 5.60998i 0.884118 0.275052i
\(417\) 0 0
\(418\) 0.793696 + 1.34979i 0.0388210 + 0.0660202i
\(419\) 3.32320 + 12.4024i 0.162349 + 0.605895i 0.998363 + 0.0571875i \(0.0182133\pi\)
−0.836014 + 0.548708i \(0.815120\pi\)
\(420\) 0 0
\(421\) 2.46909 9.21476i 0.120336 0.449100i −0.879295 0.476278i \(-0.841985\pi\)
0.999631 + 0.0271782i \(0.00865216\pi\)
\(422\) −7.42880 26.8671i −0.361628 1.30787i
\(423\) 0 0
\(424\) −13.0531 12.4439i −0.633913 0.604329i
\(425\) −13.1366 22.7533i −0.637220 1.10370i
\(426\) 0 0
\(427\) 6.13732 + 22.9048i 0.297006 + 1.10844i
\(428\) 0.355423 + 0.344279i 0.0171800 + 0.0166414i
\(429\) 0 0
\(430\) 6.45140 0.0513701i 0.311114 0.00247729i
\(431\) −16.4451 −0.792131 −0.396065 0.918222i \(-0.629625\pi\)
−0.396065 + 0.918222i \(0.629625\pi\)
\(432\) 0 0
\(433\) −3.51715 −0.169023 −0.0845116 0.996422i \(-0.526933\pi\)
−0.0845116 + 0.996422i \(0.526933\pi\)
\(434\) 9.51641 0.0757756i 0.456802 0.00363735i
\(435\) 0 0
\(436\) −2.96957 + 3.06568i −0.142216 + 0.146820i
\(437\) 2.06447 + 7.70471i 0.0987570 + 0.368566i
\(438\) 0 0
\(439\) 10.4483 + 18.0969i 0.498668 + 0.863719i 0.999999 0.00153725i \(-0.000489321\pi\)
−0.501331 + 0.865256i \(0.667156\pi\)
\(440\) 0.163030 + 6.82363i 0.00777214 + 0.325304i
\(441\) 0 0
\(442\) 9.16728 + 33.1545i 0.436043 + 1.57700i
\(443\) −2.86151 + 10.6793i −0.135954 + 0.507389i 0.864038 + 0.503427i \(0.167928\pi\)
−0.999992 + 0.00396162i \(0.998739\pi\)
\(444\) 0 0
\(445\) 7.02341 + 26.2117i 0.332941 + 1.24255i
\(446\) 9.02843 + 15.3540i 0.427508 + 0.727035i
\(447\) 0 0
\(448\) −12.2624 19.0733i −0.579344 0.901130i
\(449\) 17.5860i 0.829933i −0.909837 0.414966i \(-0.863793\pi\)
0.909837 0.414966i \(-0.136207\pi\)
\(450\) 0 0
\(451\) −5.36145 5.36145i −0.252461 0.252461i
\(452\) −1.03658 0.576658i −0.0487566 0.0271237i
\(453\) 0 0
\(454\) −4.28128 + 16.5024i −0.200930 + 0.774498i
\(455\) 24.0399 + 13.8795i 1.12701 + 0.650680i
\(456\) 0 0
\(457\) −18.6606 + 10.7737i −0.872905 + 0.503972i −0.868313 0.496017i \(-0.834795\pi\)
−0.00459262 + 0.999989i \(0.501462\pi\)
\(458\) −2.13490 7.72110i −0.0997572 0.360783i
\(459\) 0 0
\(460\) −8.46314 + 33.7241i −0.394596 + 1.57240i
\(461\) 4.55312 16.9925i 0.212060 0.791419i −0.775121 0.631813i \(-0.782311\pi\)
0.987181 0.159606i \(-0.0510223\pi\)
\(462\) 0 0
\(463\) −18.4389 10.6457i −0.856930 0.494749i 0.00605328 0.999982i \(-0.498073\pi\)
−0.862983 + 0.505233i \(0.831407\pi\)
\(464\) 1.66890 7.12929i 0.0774766 0.330969i
\(465\) 0 0
\(466\) −0.114059 14.3243i −0.00528367 0.663559i
\(467\) −2.62864 + 2.62864i −0.121639 + 0.121639i −0.765306 0.643667i \(-0.777412\pi\)
0.643667 + 0.765306i \(0.277412\pi\)
\(468\) 0 0
\(469\) 23.1864 + 23.1864i 1.07065 + 1.07065i
\(470\) 16.9033 + 16.6363i 0.779693 + 0.767374i
\(471\) 0 0
\(472\) −8.79293 29.9363i −0.404727 1.37793i
\(473\) 0.639608 1.10783i 0.0294092 0.0509382i
\(474\) 0 0
\(475\) 4.68831 + 1.25623i 0.215115 + 0.0576398i
\(476\) 35.4352 21.2180i 1.62417 0.972524i
\(477\) 0 0
\(478\) −0.648540 0.367581i −0.0296635 0.0168127i
\(479\) −10.7530 18.6247i −0.491317 0.850986i 0.508633 0.860983i \(-0.330151\pi\)
−0.999950 + 0.00999740i \(0.996818\pi\)
\(480\) 0 0
\(481\) 14.2512 24.6838i 0.649799 1.12548i
\(482\) −23.7558 + 13.9688i −1.08205 + 0.636262i
\(483\) 0 0
\(484\) −18.0426 10.0373i −0.820120 0.456240i
\(485\) −0.617616 + 0.617616i −0.0280445 + 0.0280445i
\(486\) 0 0
\(487\) −14.6445 −0.663607 −0.331804 0.943348i \(-0.607657\pi\)
−0.331804 + 0.943348i \(0.607657\pi\)
\(488\) 5.57675 22.9964i 0.252447 1.04100i
\(489\) 0 0
\(490\) 1.07697 4.15123i 0.0486523 0.187533i
\(491\) −42.2317 + 11.3160i −1.90589 + 0.510682i −0.910658 + 0.413161i \(0.864425\pi\)
−0.995233 + 0.0975209i \(0.968909\pi\)
\(492\) 0 0
\(493\) 12.8824 + 3.45183i 0.580195 + 0.155463i
\(494\) −5.52851 3.13346i −0.248739 0.140981i
\(495\) 0 0
\(496\) −8.37143 4.48405i −0.375888 0.201340i
\(497\) 7.33885 4.23708i 0.329192 0.190059i
\(498\) 0 0
\(499\) 7.91419 2.12060i 0.354288 0.0949311i −0.0772856 0.997009i \(-0.524625\pi\)
0.431573 + 0.902078i \(0.357959\pi\)
\(500\) −5.87452 5.69034i −0.262717 0.254480i
\(501\) 0 0
\(502\) 25.1400 25.5436i 1.12205 1.14007i
\(503\) 1.90408i 0.0848988i 0.999099 + 0.0424494i \(0.0135161\pi\)
−0.999099 + 0.0424494i \(0.986484\pi\)
\(504\) 0 0
\(505\) 24.0116i 1.06850i
\(506\) 4.91354 + 4.83591i 0.218433 + 0.214982i
\(507\) 0 0
\(508\) −0.451661 28.3595i −0.0200392 1.25825i
\(509\) 7.27785 1.95009i 0.322585 0.0864364i −0.0938926 0.995582i \(-0.529931\pi\)
0.416478 + 0.909146i \(0.363264\pi\)
\(510\) 0 0
\(511\) −31.2428 + 18.0381i −1.38210 + 0.797957i
\(512\) 1.62014 + 22.5693i 0.0716008 + 0.997433i
\(513\) 0 0
\(514\) 11.7683 20.7634i 0.519078 0.915833i
\(515\) −32.4404 8.69237i −1.42949 0.383032i
\(516\) 0 0
\(517\) 4.54231 1.21711i 0.199771 0.0535284i
\(518\) −33.1259 8.59396i −1.45547 0.377597i
\(519\) 0 0
\(520\) −14.4193 23.6518i −0.632330 1.03720i
\(521\) 29.5974 1.29669 0.648343 0.761349i \(-0.275462\pi\)
0.648343 + 0.761349i \(0.275462\pi\)
\(522\) 0 0
\(523\) 29.1710 29.1710i 1.27556 1.27556i 0.332431 0.943128i \(-0.392131\pi\)
0.943128 0.332431i \(-0.107869\pi\)
\(524\) 2.19236 + 7.69000i 0.0957736 + 0.335939i
\(525\) 0 0
\(526\) 15.5667 + 26.4733i 0.678741 + 1.15429i
\(527\) 8.64900 14.9805i 0.376756 0.652561i
\(528\) 0 0
\(529\) 6.05948 + 10.4953i 0.263456 + 0.456318i
\(530\) −13.0435 + 23.0133i −0.566574 + 0.999632i
\(531\) 0 0
\(532\) −1.85720 + 7.40062i −0.0805198 + 0.320858i
\(533\) 29.7229 + 7.96422i 1.28744 + 0.344969i
\(534\) 0 0
\(535\) 0.362907 0.628573i 0.0156898 0.0271756i
\(536\) −9.22148 31.3953i −0.398307 1.35607i
\(537\) 0 0
\(538\) −4.92040 + 4.99939i −0.212134 + 0.215539i
\(539\) −0.601287 0.601287i −0.0258993 0.0258993i
\(540\) 0 0
\(541\) 7.87135 7.87135i 0.338416 0.338416i −0.517355 0.855771i \(-0.673083\pi\)
0.855771 + 0.517355i \(0.173083\pi\)
\(542\) 3.19248 0.0254205i 0.137129 0.00109190i
\(543\) 0 0
\(544\) −41.1826 + 1.64044i −1.76569 + 0.0703333i
\(545\) 5.42173 + 3.13024i 0.232241 + 0.134085i
\(546\) 0 0
\(547\) −0.817385 + 3.05052i −0.0349488 + 0.130431i −0.981196 0.193013i \(-0.938174\pi\)
0.946247 + 0.323444i \(0.104841\pi\)
\(548\) −8.18279 13.6657i −0.349551 0.583770i
\(549\) 0 0
\(550\) 4.04335 1.11799i 0.172409 0.0476714i
\(551\) −2.13375 + 1.23192i −0.0909007 + 0.0524816i
\(552\) 0 0
\(553\) 25.3544 + 14.6384i 1.07818 + 0.622486i
\(554\) 25.1665 + 6.52902i 1.06922 + 0.277391i
\(555\) 0 0
\(556\) 5.85591 + 20.5404i 0.248346 + 0.871108i
\(557\) −22.4110 22.4110i −0.949583 0.949583i 0.0492055 0.998789i \(-0.484331\pi\)
−0.998789 + 0.0492055i \(0.984331\pi\)
\(558\) 0 0
\(559\) 5.19151i 0.219577i
\(560\) −22.7574 + 24.2553i −0.961676 + 1.02497i
\(561\) 0 0
\(562\) 10.6857 6.28336i 0.450749 0.265048i
\(563\) 8.11646 + 30.2910i 0.342068 + 1.27661i 0.896000 + 0.444053i \(0.146460\pi\)
−0.553933 + 0.832561i \(0.686873\pi\)
\(564\) 0 0
\(565\) −0.450319 + 1.68061i −0.0189450 + 0.0707039i
\(566\) −22.0389 + 6.09380i −0.926365 + 0.256141i
\(567\) 0 0
\(568\) −8.45395 + 0.201981i −0.354720 + 0.00847494i
\(569\) −2.78787 4.82873i −0.116874 0.202431i 0.801654 0.597789i \(-0.203954\pi\)
−0.918527 + 0.395358i \(0.870621\pi\)
\(570\) 0 0
\(571\) 5.39076 + 20.1186i 0.225596 + 0.841937i 0.982165 + 0.188023i \(0.0602078\pi\)
−0.756568 + 0.653915i \(0.773126\pi\)
\(572\) −5.49175 + 0.0874630i −0.229621 + 0.00365701i
\(573\) 0 0
\(574\) −0.294185 36.9457i −0.0122790 1.54208i
\(575\) 21.3699 0.891185
\(576\) 0 0
\(577\) 20.3551 0.847394 0.423697 0.905804i \(-0.360732\pi\)
0.423697 + 0.905804i \(0.360732\pi\)
\(578\) −0.406326 51.0292i −0.0169010 2.12253i
\(579\) 0 0
\(580\) −10.7386 + 0.171026i −0.445896 + 0.00710146i
\(581\) 2.84584 + 10.6208i 0.118065 + 0.440626i
\(582\) 0 0
\(583\) 2.62250 + 4.54230i 0.108613 + 0.188123i
\(584\) 35.9901 0.859872i 1.48928 0.0355818i
\(585\) 0 0
\(586\) 17.0918 4.72592i 0.706057 0.195226i
\(587\) 8.19230 30.5741i 0.338132 1.26193i −0.562301 0.826933i \(-0.690084\pi\)
0.900433 0.434994i \(-0.143250\pi\)
\(588\) 0 0
\(589\) 0.827087 + 3.08673i 0.0340795 + 0.127186i
\(590\) −39.4507 + 23.1977i −1.62416 + 0.955032i
\(591\) 0 0
\(592\) 24.9049 + 23.3669i 1.02358 + 0.960374i
\(593\) 18.8148i 0.772633i −0.922366 0.386317i \(-0.873747\pi\)
0.922366 0.386317i \(-0.126253\pi\)
\(594\) 0 0
\(595\) −42.8379 42.8379i −1.75618 1.75618i
\(596\) 2.40762 + 8.44507i 0.0986201 + 0.345924i
\(597\) 0 0
\(598\) −27.0822 7.02602i −1.10747 0.287315i
\(599\) −0.618276 0.356962i −0.0252621 0.0145851i 0.487316 0.873226i \(-0.337976\pi\)
−0.512578 + 0.858641i \(0.671309\pi\)
\(600\) 0 0
\(601\) −39.9427 + 23.0610i −1.62930 + 0.940676i −0.644996 + 0.764186i \(0.723141\pi\)
−0.984302 + 0.176490i \(0.943526\pi\)
\(602\) 6.00796 1.66121i 0.244866 0.0677059i
\(603\) 0 0
\(604\) 14.2566 + 23.8093i 0.580093 + 0.968788i
\(605\) −7.83822 + 29.2526i −0.318669 + 1.18929i
\(606\) 0 0
\(607\) 25.9512 + 14.9830i 1.05333 + 0.608139i 0.923579 0.383408i \(-0.125250\pi\)
0.129749 + 0.991547i \(0.458583\pi\)
\(608\) 5.16540 5.59398i 0.209485 0.226866i
\(609\) 0 0
\(610\) −34.7078 + 0.276366i −1.40528 + 0.0111897i
\(611\) −13.4948 + 13.4948i −0.545943 + 0.545943i
\(612\) 0 0
\(613\) −4.31839 4.31839i −0.174418 0.174418i 0.614499 0.788917i \(-0.289358\pi\)
−0.788917 + 0.614499i \(0.789358\pi\)
\(614\) −26.5385 + 26.9645i −1.07101 + 1.08820i
\(615\) 0 0
\(616\) 1.85850 + 6.32742i 0.0748811 + 0.254939i
\(617\) 14.3245 24.8108i 0.576683 0.998844i −0.419174 0.907906i \(-0.637680\pi\)
0.995857 0.0909377i \(-0.0289864\pi\)
\(618\) 0 0
\(619\) −31.5053 8.44181i −1.26630 0.339305i −0.437690 0.899126i \(-0.644203\pi\)
−0.828614 + 0.559821i \(0.810870\pi\)
\(620\) −3.39058 + 13.5109i −0.136169 + 0.542609i
\(621\) 0 0
\(622\) −4.09583 + 7.22646i −0.164228 + 0.289755i
\(623\) 13.1093 + 22.7059i 0.525211 + 0.909693i
\(624\) 0 0
\(625\) −15.0133 + 26.0039i −0.600533 + 1.04015i
\(626\) 11.8771 + 20.1986i 0.474704 + 0.807297i
\(627\) 0 0
\(628\) 3.41493 + 11.9783i 0.136270 + 0.477987i
\(629\) −43.9852 + 43.9852i −1.75380 + 1.75380i
\(630\) 0 0
\(631\) 19.5062 0.776529 0.388265 0.921548i \(-0.373075\pi\)
0.388265 + 0.921548i \(0.373075\pi\)
\(632\) −15.2078 24.9450i −0.604932 0.992258i
\(633\) 0 0
\(634\) 9.54829 + 2.47714i 0.379211 + 0.0983798i
\(635\) −40.1855 + 10.7677i −1.59471 + 0.427302i
\(636\) 0 0
\(637\) 3.33342 + 0.893188i 0.132075 + 0.0353894i
\(638\) −1.05003 + 1.85263i −0.0415713 + 0.0733461i
\(639\) 0 0
\(640\) 31.5307 10.3628i 1.24636 0.409626i
\(641\) −0.569361 + 0.328721i −0.0224884 + 0.0129837i −0.511202 0.859461i \(-0.670800\pi\)
0.488714 + 0.872444i \(0.337466\pi\)
\(642\) 0 0
\(643\) 23.4845 6.29265i 0.926138 0.248158i 0.235931 0.971770i \(-0.424186\pi\)
0.690207 + 0.723612i \(0.257519\pi\)
\(644\) 0.534956 + 33.5895i 0.0210802 + 1.32361i
\(645\) 0 0
\(646\) 9.88451 + 9.72834i 0.388901 + 0.382756i
\(647\) 21.5984i 0.849122i 0.905399 + 0.424561i \(0.139572\pi\)
−0.905399 + 0.424561i \(0.860428\pi\)
\(648\) 0 0
\(649\) 9.07434i 0.356199i
\(650\) −11.9423 + 12.1340i −0.468416 + 0.475935i
\(651\) 0 0
\(652\) −6.88731 6.67137i −0.269728 0.261271i
\(653\) −38.1014 + 10.2092i −1.49102 + 0.399519i −0.910082 0.414427i \(-0.863982\pi\)
−0.580941 + 0.813946i \(0.697315\pi\)
\(654\) 0 0
\(655\) 10.1577 5.86458i 0.396896 0.229148i
\(656\) −17.4085 + 32.5005i −0.679687 + 1.26893i
\(657\) 0 0
\(658\) 19.9353 + 11.2990i 0.777158 + 0.440479i
\(659\) −13.5220 3.62321i −0.526742 0.141140i −0.0143586 0.999897i \(-0.504571\pi\)
−0.512383 + 0.858757i \(0.671237\pi\)
\(660\) 0 0
\(661\) −40.1488 + 10.7578i −1.56161 + 0.418432i −0.933172 0.359430i \(-0.882971\pi\)
−0.628436 + 0.777861i \(0.716305\pi\)
\(662\) 8.00970 30.8739i 0.311306 1.19995i
\(663\) 0 0
\(664\) 2.58590 10.6633i 0.100352 0.413816i
\(665\) 11.1918 0.434001
\(666\) 0 0
\(667\) −7.67055 + 7.67055i −0.297005 + 0.297005i
\(668\) 17.3279 + 9.63966i 0.670436 + 0.372970i
\(669\) 0 0
\(670\) −41.3735 + 24.3283i −1.59840 + 0.939883i
\(671\) −3.44102 + 5.96002i −0.132839 + 0.230084i
\(672\) 0 0
\(673\) 2.88063 + 4.98940i 0.111040 + 0.192327i 0.916190 0.400744i \(-0.131248\pi\)
−0.805150 + 0.593072i \(0.797915\pi\)
\(674\) 12.4070 + 7.03204i 0.477898 + 0.270864i
\(675\) 0 0
\(676\) −3.18278 + 1.90579i −0.122414 + 0.0732996i
\(677\) 27.1438 + 7.27316i 1.04322 + 0.279530i 0.739447 0.673214i \(-0.235087\pi\)
0.303773 + 0.952744i \(0.401754\pi\)
\(678\) 0 0
\(679\) −0.421949 + 0.730837i −0.0161929 + 0.0280469i
\(680\) 17.0371 + 58.0043i 0.653343 + 2.22436i
\(681\) 0 0
\(682\) 1.96851 + 1.93740i 0.0753780 + 0.0741871i
\(683\) −4.50875 4.50875i −0.172522 0.172522i 0.615564 0.788087i \(-0.288928\pi\)
−0.788087 + 0.615564i \(0.788928\pi\)
\(684\) 0 0
\(685\) −16.5206 + 16.5206i −0.631219 + 0.631219i
\(686\) 0.190423 + 23.9146i 0.00727039 + 0.913064i
\(687\) 0 0
\(688\) −6.05656 1.41778i −0.230904 0.0540524i
\(689\) −18.4343 10.6430i −0.702290 0.405467i
\(690\) 0 0
\(691\) −2.65522 + 9.90941i −0.101009 + 0.376972i −0.997862 0.0653578i \(-0.979181\pi\)
0.896853 + 0.442329i \(0.145848\pi\)
\(692\) −3.65512 + 14.5650i −0.138947 + 0.553679i
\(693\) 0 0
\(694\) 11.2205 + 40.5804i 0.425926 + 1.54041i
\(695\) 27.1319 15.6646i 1.02917 0.594193i
\(696\) 0 0
\(697\) −58.1591 33.5782i −2.20293 1.27186i
\(698\) −3.18125 + 12.2623i −0.120412 + 0.464136i
\(699\) 0 0
\(700\) 17.8637 + 9.93771i 0.675183 + 0.375610i
\(701\) −16.5518 16.5518i −0.625154 0.625154i 0.321691 0.946845i \(-0.395749\pi\)
−0.946845 + 0.321691i \(0.895749\pi\)
\(702\) 0 0
\(703\) 11.4916i 0.433414i
\(704\) 1.39774 6.43071i 0.0526792 0.242367i
\(705\) 0 0
\(706\) −23.3250 39.6673i −0.877848 1.49290i
\(707\) −6.00445 22.4089i −0.225821 0.842774i
\(708\) 0 0
\(709\) 10.7915 40.2743i 0.405282 1.51253i −0.398253 0.917276i \(-0.630383\pi\)
0.803535 0.595257i \(-0.202950\pi\)
\(710\) 3.30564 + 11.9552i 0.124059 + 0.448672i
\(711\) 0 0
\(712\) −0.624916 26.1560i −0.0234197 0.980236i
\(713\) 7.03484 + 12.1847i 0.263457 + 0.456320i
\(714\) 0 0
\(715\) 2.08513 + 7.78182i 0.0779795 + 0.291023i
\(716\) 1.19010 1.22862i 0.0444761 0.0459157i
\(717\) 0 0
\(718\) 0.822824 0.00655184i 0.0307075 0.000244513i
\(719\) 26.8494 1.00131 0.500656 0.865646i \(-0.333092\pi\)
0.500656 + 0.865646i \(0.333092\pi\)
\(720\) 0 0
\(721\) −32.4488 −1.20846
\(722\) 24.3072 0.193549i 0.904619 0.00720315i
\(723\) 0 0
\(724\) 20.6645 + 20.0166i 0.767991 + 0.743912i
\(725\) 1.70843 + 6.37597i 0.0634497 + 0.236797i
\(726\) 0 0
\(727\) −12.1681 21.0758i −0.451290 0.781657i 0.547176 0.837017i \(-0.315703\pi\)
−0.998466 + 0.0553600i \(0.982369\pi\)
\(728\) −19.3714 18.4674i −0.717952 0.684446i
\(729\) 0 0
\(730\) −14.0727 50.8957i −0.520856 1.88373i
\(731\) 2.93245 10.9440i 0.108460 0.404780i
\(732\) 0 0
\(733\) 5.85501 + 21.8512i 0.216260 + 0.807093i 0.985719 + 0.168397i \(0.0538591\pi\)
−0.769459 + 0.638696i \(0.779474\pi\)
\(734\) −3.04804 5.18359i −0.112505 0.191330i
\(735\) 0 0
\(736\) 15.5928 29.6761i 0.574758 1.09388i
\(737\) 9.51661i 0.350549i
\(738\) 0 0
\(739\) −12.6742 12.6742i −0.466230 0.466230i 0.434461 0.900691i \(-0.356939\pi\)
−0.900691 + 0.434461i \(0.856939\pi\)
\(740\) 24.3521 43.7745i 0.895202 1.60918i
\(741\) 0 0
\(742\) −6.41811 + 24.7390i −0.235616 + 0.908196i
\(743\) −25.2864 14.5991i −0.927667 0.535589i −0.0415943 0.999135i \(-0.513244\pi\)
−0.886073 + 0.463546i \(0.846577\pi\)
\(744\) 0 0
\(745\) 11.1551 6.44042i 0.408692 0.235959i
\(746\) 2.35008 + 8.49933i 0.0860426 + 0.311183i
\(747\) 0 0
\(748\) 11.6264 + 2.91766i 0.425102 + 0.106680i
\(749\) 0.181500 0.677369i 0.00663188 0.0247505i
\(750\) 0 0
\(751\) −23.9864 13.8486i −0.875277 0.505341i −0.00617885 0.999981i \(-0.501967\pi\)
−0.869098 + 0.494639i \(0.835300\pi\)
\(752\) −12.0581 19.4289i −0.439713 0.708498i
\(753\) 0 0
\(754\) −0.0688131 8.64201i −0.00250603 0.314724i
\(755\) 28.7833 28.7833i 1.04753 1.04753i
\(756\) 0 0
\(757\) −6.84906 6.84906i −0.248933 0.248933i 0.571599 0.820533i \(-0.306323\pi\)
−0.820533 + 0.571599i \(0.806323\pi\)
\(758\) −12.8259 12.6232i −0.465857 0.458497i
\(759\) 0 0
\(760\) −9.80268 5.35156i −0.355581 0.194121i
\(761\) 6.92685 11.9977i 0.251098 0.434915i −0.712730 0.701438i \(-0.752542\pi\)
0.963828 + 0.266523i \(0.0858750\pi\)
\(762\) 0 0
\(763\) 5.84262 + 1.56553i 0.211517 + 0.0566758i
\(764\) −11.9243 19.9142i −0.431405 0.720470i
\(765\) 0 0
\(766\) 10.7275 + 6.08018i 0.387602 + 0.219686i
\(767\) −18.4134 31.8930i −0.664871 1.15159i
\(768\) 0 0
\(769\) 5.15368 8.92644i 0.185846 0.321896i −0.758015 0.652237i \(-0.773831\pi\)
0.943861 + 0.330342i \(0.107164\pi\)
\(770\) 8.33842 4.90313i 0.300496 0.176696i
\(771\) 0 0
\(772\) −9.90906 + 17.8122i −0.356635 + 0.641073i
\(773\) 29.0684 29.0684i 1.04552 1.04552i 0.0466043 0.998913i \(-0.485160\pi\)
0.998913 0.0466043i \(-0.0148400\pi\)
\(774\) 0 0
\(775\) 8.56139 0.307534
\(776\) 0.719036 0.438362i 0.0258119 0.0157363i
\(777\) 0 0
\(778\) 9.89168 38.1281i 0.354634 1.36696i
\(779\) 11.9837 3.21101i 0.429359 0.115046i
\(780\) 0 0
\(781\) 2.37561 + 0.636543i 0.0850060 + 0.0227773i
\(782\) 53.1224 + 30.1088i 1.89965 + 1.07669i
\(783\) 0 0
\(784\) −1.95236 + 3.64494i −0.0697273 + 0.130176i
\(785\) 15.8222 9.13496i 0.564719 0.326041i
\(786\) 0 0
\(787\) −35.9593 + 9.63526i −1.28181 + 0.343460i −0.834544 0.550941i \(-0.814269\pi\)
−0.447266 + 0.894401i \(0.647602\pi\)
\(788\) −8.50978 + 8.78522i −0.303148 + 0.312961i
\(789\) 0 0
\(790\) −30.0594 + 30.5419i −1.06946 + 1.08663i
\(791\) 1.68105i 0.0597712i
\(792\) 0 0
\(793\) 27.9297i 0.991814i
\(794\) 5.44969 + 5.36359i 0.193402 + 0.190347i
\(795\) 0 0
\(796\) 55.4449 0.883030i 1.96519 0.0312982i
\(797\) −9.38318 + 2.51421i −0.332369 + 0.0890580i −0.421144 0.906994i \(-0.638371\pi\)
0.0887752 + 0.996052i \(0.471705\pi\)
\(798\) 0 0
\(799\) 36.0706 20.8254i 1.27609 0.736749i
\(800\) −10.8945 17.2460i −0.385178 0.609738i
\(801\) 0 0
\(802\) −20.0853 + 35.4375i −0.709237 + 1.25134i
\(803\) −10.1134 2.70988i −0.356895 0.0956297i
\(804\) 0 0
\(805\) 47.5965 12.7534i 1.67756 0.449500i
\(806\) −10.8499 2.81483i −0.382172 0.0991481i
\(807\) 0 0
\(808\) −5.45601 + 22.4986i −0.191942 + 0.791497i
\(809\) −13.1867 −0.463620 −0.231810 0.972761i \(-0.574465\pi\)
−0.231810 + 0.972761i \(0.574465\pi\)
\(810\) 0 0
\(811\) −11.0093 + 11.0093i −0.386587 + 0.386587i −0.873468 0.486881i \(-0.838135\pi\)
0.486881 + 0.873468i \(0.338135\pi\)
\(812\) −9.97909 + 2.84496i −0.350197 + 0.0998385i
\(813\) 0 0
\(814\) −5.03444 8.56175i −0.176457 0.300089i
\(815\) −7.03233 + 12.1804i −0.246332 + 0.426659i
\(816\) 0 0
\(817\) 1.04656 + 1.81269i 0.0366144 + 0.0634179i
\(818\) 7.33690 12.9448i 0.256529 0.452606i
\(819\) 0 0
\(820\) 52.4535 + 13.1633i 1.83175 + 0.459682i
\(821\) 4.17943 + 1.11987i 0.145863 + 0.0390839i 0.331012 0.943627i \(-0.392610\pi\)
−0.185149 + 0.982711i \(0.559277\pi\)
\(822\) 0 0
\(823\) 23.8576 41.3225i 0.831622 1.44041i −0.0651287 0.997877i \(-0.520746\pi\)
0.896751 0.442535i \(-0.145921\pi\)
\(824\) 28.4212 + 15.5159i 0.990098 + 0.540522i
\(825\) 0 0
\(826\) −31.0167 + 31.5146i −1.07921 + 1.09653i
\(827\) 1.38625 + 1.38625i 0.0482045 + 0.0482045i 0.730798 0.682594i \(-0.239148\pi\)
−0.682594 + 0.730798i \(0.739148\pi\)
\(828\) 0 0
\(829\) −21.8345 + 21.8345i −0.758345 + 0.758345i −0.976021 0.217676i \(-0.930152\pi\)
0.217676 + 0.976021i \(0.430152\pi\)
\(830\) −16.0938 + 0.128149i −0.558624 + 0.00444812i
\(831\) 0 0
\(832\) 8.13651 + 25.4379i 0.282083 + 0.881900i
\(833\) −6.52255 3.76580i −0.225993 0.130477i
\(834\) 0 0
\(835\) 7.52771 28.0938i 0.260507 0.972227i
\(836\) −1.89989 + 1.13762i −0.0657090 + 0.0393454i
\(837\) 0 0
\(838\) −17.5016 + 4.83923i −0.604583 + 0.167168i
\(839\) 27.8914 16.1031i 0.962916 0.555940i 0.0658470 0.997830i \(-0.479025\pi\)
0.897069 + 0.441890i \(0.145692\pi\)
\(840\) 0 0
\(841\) 22.2129 + 12.8246i 0.765962 + 0.442228i
\(842\) 13.0590 + 3.38794i 0.450044 + 0.116756i
\(843\) 0 0
\(844\) 37.9109 10.8081i 1.30495 0.372031i
\(845\) 3.84768 + 3.84768i 0.132364 + 0.132364i
\(846\) 0 0
\(847\) 29.2602i 1.00539i
\(848\) 17.4508 18.5994i 0.599263 0.638705i
\(849\) 0 0
\(850\) 32.0291 18.8336i 1.09859 0.645988i
\(851\) −13.0950 48.8712i −0.448891 1.67528i
\(852\) 0 0
\(853\) −12.0354 + 44.9166i −0.412083 + 1.53791i 0.378525 + 0.925591i \(0.376431\pi\)
−0.790608 + 0.612323i \(0.790235\pi\)
\(854\) −32.3221 + 8.93713i −1.10604 + 0.305822i
\(855\) 0 0
\(856\) −0.482866 + 0.506504i −0.0165040 + 0.0173120i
\(857\) 10.0139 + 17.3446i 0.342068 + 0.592480i 0.984817 0.173598i \(-0.0555392\pi\)
−0.642748 + 0.766077i \(0.722206\pi\)
\(858\) 0 0
\(859\) −4.47358 16.6956i −0.152637 0.569648i −0.999296 0.0375129i \(-0.988056\pi\)
0.846659 0.532135i \(-0.178610\pi\)
\(860\) 0.145292 + 9.12279i 0.00495442 + 0.311085i
\(861\) 0 0
\(862\) −0.185180 23.2561i −0.00630725 0.792106i
\(863\) 24.4242 0.831410 0.415705 0.909499i \(-0.363535\pi\)
0.415705 + 0.909499i \(0.363535\pi\)
\(864\) 0 0
\(865\) 22.0265 0.748923
\(866\) −0.0396048 4.97384i −0.00134583 0.169018i
\(867\) 0 0
\(868\) 0.214319 + 13.4569i 0.00727446 + 0.456759i
\(869\) 2.19914 + 8.20731i 0.0746007 + 0.278414i
\(870\) 0 0
\(871\) −19.3109 33.4474i −0.654324 1.13332i
\(872\) −4.36883 4.16495i −0.147947 0.141043i
\(873\) 0 0
\(874\) −10.8725 + 3.00627i −0.367768 + 0.101689i
\(875\) −2.99989 + 11.1957i −0.101415 + 0.378485i
\(876\) 0 0
\(877\) −9.26415 34.5743i −0.312828 1.16749i −0.925995 0.377537i \(-0.876771\pi\)
0.613167 0.789954i \(-0.289895\pi\)
\(878\) −25.4744 + 14.9794i −0.859721 + 0.505530i
\(879\) 0 0
\(880\) −9.64793 + 0.307389i −0.325232 + 0.0103621i
\(881\) 45.8264i 1.54393i 0.635664 + 0.771966i \(0.280726\pi\)
−0.635664 + 0.771966i \(0.719274\pi\)
\(882\) 0 0
\(883\) 7.22790 + 7.22790i 0.243238 + 0.243238i 0.818188 0.574950i \(-0.194979\pi\)
−0.574950 + 0.818188i \(0.694979\pi\)
\(884\) −46.7829 + 13.3374i −1.57348 + 0.448586i
\(885\) 0 0
\(886\) −15.1345 3.92640i −0.508455 0.131910i
\(887\) 36.9502 + 21.3332i 1.24067 + 0.716300i 0.969230 0.246156i \(-0.0791676\pi\)
0.271438 + 0.962456i \(0.412501\pi\)
\(888\) 0 0
\(889\) −34.8107 + 20.0980i −1.16751 + 0.674065i
\(890\) −36.9887 + 10.2274i −1.23986 + 0.342824i
\(891\) 0 0
\(892\) −21.6115 + 12.9406i −0.723608 + 0.433284i
\(893\) −1.99149 + 7.43234i −0.0666426 + 0.248714i
\(894\) 0 0
\(895\) −2.17284 1.25449i −0.0726300 0.0419330i
\(896\) 26.8348 17.5559i 0.896489 0.586501i
\(897\) 0 0
\(898\) 24.8695 0.198027i 0.829906 0.00660824i
\(899\) −3.07305 + 3.07305i −0.102492 + 0.102492i
\(900\) 0 0
\(901\) 32.8489 + 32.8489i 1.09435 + 1.09435i
\(902\) 7.52162 7.64236i 0.250443 0.254463i
\(903\) 0 0
\(904\) 0.803819 1.47239i 0.0267346 0.0489710i
\(905\) 21.0997 36.5457i 0.701376 1.21482i
\(906\) 0 0
\(907\) 38.9844 + 10.4458i 1.29445 + 0.346848i 0.839351 0.543590i \(-0.182935\pi\)
0.455104 + 0.890438i \(0.349602\pi\)
\(908\) −23.3855 5.86863i −0.776074 0.194757i
\(909\) 0 0
\(910\) −19.3572 + 34.1528i −0.641685 + 1.13216i
\(911\) −22.6553 39.2402i −0.750605 1.30009i −0.947530 0.319667i \(-0.896429\pi\)
0.196925 0.980419i \(-0.436905\pi\)
\(912\) 0 0
\(913\) −1.59558 + 2.76362i −0.0528060 + 0.0914626i
\(914\) −15.4459 26.2679i −0.510906 0.868865i
\(915\) 0 0
\(916\) 10.8949 3.10605i 0.359978 0.102627i
\(917\) 8.01324 8.01324i 0.264621 0.264621i
\(918\) 0 0
\(919\) −3.91688 −0.129206 −0.0646030 0.997911i \(-0.520578\pi\)
−0.0646030 + 0.997911i \(0.520578\pi\)
\(920\) −47.7869 11.5886i −1.57549 0.382063i
\(921\) 0 0
\(922\) 24.0815 + 6.24754i 0.793082 + 0.205752i
\(923\) −9.64107 + 2.58332i −0.317340 + 0.0850309i
\(924\) 0 0
\(925\) −29.7381 7.96831i −0.977784 0.261996i
\(926\) 14.8472 26.1956i 0.487910 0.860842i
\(927\) 0 0
\(928\) 10.1008 + 2.27982i 0.331575 + 0.0748388i
\(929\) 13.7214 7.92207i 0.450185 0.259915i −0.257723 0.966219i \(-0.582972\pi\)
0.707908 + 0.706304i \(0.249639\pi\)
\(930\) 0 0
\(931\) 1.34397 0.360116i 0.0440468 0.0118023i
\(932\) 20.2556 0.322597i 0.663496 0.0105670i
\(933\) 0 0
\(934\) −3.74694 3.68774i −0.122604 0.120667i
\(935\) 17.5824i 0.575005i
\(936\) 0 0
\(937\) 38.0380i 1.24265i −0.783554 0.621324i \(-0.786595\pi\)
0.783554 0.621324i \(-0.213405\pi\)
\(938\) −32.5284 + 33.0505i −1.06209 + 1.07914i
\(939\) 0 0
\(940\) −23.3362 + 24.0915i −0.761142 + 0.785779i
\(941\) 49.4756 13.2570i 1.61286 0.432164i 0.663966 0.747762i \(-0.268872\pi\)
0.948893 + 0.315598i \(0.102205\pi\)
\(942\) 0 0
\(943\) 47.3048 27.3115i 1.54046 0.889384i
\(944\) 42.2359 12.7718i 1.37466 0.415686i
\(945\) 0 0
\(946\) 1.57387 + 0.892039i 0.0511708 + 0.0290027i
\(947\) −15.8269 4.24080i −0.514305 0.137808i −0.00767376 0.999971i \(-0.502443\pi\)
−0.506631 + 0.862163i \(0.669109\pi\)
\(948\) 0 0
\(949\) 41.0438 10.9977i 1.33234 0.356999i
\(950\) −1.72373 + 6.64421i −0.0559251 + 0.215567i
\(951\) 0 0
\(952\) 30.4048 + 49.8724i 0.985426 + 1.61637i
\(953\) −19.2107 −0.622295 −0.311147 0.950362i \(-0.600713\pi\)
−0.311147 + 0.950362i \(0.600713\pi\)
\(954\) 0 0
\(955\) −24.0744 + 24.0744i −0.779030 + 0.779030i
\(956\) 0.512518 0.921284i 0.0165760 0.0297964i
\(957\) 0 0
\(958\) 26.2174 15.4163i 0.847047 0.498077i
\(959\) −11.2867 + 19.5491i −0.364466 + 0.631274i
\(960\) 0 0
\(961\) −12.6816 21.9652i −0.409085 0.708556i
\(962\) 35.0675 + 19.8756i 1.13062 + 0.640817i
\(963\) 0 0
\(964\) −20.0218 33.4375i −0.644858 1.07695i
\(965\) 28.8789 + 7.73809i 0.929646 + 0.249098i
\(966\) 0 0
\(967\) −17.0779 + 29.5798i −0.549188 + 0.951222i 0.449142 + 0.893460i \(0.351730\pi\)
−0.998330 + 0.0577615i \(0.981604\pi\)
\(968\) 13.9912 25.6284i 0.449695 0.823726i
\(969\) 0 0
\(970\) −0.880367 0.866458i −0.0282669 0.0278203i
\(971\) −20.2022 20.2022i −0.648318 0.648318i 0.304268 0.952586i \(-0.401588\pi\)
−0.952586 + 0.304268i \(0.901588\pi\)
\(972\) 0 0
\(973\) 21.4038 21.4038i 0.686175 0.686175i
\(974\) −0.164905 20.7099i −0.00528389 0.663586i
\(975\) 0 0
\(976\) 32.5836 + 7.62751i 1.04298 + 0.244151i
\(977\) 7.37615 + 4.25862i 0.235984 + 0.136245i 0.613329 0.789827i \(-0.289830\pi\)
−0.377346 + 0.926072i \(0.623163\pi\)
\(978\) 0 0
\(979\) −1.96942 + 7.34998i −0.0629430 + 0.234906i
\(980\) 5.88266 + 1.47627i 0.187915 + 0.0471576i
\(981\) 0 0
\(982\) −16.4782 59.5954i −0.525841 1.90176i
\(983\) −47.6844 + 27.5306i −1.52090 + 0.878090i −0.521200 + 0.853435i \(0.674515\pi\)
−0.999696 + 0.0246553i \(0.992151\pi\)
\(984\) 0 0
\(985\) 15.5369 + 8.97021i 0.495045 + 0.285815i
\(986\) −4.73641 + 18.2568i −0.150838 + 0.581415i
\(987\) 0 0
\(988\) 4.36899 7.85353i 0.138996 0.249854i
\(989\) 6.51638 + 6.51638i 0.207209 + 0.207209i
\(990\) 0 0
\(991\) 61.9180i 1.96689i −0.181210 0.983444i \(-0.558001\pi\)
0.181210 0.983444i \(-0.441999\pi\)
\(992\) 6.24693 11.8891i 0.198340 0.377480i
\(993\) 0 0
\(994\) 6.07459 + 10.3307i 0.192674 + 0.327668i
\(995\) −21.0516 78.5655i −0.667380 2.49069i
\(996\) 0 0
\(997\) −4.65375 + 17.3680i −0.147386 + 0.550051i 0.852252 + 0.523132i \(0.175236\pi\)
−0.999638 + 0.0269194i \(0.991430\pi\)
\(998\) 3.08800 + 11.1681i 0.0977490 + 0.353520i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.v.a.395.12 88
3.2 odd 2 144.2.u.a.59.11 yes 88
4.3 odd 2 1728.2.z.a.719.20 88
9.2 odd 6 inner 432.2.v.a.251.5 88
9.7 even 3 144.2.u.a.11.18 88
12.11 even 2 576.2.y.a.527.15 88
16.3 odd 4 inner 432.2.v.a.179.5 88
16.13 even 4 1728.2.z.a.1583.20 88
36.7 odd 6 576.2.y.a.335.19 88
36.11 even 6 1728.2.z.a.143.20 88
48.29 odd 4 576.2.y.a.239.19 88
48.35 even 4 144.2.u.a.131.18 yes 88
144.29 odd 12 1728.2.z.a.1007.20 88
144.61 even 12 576.2.y.a.47.15 88
144.83 even 12 inner 432.2.v.a.35.12 88
144.115 odd 12 144.2.u.a.83.11 yes 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.18 88 9.7 even 3
144.2.u.a.59.11 yes 88 3.2 odd 2
144.2.u.a.83.11 yes 88 144.115 odd 12
144.2.u.a.131.18 yes 88 48.35 even 4
432.2.v.a.35.12 88 144.83 even 12 inner
432.2.v.a.179.5 88 16.3 odd 4 inner
432.2.v.a.251.5 88 9.2 odd 6 inner
432.2.v.a.395.12 88 1.1 even 1 trivial
576.2.y.a.47.15 88 144.61 even 12
576.2.y.a.239.19 88 48.29 odd 4
576.2.y.a.335.19 88 36.7 odd 6
576.2.y.a.527.15 88 12.11 even 2
1728.2.z.a.143.20 88 36.11 even 6
1728.2.z.a.719.20 88 4.3 odd 2
1728.2.z.a.1007.20 88 144.29 odd 12
1728.2.z.a.1583.20 88 16.13 even 4