Properties

Label 429.2.n
Level $429$
Weight $2$
Character orbit 429.n
Rep. character $\chi_{429}(157,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $96$
Newform subspaces $4$
Sturm bound $112$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 429 = 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 429.n (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 4 \)
Sturm bound: \(112\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(429, [\chi])\).

Total New Old
Modular forms 240 96 144
Cusp forms 208 96 112
Eisenstein series 32 0 32

Trace form

\( 96 q + 8 q^{2} - 16 q^{4} + 8 q^{5} + 4 q^{6} + 4 q^{7} - 16 q^{8} - 24 q^{9} + 16 q^{10} + 12 q^{11} + 8 q^{12} + 4 q^{13} - 4 q^{14} - 12 q^{15} - 52 q^{16} - 24 q^{17} - 12 q^{18} + 16 q^{19} + 32 q^{20}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(429, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
429.2.n.a 429.n 11.c $12$ $3.426$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 429.2.n.a \(3\) \(-3\) \(8\) \(5\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{6}q^{2}+\beta _{4}q^{3}+(-\beta _{1}+\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
429.2.n.b 429.n 11.c $20$ $3.426$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 429.2.n.b \(1\) \(5\) \(4\) \(-3\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{5}q^{2}-\beta _{9}q^{3}+(-\beta _{3}-\beta _{5}-\beta _{7}+\cdots)q^{4}+\cdots\)
429.2.n.c 429.n 11.c $28$ $3.426$ None 429.2.n.c \(1\) \(7\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{5}]$
429.2.n.d 429.n 11.c $36$ $3.426$ None 429.2.n.d \(3\) \(-9\) \(0\) \(1\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(429, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(429, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(143, [\chi])\)\(^{\oplus 2}\)