Newspace parameters
Level: | \( N \) | \(=\) | \( 429 = 3 \cdot 11 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 429.n (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.42558224671\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
157.1 | −2.05353 | + | 1.49197i | −0.309017 | − | 0.951057i | 1.37295 | − | 4.22550i | −3.43019 | − | 2.49218i | 2.05353 | + | 1.49197i | 0.899200 | − | 2.76745i | 1.91620 | + | 5.89746i | −0.809017 | + | 0.587785i | 10.7623 | ||
157.2 | −1.44143 | + | 1.04726i | −0.309017 | − | 0.951057i | 0.362933 | − | 1.11699i | 2.24980 | + | 1.63458i | 1.44143 | + | 1.04726i | −0.0806900 | + | 0.248338i | −0.454515 | − | 1.39885i | −0.809017 | + | 0.587785i | −4.95476 | ||
157.3 | −1.35790 | + | 0.986569i | −0.309017 | − | 0.951057i | 0.252528 | − | 0.777201i | 0.627776 | + | 0.456106i | 1.35790 | + | 0.986569i | 0.0948896 | − | 0.292040i | −0.613484 | − | 1.88811i | −0.809017 | + | 0.587785i | −1.30243 | ||
157.4 | 0.470172 | − | 0.341600i | −0.309017 | − | 0.951057i | −0.513663 | + | 1.58089i | 2.42118 | + | 1.75909i | −0.470172 | − | 0.341600i | 0.122991 | − | 0.378529i | 0.657702 | + | 2.02420i | −0.809017 | + | 0.587785i | 1.73927 | ||
157.5 | 0.788916 | − | 0.573181i | −0.309017 | − | 0.951057i | −0.324182 | + | 0.997729i | −2.91208 | − | 2.11575i | −0.788916 | − | 0.573181i | −1.06635 | + | 3.28188i | 0.918806 | + | 2.82779i | −0.809017 | + | 0.587785i | −3.51009 | ||
157.6 | 1.18037 | − | 0.857589i | −0.309017 | − | 0.951057i | 0.0397803 | − | 0.122431i | −0.326657 | − | 0.237330i | −1.18037 | − | 0.857589i | 1.48593 | − | 4.57323i | 0.843682 | + | 2.59659i | −0.809017 | + | 0.587785i | −0.589108 | ||
157.7 | 2.10438 | − | 1.52892i | −0.309017 | − | 0.951057i | 1.47277 | − | 4.53273i | −1.86590 | − | 1.35565i | −2.10438 | − | 1.52892i | −0.646959 | + | 1.99114i | −2.22331 | − | 6.84263i | −0.809017 | + | 0.587785i | −5.99924 | ||
196.1 | −0.675177 | + | 2.07798i | 0.809017 | − | 0.587785i | −2.24411 | − | 1.63044i | −0.557745 | − | 1.71656i | 0.675177 | + | 2.07798i | −0.752444 | − | 0.546682i | 1.36792 | − | 0.993855i | 0.309017 | − | 0.951057i | 3.94356 | ||
196.2 | −0.488036 | + | 1.50202i | 0.809017 | − | 0.587785i | −0.399850 | − | 0.290508i | 1.09306 | + | 3.36409i | 0.488036 | + | 1.50202i | 3.87810 | + | 2.81760i | −1.92390 | + | 1.39779i | 0.309017 | − | 0.951057i | −5.58638 | ||
196.3 | 0.0279051 | − | 0.0858830i | 0.809017 | − | 0.587785i | 1.61144 | + | 1.17078i | 0.964032 | + | 2.96698i | −0.0279051 | − | 0.0858830i | −2.21929 | − | 1.61241i | 0.291630 | − | 0.211882i | 0.309017 | − | 0.951057i | 0.281715 | ||
196.4 | 0.0974470 | − | 0.299911i | 0.809017 | − | 0.587785i | 1.53758 | + | 1.11712i | −0.824247 | − | 2.53677i | −0.0974470 | − | 0.299911i | 1.23058 | + | 0.894067i | 0.995109 | − | 0.722989i | 0.309017 | − | 0.951057i | −0.841126 | ||
196.5 | 0.400428 | − | 1.23239i | 0.809017 | − | 0.587785i | 0.259592 | + | 0.188605i | −0.412722 | − | 1.27023i | −0.400428 | − | 1.23239i | −4.15316 | − | 3.01744i | 2.43305 | − | 1.76771i | 0.309017 | − | 0.951057i | −1.73068 | ||
196.6 | 0.589929 | − | 1.81561i | 0.809017 | − | 0.587785i | −1.33041 | − | 0.966597i | 0.697262 | + | 2.14595i | −0.589929 | − | 1.81561i | 2.71045 | + | 1.96926i | 0.549095 | − | 0.398941i | 0.309017 | − | 0.951057i | 4.30756 | ||
196.7 | 0.856521 | − | 2.63610i | 0.809017 | − | 0.587785i | −4.59737 | − | 3.34018i | 0.276429 | + | 0.850760i | −0.856521 | − | 2.63610i | −1.00325 | − | 0.728906i | −8.25799 | + | 5.99978i | 0.309017 | − | 0.951057i | 2.47946 | ||
235.1 | −2.05353 | − | 1.49197i | −0.309017 | + | 0.951057i | 1.37295 | + | 4.22550i | −3.43019 | + | 2.49218i | 2.05353 | − | 1.49197i | 0.899200 | + | 2.76745i | 1.91620 | − | 5.89746i | −0.809017 | − | 0.587785i | 10.7623 | ||
235.2 | −1.44143 | − | 1.04726i | −0.309017 | + | 0.951057i | 0.362933 | + | 1.11699i | 2.24980 | − | 1.63458i | 1.44143 | − | 1.04726i | −0.0806900 | − | 0.248338i | −0.454515 | + | 1.39885i | −0.809017 | − | 0.587785i | −4.95476 | ||
235.3 | −1.35790 | − | 0.986569i | −0.309017 | + | 0.951057i | 0.252528 | + | 0.777201i | 0.627776 | − | 0.456106i | 1.35790 | − | 0.986569i | 0.0948896 | + | 0.292040i | −0.613484 | + | 1.88811i | −0.809017 | − | 0.587785i | −1.30243 | ||
235.4 | 0.470172 | + | 0.341600i | −0.309017 | + | 0.951057i | −0.513663 | − | 1.58089i | 2.42118 | − | 1.75909i | −0.470172 | + | 0.341600i | 0.122991 | + | 0.378529i | 0.657702 | − | 2.02420i | −0.809017 | − | 0.587785i | 1.73927 | ||
235.5 | 0.788916 | + | 0.573181i | −0.309017 | + | 0.951057i | −0.324182 | − | 0.997729i | −2.91208 | + | 2.11575i | −0.788916 | + | 0.573181i | −1.06635 | − | 3.28188i | 0.918806 | − | 2.82779i | −0.809017 | − | 0.587785i | −3.51009 | ||
235.6 | 1.18037 | + | 0.857589i | −0.309017 | + | 0.951057i | 0.0397803 | + | 0.122431i | −0.326657 | + | 0.237330i | −1.18037 | + | 0.857589i | 1.48593 | + | 4.57323i | 0.843682 | − | 2.59659i | −0.809017 | − | 0.587785i | −0.589108 | ||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 429.2.n.c | ✓ | 28 |
11.c | even | 5 | 1 | inner | 429.2.n.c | ✓ | 28 |
11.c | even | 5 | 1 | 4719.2.a.bp | 14 | ||
11.d | odd | 10 | 1 | 4719.2.a.bo | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
429.2.n.c | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
429.2.n.c | ✓ | 28 | 11.c | even | 5 | 1 | inner |
4719.2.a.bo | 14 | 11.d | odd | 10 | 1 | ||
4719.2.a.bp | 14 | 11.c | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{28} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(429, [\chi])\).