Properties

Label 429.2.a.h.1.4
Level $429$
Weight $2$
Character 429.1
Self dual yes
Analytic conductor $3.426$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [429,2,Mod(1,429)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("429.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(429, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 429 = 3 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 429.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.42558224671\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8468.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 3x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.89122\) of defining polynomial
Character \(\chi\) \(=\) 429.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46793 q^{2} -1.00000 q^{3} +4.09069 q^{4} -0.776183 q^{5} -2.46793 q^{6} +2.69175 q^{7} +5.15968 q^{8} +1.00000 q^{9} -1.91557 q^{10} -1.00000 q^{11} -4.09069 q^{12} +1.00000 q^{13} +6.64306 q^{14} +0.776183 q^{15} +4.55237 q^{16} +2.62136 q^{17} +2.46793 q^{18} +6.69175 q^{19} -3.17512 q^{20} -2.69175 q^{21} -2.46793 q^{22} -8.02655 q^{23} -5.15968 q^{24} -4.39754 q^{25} +2.46793 q^{26} -1.00000 q^{27} +11.0111 q^{28} -8.09695 q^{29} +1.91557 q^{30} -6.34106 q^{31} +0.915567 q^{32} +1.00000 q^{33} +6.46933 q^{34} -2.08929 q^{35} +4.09069 q^{36} -0.398941 q^{37} +16.5148 q^{38} -1.00000 q^{39} -4.00486 q^{40} +6.87313 q^{41} -6.64306 q^{42} +7.23786 q^{43} -4.09069 q^{44} -0.776183 q^{45} -19.8090 q^{46} -4.53692 q^{47} -4.55237 q^{48} +0.245516 q^{49} -10.8528 q^{50} -2.62136 q^{51} +4.09069 q^{52} -2.75448 q^{53} -2.46793 q^{54} +0.776183 q^{55} +13.8886 q^{56} -6.69175 q^{57} -19.9827 q^{58} +10.8104 q^{59} +3.17512 q^{60} -5.02796 q^{61} -15.6493 q^{62} +2.69175 q^{63} -6.84517 q^{64} -0.776183 q^{65} +2.46793 q^{66} -4.95756 q^{67} +10.7232 q^{68} +8.02655 q^{69} -5.15623 q^{70} -5.96382 q^{71} +5.15968 q^{72} +3.79648 q^{73} -0.984558 q^{74} +4.39754 q^{75} +27.3739 q^{76} -2.69175 q^{77} -2.46793 q^{78} +2.14564 q^{79} -3.53347 q^{80} +1.00000 q^{81} +16.9624 q^{82} +3.73375 q^{83} -11.0111 q^{84} -2.03465 q^{85} +17.8625 q^{86} +8.09695 q^{87} -5.15968 q^{88} +2.37724 q^{89} -1.91557 q^{90} +2.69175 q^{91} -32.8341 q^{92} +6.34106 q^{93} -11.1968 q^{94} -5.19402 q^{95} -0.915567 q^{96} -17.8355 q^{97} +0.605916 q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 4 q^{3} + 8 q^{4} + 2 q^{6} + 2 q^{7} + 4 q^{9} - 2 q^{10} - 4 q^{11} - 8 q^{12} + 4 q^{13} + 12 q^{14} + 12 q^{16} - 8 q^{17} - 2 q^{18} + 18 q^{19} - 10 q^{20} - 2 q^{21} + 2 q^{22} + 4 q^{25}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46793 1.74509 0.872546 0.488532i \(-0.162468\pi\)
0.872546 + 0.488532i \(0.162468\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.09069 2.04535
\(5\) −0.776183 −0.347120 −0.173560 0.984823i \(-0.555527\pi\)
−0.173560 + 0.984823i \(0.555527\pi\)
\(6\) −2.46793 −1.00753
\(7\) 2.69175 1.01739 0.508693 0.860948i \(-0.330129\pi\)
0.508693 + 0.860948i \(0.330129\pi\)
\(8\) 5.15968 1.82422
\(9\) 1.00000 0.333333
\(10\) −1.91557 −0.605755
\(11\) −1.00000 −0.301511
\(12\) −4.09069 −1.18088
\(13\) 1.00000 0.277350
\(14\) 6.64306 1.77543
\(15\) 0.776183 0.200410
\(16\) 4.55237 1.13809
\(17\) 2.62136 0.635773 0.317886 0.948129i \(-0.397027\pi\)
0.317886 + 0.948129i \(0.397027\pi\)
\(18\) 2.46793 0.581697
\(19\) 6.69175 1.53519 0.767596 0.640934i \(-0.221453\pi\)
0.767596 + 0.640934i \(0.221453\pi\)
\(20\) −3.17512 −0.709979
\(21\) −2.69175 −0.587388
\(22\) −2.46793 −0.526165
\(23\) −8.02655 −1.67365 −0.836826 0.547469i \(-0.815592\pi\)
−0.836826 + 0.547469i \(0.815592\pi\)
\(24\) −5.15968 −1.05322
\(25\) −4.39754 −0.879508
\(26\) 2.46793 0.484001
\(27\) −1.00000 −0.192450
\(28\) 11.0111 2.08090
\(29\) −8.09695 −1.50357 −0.751783 0.659411i \(-0.770806\pi\)
−0.751783 + 0.659411i \(0.770806\pi\)
\(30\) 1.91557 0.349733
\(31\) −6.34106 −1.13889 −0.569444 0.822030i \(-0.692842\pi\)
−0.569444 + 0.822030i \(0.692842\pi\)
\(32\) 0.915567 0.161851
\(33\) 1.00000 0.174078
\(34\) 6.46933 1.10948
\(35\) −2.08929 −0.353154
\(36\) 4.09069 0.681782
\(37\) −0.398941 −0.0655854 −0.0327927 0.999462i \(-0.510440\pi\)
−0.0327927 + 0.999462i \(0.510440\pi\)
\(38\) 16.5148 2.67905
\(39\) −1.00000 −0.160128
\(40\) −4.00486 −0.633223
\(41\) 6.87313 1.07340 0.536701 0.843772i \(-0.319670\pi\)
0.536701 + 0.843772i \(0.319670\pi\)
\(42\) −6.64306 −1.02505
\(43\) 7.23786 1.10376 0.551882 0.833923i \(-0.313910\pi\)
0.551882 + 0.833923i \(0.313910\pi\)
\(44\) −4.09069 −0.616695
\(45\) −0.776183 −0.115707
\(46\) −19.8090 −2.92068
\(47\) −4.53692 −0.661778 −0.330889 0.943670i \(-0.607349\pi\)
−0.330889 + 0.943670i \(0.607349\pi\)
\(48\) −4.55237 −0.657077
\(49\) 0.245516 0.0350737
\(50\) −10.8528 −1.53482
\(51\) −2.62136 −0.367063
\(52\) 4.09069 0.567277
\(53\) −2.75448 −0.378358 −0.189179 0.981943i \(-0.560583\pi\)
−0.189179 + 0.981943i \(0.560583\pi\)
\(54\) −2.46793 −0.335843
\(55\) 0.776183 0.104660
\(56\) 13.8886 1.85594
\(57\) −6.69175 −0.886344
\(58\) −19.9827 −2.62386
\(59\) 10.8104 1.40739 0.703697 0.710500i \(-0.251531\pi\)
0.703697 + 0.710500i \(0.251531\pi\)
\(60\) 3.17512 0.409907
\(61\) −5.02796 −0.643764 −0.321882 0.946780i \(-0.604315\pi\)
−0.321882 + 0.946780i \(0.604315\pi\)
\(62\) −15.6493 −1.98746
\(63\) 2.69175 0.339129
\(64\) −6.84517 −0.855647
\(65\) −0.776183 −0.0962736
\(66\) 2.46793 0.303781
\(67\) −4.95756 −0.605663 −0.302831 0.953044i \(-0.597932\pi\)
−0.302831 + 0.953044i \(0.597932\pi\)
\(68\) 10.7232 1.30037
\(69\) 8.02655 0.966284
\(70\) −5.15623 −0.616287
\(71\) −5.96382 −0.707775 −0.353888 0.935288i \(-0.615140\pi\)
−0.353888 + 0.935288i \(0.615140\pi\)
\(72\) 5.15968 0.608074
\(73\) 3.79648 0.444344 0.222172 0.975007i \(-0.428685\pi\)
0.222172 + 0.975007i \(0.428685\pi\)
\(74\) −0.984558 −0.114453
\(75\) 4.39754 0.507784
\(76\) 27.3739 3.14000
\(77\) −2.69175 −0.306753
\(78\) −2.46793 −0.279438
\(79\) 2.14564 0.241403 0.120702 0.992689i \(-0.461486\pi\)
0.120702 + 0.992689i \(0.461486\pi\)
\(80\) −3.53347 −0.395054
\(81\) 1.00000 0.111111
\(82\) 16.9624 1.87319
\(83\) 3.73375 0.409832 0.204916 0.978780i \(-0.434308\pi\)
0.204916 + 0.978780i \(0.434308\pi\)
\(84\) −11.0111 −1.20141
\(85\) −2.03465 −0.220689
\(86\) 17.8625 1.92617
\(87\) 8.09695 0.868084
\(88\) −5.15968 −0.550024
\(89\) 2.37724 0.251987 0.125994 0.992031i \(-0.459788\pi\)
0.125994 + 0.992031i \(0.459788\pi\)
\(90\) −1.91557 −0.201918
\(91\) 2.69175 0.282172
\(92\) −32.8341 −3.42320
\(93\) 6.34106 0.657538
\(94\) −11.1968 −1.15486
\(95\) −5.19402 −0.532895
\(96\) −0.915567 −0.0934446
\(97\) −17.8355 −1.81093 −0.905463 0.424426i \(-0.860476\pi\)
−0.905463 + 0.424426i \(0.860476\pi\)
\(98\) 0.605916 0.0612067
\(99\) −1.00000 −0.100504
\(100\) −17.9890 −1.79890
\(101\) −11.1096 −1.10545 −0.552723 0.833365i \(-0.686411\pi\)
−0.552723 + 0.833365i \(0.686411\pi\)
\(102\) −6.46933 −0.640559
\(103\) 10.1814 1.00320 0.501601 0.865099i \(-0.332745\pi\)
0.501601 + 0.865099i \(0.332745\pi\)
\(104\) 5.15968 0.505948
\(105\) 2.08929 0.203894
\(106\) −6.79788 −0.660269
\(107\) 3.06133 0.295950 0.147975 0.988991i \(-0.452724\pi\)
0.147975 + 0.988991i \(0.452724\pi\)
\(108\) −4.09069 −0.393627
\(109\) 13.1800 1.26241 0.631207 0.775615i \(-0.282560\pi\)
0.631207 + 0.775615i \(0.282560\pi\)
\(110\) 1.91557 0.182642
\(111\) 0.398941 0.0378658
\(112\) 12.2538 1.15788
\(113\) 4.50074 0.423394 0.211697 0.977335i \(-0.432101\pi\)
0.211697 + 0.977335i \(0.432101\pi\)
\(114\) −16.5148 −1.54675
\(115\) 6.23007 0.580957
\(116\) −33.1221 −3.07531
\(117\) 1.00000 0.0924500
\(118\) 26.6793 2.45603
\(119\) 7.05604 0.646826
\(120\) 4.00486 0.365592
\(121\) 1.00000 0.0909091
\(122\) −12.4087 −1.12343
\(123\) −6.87313 −0.619729
\(124\) −25.9393 −2.32942
\(125\) 7.29421 0.652414
\(126\) 6.64306 0.591810
\(127\) 19.9687 1.77193 0.885967 0.463749i \(-0.153496\pi\)
0.885967 + 0.463749i \(0.153496\pi\)
\(128\) −18.7246 −1.65503
\(129\) −7.23786 −0.637258
\(130\) −1.91557 −0.168006
\(131\) 4.92335 0.430155 0.215078 0.976597i \(-0.431000\pi\)
0.215078 + 0.976597i \(0.431000\pi\)
\(132\) 4.09069 0.356049
\(133\) 18.0125 1.56188
\(134\) −12.2349 −1.05694
\(135\) 0.776183 0.0668032
\(136\) 13.5254 1.15979
\(137\) −13.1876 −1.12670 −0.563348 0.826220i \(-0.690487\pi\)
−0.563348 + 0.826220i \(0.690487\pi\)
\(138\) 19.8090 1.68625
\(139\) 11.0203 0.934729 0.467365 0.884065i \(-0.345203\pi\)
0.467365 + 0.884065i \(0.345203\pi\)
\(140\) −8.54664 −0.722323
\(141\) 4.53692 0.382078
\(142\) −14.7183 −1.23513
\(143\) −1.00000 −0.0836242
\(144\) 4.55237 0.379364
\(145\) 6.28471 0.521917
\(146\) 9.36946 0.775422
\(147\) −0.245516 −0.0202498
\(148\) −1.63194 −0.134145
\(149\) 8.25663 0.676409 0.338205 0.941073i \(-0.390180\pi\)
0.338205 + 0.941073i \(0.390180\pi\)
\(150\) 10.8528 0.886130
\(151\) −3.61510 −0.294193 −0.147096 0.989122i \(-0.546993\pi\)
−0.147096 + 0.989122i \(0.546993\pi\)
\(152\) 34.5273 2.80053
\(153\) 2.62136 0.211924
\(154\) −6.64306 −0.535313
\(155\) 4.92182 0.395330
\(156\) −4.09069 −0.327517
\(157\) 20.0672 1.60153 0.800766 0.598977i \(-0.204426\pi\)
0.800766 + 0.598977i \(0.204426\pi\)
\(158\) 5.29530 0.421271
\(159\) 2.75448 0.218445
\(160\) −0.710647 −0.0561816
\(161\) −21.6055 −1.70275
\(162\) 2.46793 0.193899
\(163\) 17.9827 1.40852 0.704258 0.709945i \(-0.251280\pi\)
0.704258 + 0.709945i \(0.251280\pi\)
\(164\) 28.1158 2.19548
\(165\) −0.776183 −0.0604258
\(166\) 9.21463 0.715194
\(167\) 9.74626 0.754188 0.377094 0.926175i \(-0.376923\pi\)
0.377094 + 0.926175i \(0.376923\pi\)
\(168\) −13.8886 −1.07153
\(169\) 1.00000 0.0769231
\(170\) −5.02138 −0.385123
\(171\) 6.69175 0.511731
\(172\) 29.6078 2.25758
\(173\) −14.9841 −1.13922 −0.569611 0.821915i \(-0.692906\pi\)
−0.569611 + 0.821915i \(0.692906\pi\)
\(174\) 19.9827 1.51489
\(175\) −11.8371 −0.894799
\(176\) −4.55237 −0.343147
\(177\) −10.8104 −0.812559
\(178\) 5.86687 0.439741
\(179\) −14.5273 −1.08582 −0.542911 0.839790i \(-0.682678\pi\)
−0.542911 + 0.839790i \(0.682678\pi\)
\(180\) −3.17512 −0.236660
\(181\) 0.909310 0.0675885 0.0337942 0.999429i \(-0.489241\pi\)
0.0337942 + 0.999429i \(0.489241\pi\)
\(182\) 6.64306 0.492416
\(183\) 5.02796 0.371677
\(184\) −41.4145 −3.05312
\(185\) 0.309651 0.0227660
\(186\) 15.6493 1.14746
\(187\) −2.62136 −0.191693
\(188\) −18.5592 −1.35357
\(189\) −2.69175 −0.195796
\(190\) −12.8185 −0.929951
\(191\) 12.4448 0.900477 0.450238 0.892908i \(-0.351339\pi\)
0.450238 + 0.892908i \(0.351339\pi\)
\(192\) 6.84517 0.494008
\(193\) 18.3406 1.32019 0.660093 0.751184i \(-0.270517\pi\)
0.660093 + 0.751184i \(0.270517\pi\)
\(194\) −44.0169 −3.16023
\(195\) 0.776183 0.0555836
\(196\) 1.00433 0.0717377
\(197\) −7.96535 −0.567508 −0.283754 0.958897i \(-0.591580\pi\)
−0.283754 + 0.958897i \(0.591580\pi\)
\(198\) −2.46793 −0.175388
\(199\) −14.6415 −1.03791 −0.518955 0.854801i \(-0.673679\pi\)
−0.518955 + 0.854801i \(0.673679\pi\)
\(200\) −22.6899 −1.60442
\(201\) 4.95756 0.349680
\(202\) −27.4177 −1.92910
\(203\) −21.7950 −1.52971
\(204\) −10.7232 −0.750771
\(205\) −5.33481 −0.372599
\(206\) 25.1270 1.75068
\(207\) −8.02655 −0.557884
\(208\) 4.55237 0.315650
\(209\) −6.69175 −0.462878
\(210\) 5.15623 0.355813
\(211\) 14.9716 1.03069 0.515344 0.856983i \(-0.327664\pi\)
0.515344 + 0.856983i \(0.327664\pi\)
\(212\) −11.2677 −0.773872
\(213\) 5.96382 0.408634
\(214\) 7.55517 0.516461
\(215\) −5.61790 −0.383138
\(216\) −5.15968 −0.351072
\(217\) −17.0686 −1.15869
\(218\) 32.5273 2.20303
\(219\) −3.79648 −0.256542
\(220\) 3.17512 0.214067
\(221\) 2.62136 0.176332
\(222\) 0.984558 0.0660792
\(223\) −26.2003 −1.75450 −0.877250 0.480033i \(-0.840625\pi\)
−0.877250 + 0.480033i \(0.840625\pi\)
\(224\) 2.46448 0.164665
\(225\) −4.39754 −0.293169
\(226\) 11.1075 0.738862
\(227\) 24.2441 1.60914 0.804569 0.593859i \(-0.202396\pi\)
0.804569 + 0.593859i \(0.202396\pi\)
\(228\) −27.3739 −1.81288
\(229\) −6.43954 −0.425537 −0.212768 0.977103i \(-0.568248\pi\)
−0.212768 + 0.977103i \(0.568248\pi\)
\(230\) 15.3754 1.01382
\(231\) 2.69175 0.177104
\(232\) −41.7777 −2.74284
\(233\) −24.0536 −1.57580 −0.787900 0.615803i \(-0.788832\pi\)
−0.787900 + 0.615803i \(0.788832\pi\)
\(234\) 2.46793 0.161334
\(235\) 3.52148 0.229716
\(236\) 44.2220 2.87861
\(237\) −2.14564 −0.139374
\(238\) 17.4138 1.12877
\(239\) 5.01391 0.324323 0.162162 0.986764i \(-0.448153\pi\)
0.162162 + 0.986764i \(0.448153\pi\)
\(240\) 3.53347 0.228084
\(241\) −24.9890 −1.60968 −0.804841 0.593491i \(-0.797749\pi\)
−0.804841 + 0.593491i \(0.797749\pi\)
\(242\) 2.46793 0.158645
\(243\) −1.00000 −0.0641500
\(244\) −20.5678 −1.31672
\(245\) −0.190565 −0.0121748
\(246\) −16.9624 −1.08148
\(247\) 6.69175 0.425786
\(248\) −32.7179 −2.07759
\(249\) −3.73375 −0.236617
\(250\) 18.0016 1.13852
\(251\) 18.0406 1.13871 0.569356 0.822091i \(-0.307193\pi\)
0.569356 + 0.822091i \(0.307193\pi\)
\(252\) 11.0111 0.693635
\(253\) 8.02655 0.504625
\(254\) 49.2813 3.09219
\(255\) 2.03465 0.127415
\(256\) −32.5206 −2.03254
\(257\) −21.1298 −1.31804 −0.659019 0.752126i \(-0.729028\pi\)
−0.659019 + 0.752126i \(0.729028\pi\)
\(258\) −17.8625 −1.11207
\(259\) −1.07385 −0.0667257
\(260\) −3.17512 −0.196913
\(261\) −8.09695 −0.501188
\(262\) 12.1505 0.750660
\(263\) 11.8592 0.731271 0.365635 0.930758i \(-0.380852\pi\)
0.365635 + 0.930758i \(0.380852\pi\)
\(264\) 5.15968 0.317556
\(265\) 2.13798 0.131335
\(266\) 44.4537 2.72563
\(267\) −2.37724 −0.145485
\(268\) −20.2799 −1.23879
\(269\) −0.322165 −0.0196427 −0.00982136 0.999952i \(-0.503126\pi\)
−0.00982136 + 0.999952i \(0.503126\pi\)
\(270\) 1.91557 0.116578
\(271\) 26.2944 1.59727 0.798636 0.601814i \(-0.205555\pi\)
0.798636 + 0.601814i \(0.205555\pi\)
\(272\) 11.9334 0.723567
\(273\) −2.69175 −0.162912
\(274\) −32.5462 −1.96619
\(275\) 4.39754 0.265182
\(276\) 32.8341 1.97638
\(277\) −8.89247 −0.534297 −0.267148 0.963655i \(-0.586081\pi\)
−0.267148 + 0.963655i \(0.586081\pi\)
\(278\) 27.1974 1.63119
\(279\) −6.34106 −0.379629
\(280\) −10.7801 −0.644232
\(281\) 23.5833 1.40686 0.703432 0.710763i \(-0.251650\pi\)
0.703432 + 0.710763i \(0.251650\pi\)
\(282\) 11.1968 0.666761
\(283\) 8.13754 0.483727 0.241863 0.970310i \(-0.422241\pi\)
0.241863 + 0.970310i \(0.422241\pi\)
\(284\) −24.3961 −1.44764
\(285\) 5.19402 0.307667
\(286\) −2.46793 −0.145932
\(287\) 18.5007 1.09206
\(288\) 0.915567 0.0539503
\(289\) −10.1285 −0.595793
\(290\) 15.5102 0.910793
\(291\) 17.8355 1.04554
\(292\) 15.5302 0.908838
\(293\) 19.8649 1.16052 0.580260 0.814431i \(-0.302951\pi\)
0.580260 + 0.814431i \(0.302951\pi\)
\(294\) −0.605916 −0.0353377
\(295\) −8.39084 −0.488534
\(296\) −2.05841 −0.119642
\(297\) 1.00000 0.0580259
\(298\) 20.3768 1.18040
\(299\) −8.02655 −0.464188
\(300\) 17.9890 1.03859
\(301\) 19.4825 1.12295
\(302\) −8.92182 −0.513393
\(303\) 11.1096 0.638229
\(304\) 30.4633 1.74719
\(305\) 3.90261 0.223463
\(306\) 6.46933 0.369827
\(307\) −23.3305 −1.33154 −0.665770 0.746157i \(-0.731897\pi\)
−0.665770 + 0.746157i \(0.731897\pi\)
\(308\) −11.0111 −0.627416
\(309\) −10.1814 −0.579198
\(310\) 12.1467 0.689888
\(311\) −4.43359 −0.251406 −0.125703 0.992068i \(-0.540119\pi\)
−0.125703 + 0.992068i \(0.540119\pi\)
\(312\) −5.15968 −0.292109
\(313\) −17.4129 −0.984233 −0.492116 0.870529i \(-0.663777\pi\)
−0.492116 + 0.870529i \(0.663777\pi\)
\(314\) 49.5244 2.79482
\(315\) −2.08929 −0.117718
\(316\) 8.77715 0.493753
\(317\) −30.8752 −1.73412 −0.867062 0.498201i \(-0.833994\pi\)
−0.867062 + 0.498201i \(0.833994\pi\)
\(318\) 6.79788 0.381206
\(319\) 8.09695 0.453342
\(320\) 5.31311 0.297012
\(321\) −3.06133 −0.170867
\(322\) −53.3209 −2.97145
\(323\) 17.5415 0.976033
\(324\) 4.09069 0.227261
\(325\) −4.39754 −0.243932
\(326\) 44.3801 2.45799
\(327\) −13.1800 −0.728855
\(328\) 35.4632 1.95813
\(329\) −12.2123 −0.673284
\(330\) −1.91557 −0.105448
\(331\) 6.72749 0.369776 0.184888 0.982760i \(-0.440808\pi\)
0.184888 + 0.982760i \(0.440808\pi\)
\(332\) 15.2736 0.838248
\(333\) −0.398941 −0.0218618
\(334\) 24.0531 1.31613
\(335\) 3.84798 0.210237
\(336\) −12.2538 −0.668501
\(337\) −5.06133 −0.275708 −0.137854 0.990453i \(-0.544021\pi\)
−0.137854 + 0.990453i \(0.544021\pi\)
\(338\) 2.46793 0.134238
\(339\) −4.50074 −0.244447
\(340\) −8.32313 −0.451385
\(341\) 6.34106 0.343388
\(342\) 16.5148 0.893017
\(343\) −18.1814 −0.981702
\(344\) 37.3450 2.01351
\(345\) −6.23007 −0.335416
\(346\) −36.9798 −1.98805
\(347\) −4.34303 −0.233146 −0.116573 0.993182i \(-0.537191\pi\)
−0.116573 + 0.993182i \(0.537191\pi\)
\(348\) 33.1221 1.77553
\(349\) 20.2779 1.08545 0.542725 0.839910i \(-0.317393\pi\)
0.542725 + 0.839910i \(0.317393\pi\)
\(350\) −29.2131 −1.56151
\(351\) −1.00000 −0.0533761
\(352\) −0.915567 −0.0487999
\(353\) −36.5630 −1.94605 −0.973027 0.230691i \(-0.925901\pi\)
−0.973027 + 0.230691i \(0.925901\pi\)
\(354\) −26.6793 −1.41799
\(355\) 4.62901 0.245683
\(356\) 9.72456 0.515401
\(357\) −7.05604 −0.373445
\(358\) −35.8524 −1.89486
\(359\) −27.8621 −1.47051 −0.735253 0.677793i \(-0.762937\pi\)
−0.735253 + 0.677793i \(0.762937\pi\)
\(360\) −4.00486 −0.211074
\(361\) 25.7795 1.35682
\(362\) 2.24412 0.117948
\(363\) −1.00000 −0.0524864
\(364\) 11.0111 0.577139
\(365\) −2.94676 −0.154241
\(366\) 12.4087 0.648611
\(367\) 10.4476 0.545362 0.272681 0.962104i \(-0.412090\pi\)
0.272681 + 0.962104i \(0.412090\pi\)
\(368\) −36.5398 −1.90477
\(369\) 6.87313 0.357801
\(370\) 0.764197 0.0397287
\(371\) −7.41438 −0.384936
\(372\) 25.9393 1.34489
\(373\) −17.8842 −0.926011 −0.463006 0.886355i \(-0.653229\pi\)
−0.463006 + 0.886355i \(0.653229\pi\)
\(374\) −6.46933 −0.334521
\(375\) −7.29421 −0.376671
\(376\) −23.4091 −1.20723
\(377\) −8.09695 −0.417014
\(378\) −6.64306 −0.341682
\(379\) −13.6200 −0.699610 −0.349805 0.936822i \(-0.613752\pi\)
−0.349805 + 0.936822i \(0.613752\pi\)
\(380\) −21.2471 −1.08995
\(381\) −19.9687 −1.02303
\(382\) 30.7130 1.57141
\(383\) 4.62901 0.236532 0.118266 0.992982i \(-0.462267\pi\)
0.118266 + 0.992982i \(0.462267\pi\)
\(384\) 18.7246 0.955534
\(385\) 2.08929 0.106480
\(386\) 45.2634 2.30385
\(387\) 7.23786 0.367921
\(388\) −72.9597 −3.70397
\(389\) 5.34290 0.270896 0.135448 0.990784i \(-0.456753\pi\)
0.135448 + 0.990784i \(0.456753\pi\)
\(390\) 1.91557 0.0969985
\(391\) −21.0405 −1.06406
\(392\) 1.26678 0.0639822
\(393\) −4.92335 −0.248350
\(394\) −19.6579 −0.990353
\(395\) −1.66541 −0.0837958
\(396\) −4.09069 −0.205565
\(397\) 28.0700 1.40879 0.704397 0.709806i \(-0.251217\pi\)
0.704397 + 0.709806i \(0.251217\pi\)
\(398\) −36.1343 −1.81125
\(399\) −18.0125 −0.901754
\(400\) −20.0192 −1.00096
\(401\) 32.3942 1.61769 0.808844 0.588023i \(-0.200094\pi\)
0.808844 + 0.588023i \(0.200094\pi\)
\(402\) 12.2349 0.610223
\(403\) −6.34106 −0.315871
\(404\) −45.4459 −2.26102
\(405\) −0.776183 −0.0385688
\(406\) −53.7885 −2.66948
\(407\) 0.398941 0.0197748
\(408\) −13.5254 −0.669606
\(409\) −22.4380 −1.10949 −0.554744 0.832021i \(-0.687184\pi\)
−0.554744 + 0.832021i \(0.687184\pi\)
\(410\) −13.1659 −0.650219
\(411\) 13.1876 0.650498
\(412\) 41.6489 2.05189
\(413\) 29.0989 1.43186
\(414\) −19.8090 −0.973559
\(415\) −2.89807 −0.142261
\(416\) 0.915567 0.0448894
\(417\) −11.0203 −0.539666
\(418\) −16.5148 −0.807765
\(419\) 40.6113 1.98399 0.991996 0.126272i \(-0.0403011\pi\)
0.991996 + 0.126272i \(0.0403011\pi\)
\(420\) 8.54664 0.417033
\(421\) −2.67241 −0.130245 −0.0651227 0.997877i \(-0.520744\pi\)
−0.0651227 + 0.997877i \(0.520744\pi\)
\(422\) 36.9489 1.79864
\(423\) −4.53692 −0.220593
\(424\) −14.2123 −0.690209
\(425\) −11.5275 −0.559167
\(426\) 14.7183 0.713104
\(427\) −13.5340 −0.654956
\(428\) 12.5230 0.605321
\(429\) 1.00000 0.0482805
\(430\) −13.8646 −0.668610
\(431\) −25.9972 −1.25224 −0.626121 0.779726i \(-0.715358\pi\)
−0.626121 + 0.779726i \(0.715358\pi\)
\(432\) −4.55237 −0.219026
\(433\) 18.9765 0.911951 0.455975 0.889992i \(-0.349291\pi\)
0.455975 + 0.889992i \(0.349291\pi\)
\(434\) −42.1240 −2.02202
\(435\) −6.28471 −0.301329
\(436\) 53.9152 2.58207
\(437\) −53.7117 −2.56938
\(438\) −9.36946 −0.447690
\(439\) 16.8586 0.804619 0.402310 0.915504i \(-0.368208\pi\)
0.402310 + 0.915504i \(0.368208\pi\)
\(440\) 4.00486 0.190924
\(441\) 0.245516 0.0116912
\(442\) 6.46933 0.307715
\(443\) 34.5105 1.63964 0.819821 0.572620i \(-0.194073\pi\)
0.819821 + 0.572620i \(0.194073\pi\)
\(444\) 1.63194 0.0774486
\(445\) −1.84517 −0.0874697
\(446\) −64.6605 −3.06176
\(447\) −8.25663 −0.390525
\(448\) −18.4255 −0.870523
\(449\) 5.12363 0.241799 0.120899 0.992665i \(-0.461422\pi\)
0.120899 + 0.992665i \(0.461422\pi\)
\(450\) −10.8528 −0.511607
\(451\) −6.87313 −0.323643
\(452\) 18.4111 0.865988
\(453\) 3.61510 0.169852
\(454\) 59.8328 2.80809
\(455\) −2.08929 −0.0979474
\(456\) −34.5273 −1.61689
\(457\) −19.9248 −0.932045 −0.466022 0.884773i \(-0.654313\pi\)
−0.466022 + 0.884773i \(0.654313\pi\)
\(458\) −15.8923 −0.742600
\(459\) −2.62136 −0.122354
\(460\) 25.4853 1.18826
\(461\) −10.4661 −0.487454 −0.243727 0.969844i \(-0.578370\pi\)
−0.243727 + 0.969844i \(0.578370\pi\)
\(462\) 6.64306 0.309063
\(463\) −36.5558 −1.69889 −0.849447 0.527675i \(-0.823064\pi\)
−0.849447 + 0.527675i \(0.823064\pi\)
\(464\) −36.8603 −1.71119
\(465\) −4.92182 −0.228244
\(466\) −59.3625 −2.74992
\(467\) −2.43079 −0.112484 −0.0562418 0.998417i \(-0.517912\pi\)
−0.0562418 + 0.998417i \(0.517912\pi\)
\(468\) 4.09069 0.189092
\(469\) −13.3445 −0.616193
\(470\) 8.69078 0.400876
\(471\) −20.0672 −0.924646
\(472\) 55.7782 2.56740
\(473\) −7.23786 −0.332797
\(474\) −5.29530 −0.243221
\(475\) −29.4272 −1.35021
\(476\) 28.8641 1.32298
\(477\) −2.75448 −0.126119
\(478\) 12.3740 0.565974
\(479\) −1.96535 −0.0897990 −0.0448995 0.998992i \(-0.514297\pi\)
−0.0448995 + 0.998992i \(0.514297\pi\)
\(480\) 0.710647 0.0324365
\(481\) −0.398941 −0.0181901
\(482\) −61.6711 −2.80904
\(483\) 21.6055 0.983083
\(484\) 4.09069 0.185940
\(485\) 13.8436 0.628608
\(486\) −2.46793 −0.111948
\(487\) 22.4863 1.01895 0.509475 0.860486i \(-0.329840\pi\)
0.509475 + 0.860486i \(0.329840\pi\)
\(488\) −25.9426 −1.17437
\(489\) −17.9827 −0.813207
\(490\) −0.470301 −0.0212461
\(491\) 17.2914 0.780350 0.390175 0.920741i \(-0.372414\pi\)
0.390175 + 0.920741i \(0.372414\pi\)
\(492\) −28.1158 −1.26756
\(493\) −21.2250 −0.955926
\(494\) 16.5148 0.743035
\(495\) 0.776183 0.0348868
\(496\) −28.8668 −1.29616
\(497\) −16.0531 −0.720080
\(498\) −9.21463 −0.412918
\(499\) 3.71485 0.166299 0.0831497 0.996537i \(-0.473502\pi\)
0.0831497 + 0.996537i \(0.473502\pi\)
\(500\) 29.8384 1.33441
\(501\) −9.74626 −0.435431
\(502\) 44.5230 1.98716
\(503\) −7.68064 −0.342463 −0.171231 0.985231i \(-0.554775\pi\)
−0.171231 + 0.985231i \(0.554775\pi\)
\(504\) 13.8886 0.618646
\(505\) 8.62307 0.383722
\(506\) 19.8090 0.880617
\(507\) −1.00000 −0.0444116
\(508\) 81.6857 3.62422
\(509\) 29.0035 1.28556 0.642778 0.766053i \(-0.277782\pi\)
0.642778 + 0.766053i \(0.277782\pi\)
\(510\) 5.02138 0.222351
\(511\) 10.2192 0.452070
\(512\) −42.8095 −1.89193
\(513\) −6.69175 −0.295448
\(514\) −52.1468 −2.30010
\(515\) −7.90261 −0.348231
\(516\) −29.6078 −1.30341
\(517\) 4.53692 0.199534
\(518\) −2.65018 −0.116442
\(519\) 14.9841 0.657730
\(520\) −4.00486 −0.175625
\(521\) 32.5973 1.42811 0.714056 0.700089i \(-0.246856\pi\)
0.714056 + 0.700089i \(0.246856\pi\)
\(522\) −19.9827 −0.874620
\(523\) −10.7304 −0.469207 −0.234603 0.972091i \(-0.575379\pi\)
−0.234603 + 0.972091i \(0.575379\pi\)
\(524\) 20.1399 0.879816
\(525\) 11.8371 0.516612
\(526\) 29.2677 1.27613
\(527\) −16.6222 −0.724074
\(528\) 4.55237 0.198116
\(529\) 41.4256 1.80111
\(530\) 5.27640 0.229192
\(531\) 10.8104 0.469131
\(532\) 73.6836 3.19459
\(533\) 6.87313 0.297708
\(534\) −5.86687 −0.253884
\(535\) −2.37616 −0.102730
\(536\) −25.5794 −1.10486
\(537\) 14.5273 0.626899
\(538\) −0.795080 −0.0342784
\(539\) −0.245516 −0.0105751
\(540\) 3.17512 0.136636
\(541\) 12.4910 0.537031 0.268516 0.963275i \(-0.413467\pi\)
0.268516 + 0.963275i \(0.413467\pi\)
\(542\) 64.8929 2.78739
\(543\) −0.909310 −0.0390222
\(544\) 2.40003 0.102900
\(545\) −10.2301 −0.438208
\(546\) −6.64306 −0.284297
\(547\) 14.2377 0.608761 0.304381 0.952550i \(-0.401550\pi\)
0.304381 + 0.952550i \(0.401550\pi\)
\(548\) −53.9465 −2.30448
\(549\) −5.02796 −0.214588
\(550\) 10.8528 0.462766
\(551\) −54.1827 −2.30826
\(552\) 41.4145 1.76272
\(553\) 5.77553 0.245600
\(554\) −21.9460 −0.932397
\(555\) −0.309651 −0.0131439
\(556\) 45.0806 1.91184
\(557\) −28.4633 −1.20603 −0.603014 0.797730i \(-0.706034\pi\)
−0.603014 + 0.797730i \(0.706034\pi\)
\(558\) −15.6493 −0.662488
\(559\) 7.23786 0.306129
\(560\) −9.51121 −0.401922
\(561\) 2.62136 0.110674
\(562\) 58.2021 2.45511
\(563\) −29.8998 −1.26013 −0.630063 0.776544i \(-0.716971\pi\)
−0.630063 + 0.776544i \(0.716971\pi\)
\(564\) 18.5592 0.781481
\(565\) −3.49340 −0.146968
\(566\) 20.0829 0.844147
\(567\) 2.69175 0.113043
\(568\) −30.7714 −1.29114
\(569\) 21.5572 0.903726 0.451863 0.892087i \(-0.350760\pi\)
0.451863 + 0.892087i \(0.350760\pi\)
\(570\) 12.8185 0.536908
\(571\) −38.0830 −1.59372 −0.796862 0.604162i \(-0.793508\pi\)
−0.796862 + 0.604162i \(0.793508\pi\)
\(572\) −4.09069 −0.171040
\(573\) −12.4448 −0.519890
\(574\) 45.6586 1.90575
\(575\) 35.2971 1.47199
\(576\) −6.84517 −0.285216
\(577\) 19.7463 0.822048 0.411024 0.911625i \(-0.365171\pi\)
0.411024 + 0.911625i \(0.365171\pi\)
\(578\) −24.9964 −1.03971
\(579\) −18.3406 −0.762210
\(580\) 25.7088 1.06750
\(581\) 10.0503 0.416957
\(582\) 44.0169 1.82456
\(583\) 2.75448 0.114079
\(584\) 19.5886 0.810583
\(585\) −0.776183 −0.0320912
\(586\) 49.0252 2.02521
\(587\) −5.48001 −0.226184 −0.113092 0.993585i \(-0.536075\pi\)
−0.113092 + 0.993585i \(0.536075\pi\)
\(588\) −1.00433 −0.0414178
\(589\) −42.4328 −1.74841
\(590\) −20.7080 −0.852536
\(591\) 7.96535 0.327651
\(592\) −1.81612 −0.0746422
\(593\) 35.0670 1.44003 0.720015 0.693958i \(-0.244135\pi\)
0.720015 + 0.693958i \(0.244135\pi\)
\(594\) 2.46793 0.101260
\(595\) −5.47678 −0.224526
\(596\) 33.7753 1.38349
\(597\) 14.6415 0.599238
\(598\) −19.8090 −0.810050
\(599\) 17.3401 0.708497 0.354249 0.935151i \(-0.384737\pi\)
0.354249 + 0.935151i \(0.384737\pi\)
\(600\) 22.6899 0.926312
\(601\) 16.0253 0.653685 0.326842 0.945079i \(-0.394015\pi\)
0.326842 + 0.945079i \(0.394015\pi\)
\(602\) 48.0815 1.95966
\(603\) −4.95756 −0.201888
\(604\) −14.7883 −0.601726
\(605\) −0.776183 −0.0315563
\(606\) 27.4177 1.11377
\(607\) −27.2673 −1.10675 −0.553373 0.832934i \(-0.686660\pi\)
−0.553373 + 0.832934i \(0.686660\pi\)
\(608\) 6.12674 0.248472
\(609\) 21.7950 0.883176
\(610\) 9.63138 0.389963
\(611\) −4.53692 −0.183544
\(612\) 10.7232 0.433458
\(613\) −7.92195 −0.319965 −0.159982 0.987120i \(-0.551144\pi\)
−0.159982 + 0.987120i \(0.551144\pi\)
\(614\) −57.5780 −2.32366
\(615\) 5.33481 0.215120
\(616\) −13.8886 −0.559586
\(617\) −28.8293 −1.16062 −0.580312 0.814394i \(-0.697069\pi\)
−0.580312 + 0.814394i \(0.697069\pi\)
\(618\) −25.1270 −1.01075
\(619\) 3.75794 0.151044 0.0755222 0.997144i \(-0.475938\pi\)
0.0755222 + 0.997144i \(0.475938\pi\)
\(620\) 20.1337 0.808587
\(621\) 8.02655 0.322095
\(622\) −10.9418 −0.438727
\(623\) 6.39894 0.256368
\(624\) −4.55237 −0.182240
\(625\) 16.3261 0.653042
\(626\) −42.9737 −1.71758
\(627\) 6.69175 0.267243
\(628\) 82.0885 3.27569
\(629\) −1.04577 −0.0416974
\(630\) −5.15623 −0.205429
\(631\) 14.7525 0.587288 0.293644 0.955915i \(-0.405132\pi\)
0.293644 + 0.955915i \(0.405132\pi\)
\(632\) 11.0708 0.440374
\(633\) −14.9716 −0.595068
\(634\) −76.1979 −3.02620
\(635\) −15.4993 −0.615073
\(636\) 11.2677 0.446795
\(637\) 0.245516 0.00972768
\(638\) 19.9827 0.791123
\(639\) −5.96382 −0.235925
\(640\) 14.5337 0.574494
\(641\) −26.5133 −1.04721 −0.523605 0.851961i \(-0.675413\pi\)
−0.523605 + 0.851961i \(0.675413\pi\)
\(642\) −7.55517 −0.298179
\(643\) −17.7371 −0.699482 −0.349741 0.936846i \(-0.613730\pi\)
−0.349741 + 0.936846i \(0.613730\pi\)
\(644\) −88.3813 −3.48271
\(645\) 5.61790 0.221205
\(646\) 43.2912 1.70327
\(647\) −32.2751 −1.26886 −0.634432 0.772978i \(-0.718766\pi\)
−0.634432 + 0.772978i \(0.718766\pi\)
\(648\) 5.15968 0.202691
\(649\) −10.8104 −0.424345
\(650\) −10.8528 −0.425683
\(651\) 17.0686 0.668969
\(652\) 73.5617 2.88090
\(653\) −3.25803 −0.127497 −0.0637483 0.997966i \(-0.520305\pi\)
−0.0637483 + 0.997966i \(0.520305\pi\)
\(654\) −32.5273 −1.27192
\(655\) −3.82142 −0.149315
\(656\) 31.2890 1.22163
\(657\) 3.79648 0.148115
\(658\) −30.1390 −1.17494
\(659\) 39.0368 1.52066 0.760329 0.649539i \(-0.225038\pi\)
0.760329 + 0.649539i \(0.225038\pi\)
\(660\) −3.17512 −0.123592
\(661\) −38.9194 −1.51379 −0.756895 0.653537i \(-0.773285\pi\)
−0.756895 + 0.653537i \(0.773285\pi\)
\(662\) 16.6030 0.645293
\(663\) −2.62136 −0.101805
\(664\) 19.2649 0.747625
\(665\) −13.9810 −0.542160
\(666\) −0.984558 −0.0381509
\(667\) 64.9906 2.51645
\(668\) 39.8689 1.54258
\(669\) 26.2003 1.01296
\(670\) 9.49654 0.366883
\(671\) 5.02796 0.194102
\(672\) −2.46448 −0.0950692
\(673\) 34.5466 1.33167 0.665837 0.746097i \(-0.268074\pi\)
0.665837 + 0.746097i \(0.268074\pi\)
\(674\) −12.4910 −0.481137
\(675\) 4.39754 0.169261
\(676\) 4.09069 0.157334
\(677\) 25.4362 0.977591 0.488796 0.872398i \(-0.337436\pi\)
0.488796 + 0.872398i \(0.337436\pi\)
\(678\) −11.1075 −0.426582
\(679\) −48.0088 −1.84241
\(680\) −10.4982 −0.402586
\(681\) −24.2441 −0.929037
\(682\) 15.6493 0.599243
\(683\) 9.81027 0.375379 0.187690 0.982228i \(-0.439900\pi\)
0.187690 + 0.982228i \(0.439900\pi\)
\(684\) 27.3739 1.04667
\(685\) 10.2360 0.391098
\(686\) −44.8704 −1.71316
\(687\) 6.43954 0.245684
\(688\) 32.9494 1.25618
\(689\) −2.75448 −0.104937
\(690\) −15.3754 −0.585332
\(691\) −6.32133 −0.240475 −0.120237 0.992745i \(-0.538366\pi\)
−0.120237 + 0.992745i \(0.538366\pi\)
\(692\) −61.2954 −2.33010
\(693\) −2.69175 −0.102251
\(694\) −10.7183 −0.406861
\(695\) −8.55377 −0.324463
\(696\) 41.7777 1.58358
\(697\) 18.0169 0.682440
\(698\) 50.0445 1.89421
\(699\) 24.0536 0.909789
\(700\) −48.4218 −1.83017
\(701\) 30.4082 1.14850 0.574251 0.818679i \(-0.305293\pi\)
0.574251 + 0.818679i \(0.305293\pi\)
\(702\) −2.46793 −0.0931461
\(703\) −2.66961 −0.100686
\(704\) 6.84517 0.257987
\(705\) −3.52148 −0.132627
\(706\) −90.2351 −3.39604
\(707\) −29.9042 −1.12466
\(708\) −44.2220 −1.66196
\(709\) −38.0014 −1.42717 −0.713586 0.700568i \(-0.752930\pi\)
−0.713586 + 0.700568i \(0.752930\pi\)
\(710\) 11.4241 0.428739
\(711\) 2.14564 0.0804678
\(712\) 12.2658 0.459681
\(713\) 50.8969 1.90610
\(714\) −17.4138 −0.651696
\(715\) 0.776183 0.0290276
\(716\) −59.4267 −2.22088
\(717\) −5.01391 −0.187248
\(718\) −68.7618 −2.56617
\(719\) 34.7670 1.29659 0.648295 0.761389i \(-0.275482\pi\)
0.648295 + 0.761389i \(0.275482\pi\)
\(720\) −3.53347 −0.131685
\(721\) 27.4057 1.02064
\(722\) 63.6221 2.36777
\(723\) 24.9890 0.929350
\(724\) 3.71970 0.138242
\(725\) 35.6067 1.32240
\(726\) −2.46793 −0.0915936
\(727\) 27.5746 1.02269 0.511343 0.859377i \(-0.329148\pi\)
0.511343 + 0.859377i \(0.329148\pi\)
\(728\) 13.8886 0.514745
\(729\) 1.00000 0.0370370
\(730\) −7.27241 −0.269164
\(731\) 18.9730 0.701742
\(732\) 20.5678 0.760208
\(733\) 20.5076 0.757464 0.378732 0.925506i \(-0.376360\pi\)
0.378732 + 0.925506i \(0.376360\pi\)
\(734\) 25.7841 0.951707
\(735\) 0.190565 0.00702910
\(736\) −7.34885 −0.270882
\(737\) 4.95756 0.182614
\(738\) 16.9624 0.624395
\(739\) −29.7241 −1.09342 −0.546710 0.837322i \(-0.684120\pi\)
−0.546710 + 0.837322i \(0.684120\pi\)
\(740\) 1.26669 0.0465643
\(741\) −6.69175 −0.245828
\(742\) −18.2982 −0.671748
\(743\) 5.01986 0.184161 0.0920804 0.995752i \(-0.470648\pi\)
0.0920804 + 0.995752i \(0.470648\pi\)
\(744\) 32.7179 1.19950
\(745\) −6.40865 −0.234795
\(746\) −44.1371 −1.61597
\(747\) 3.73375 0.136611
\(748\) −10.7232 −0.392078
\(749\) 8.24035 0.301096
\(750\) −18.0016 −0.657326
\(751\) −17.7309 −0.647011 −0.323506 0.946226i \(-0.604861\pi\)
−0.323506 + 0.946226i \(0.604861\pi\)
\(752\) −20.6537 −0.753164
\(753\) −18.0406 −0.657436
\(754\) −19.9827 −0.727728
\(755\) 2.80598 0.102120
\(756\) −11.0111 −0.400470
\(757\) −32.8369 −1.19348 −0.596740 0.802435i \(-0.703537\pi\)
−0.596740 + 0.802435i \(0.703537\pi\)
\(758\) −33.6131 −1.22088
\(759\) −8.02655 −0.291345
\(760\) −26.7995 −0.972120
\(761\) 40.7015 1.47543 0.737713 0.675114i \(-0.235906\pi\)
0.737713 + 0.675114i \(0.235906\pi\)
\(762\) −49.2813 −1.78527
\(763\) 35.4772 1.28436
\(764\) 50.9080 1.84179
\(765\) −2.03465 −0.0735630
\(766\) 11.4241 0.412769
\(767\) 10.8104 0.390341
\(768\) 32.5206 1.17349
\(769\) −31.1712 −1.12406 −0.562032 0.827116i \(-0.689980\pi\)
−0.562032 + 0.827116i \(0.689980\pi\)
\(770\) 5.15623 0.185817
\(771\) 21.1298 0.760970
\(772\) 75.0258 2.70024
\(773\) 9.63553 0.346566 0.173283 0.984872i \(-0.444563\pi\)
0.173283 + 0.984872i \(0.444563\pi\)
\(774\) 17.8625 0.642056
\(775\) 27.8851 1.00166
\(776\) −92.0258 −3.30353
\(777\) 1.07385 0.0385241
\(778\) 13.1859 0.472738
\(779\) 45.9933 1.64788
\(780\) 3.17512 0.113688
\(781\) 5.96382 0.213402
\(782\) −51.9265 −1.85689
\(783\) 8.09695 0.289361
\(784\) 1.11768 0.0399170
\(785\) −15.5758 −0.555923
\(786\) −12.1505 −0.433394
\(787\) −29.7241 −1.05955 −0.529775 0.848138i \(-0.677724\pi\)
−0.529775 + 0.848138i \(0.677724\pi\)
\(788\) −32.5838 −1.16075
\(789\) −11.8592 −0.422199
\(790\) −4.11012 −0.146231
\(791\) 12.1149 0.430755
\(792\) −5.15968 −0.183341
\(793\) −5.02796 −0.178548
\(794\) 69.2750 2.45848
\(795\) −2.13798 −0.0758265
\(796\) −59.8940 −2.12288
\(797\) 4.82571 0.170935 0.0854677 0.996341i \(-0.472762\pi\)
0.0854677 + 0.996341i \(0.472762\pi\)
\(798\) −44.4537 −1.57364
\(799\) −11.8929 −0.420741
\(800\) −4.02624 −0.142349
\(801\) 2.37724 0.0839957
\(802\) 79.9466 2.82301
\(803\) −3.79648 −0.133975
\(804\) 20.2799 0.715215
\(805\) 16.7698 0.591058
\(806\) −15.6493 −0.551224
\(807\) 0.322165 0.0113407
\(808\) −57.3219 −2.01658
\(809\) −31.6284 −1.11200 −0.555998 0.831183i \(-0.687664\pi\)
−0.555998 + 0.831183i \(0.687664\pi\)
\(810\) −1.91557 −0.0673062
\(811\) −30.2655 −1.06276 −0.531382 0.847132i \(-0.678327\pi\)
−0.531382 + 0.847132i \(0.678327\pi\)
\(812\) −89.1564 −3.12878
\(813\) −26.2944 −0.922186
\(814\) 0.984558 0.0345088
\(815\) −13.9579 −0.488923
\(816\) −11.9334 −0.417752
\(817\) 48.4339 1.69449
\(818\) −55.3755 −1.93616
\(819\) 2.69175 0.0940573
\(820\) −21.8230 −0.762093
\(821\) −18.9833 −0.662521 −0.331261 0.943539i \(-0.607474\pi\)
−0.331261 + 0.943539i \(0.607474\pi\)
\(822\) 32.5462 1.13518
\(823\) −24.6234 −0.858318 −0.429159 0.903229i \(-0.641190\pi\)
−0.429159 + 0.903229i \(0.641190\pi\)
\(824\) 52.5327 1.83006
\(825\) −4.39754 −0.153103
\(826\) 71.8141 2.49873
\(827\) 23.7784 0.826855 0.413427 0.910537i \(-0.364332\pi\)
0.413427 + 0.910537i \(0.364332\pi\)
\(828\) −32.8341 −1.14107
\(829\) 44.5973 1.54893 0.774463 0.632619i \(-0.218020\pi\)
0.774463 + 0.632619i \(0.218020\pi\)
\(830\) −7.15224 −0.248258
\(831\) 8.89247 0.308476
\(832\) −6.84517 −0.237314
\(833\) 0.643584 0.0222989
\(834\) −27.1974 −0.941767
\(835\) −7.56488 −0.261793
\(836\) −27.3739 −0.946745
\(837\) 6.34106 0.219179
\(838\) 100.226 3.46225
\(839\) −22.1090 −0.763288 −0.381644 0.924309i \(-0.624642\pi\)
−0.381644 + 0.924309i \(0.624642\pi\)
\(840\) 10.7801 0.371948
\(841\) 36.5606 1.26071
\(842\) −6.59533 −0.227290
\(843\) −23.5833 −0.812253
\(844\) 61.2442 2.10811
\(845\) −0.776183 −0.0267015
\(846\) −11.1968 −0.384955
\(847\) 2.69175 0.0924896
\(848\) −12.5394 −0.430605
\(849\) −8.13754 −0.279280
\(850\) −28.4492 −0.975798
\(851\) 3.20212 0.109767
\(852\) 24.3961 0.835798
\(853\) −17.8689 −0.611820 −0.305910 0.952060i \(-0.598961\pi\)
−0.305910 + 0.952060i \(0.598961\pi\)
\(854\) −33.4010 −1.14296
\(855\) −5.19402 −0.177632
\(856\) 15.7955 0.539879
\(857\) 11.6521 0.398029 0.199014 0.979997i \(-0.436226\pi\)
0.199014 + 0.979997i \(0.436226\pi\)
\(858\) 2.46793 0.0842538
\(859\) 52.8576 1.80348 0.901740 0.432279i \(-0.142290\pi\)
0.901740 + 0.432279i \(0.142290\pi\)
\(860\) −22.9811 −0.783649
\(861\) −18.5007 −0.630504
\(862\) −64.1593 −2.18528
\(863\) 51.1483 1.74111 0.870554 0.492072i \(-0.163760\pi\)
0.870554 + 0.492072i \(0.163760\pi\)
\(864\) −0.915567 −0.0311482
\(865\) 11.6304 0.395446
\(866\) 46.8326 1.59144
\(867\) 10.1285 0.343981
\(868\) −69.8222 −2.36992
\(869\) −2.14564 −0.0727859
\(870\) −15.5102 −0.525846
\(871\) −4.95756 −0.167981
\(872\) 68.0045 2.30292
\(873\) −17.8355 −0.603642
\(874\) −132.557 −4.48380
\(875\) 19.6342 0.663757
\(876\) −15.5302 −0.524718
\(877\) −28.0125 −0.945915 −0.472958 0.881085i \(-0.656814\pi\)
−0.472958 + 0.881085i \(0.656814\pi\)
\(878\) 41.6060 1.40413
\(879\) −19.8649 −0.670027
\(880\) 3.53347 0.119113
\(881\) 16.2095 0.546111 0.273055 0.961998i \(-0.411966\pi\)
0.273055 + 0.961998i \(0.411966\pi\)
\(882\) 0.605916 0.0204022
\(883\) −50.4100 −1.69643 −0.848216 0.529650i \(-0.822323\pi\)
−0.848216 + 0.529650i \(0.822323\pi\)
\(884\) 10.7232 0.360659
\(885\) 8.39084 0.282055
\(886\) 85.1695 2.86132
\(887\) 49.4717 1.66110 0.830548 0.556947i \(-0.188027\pi\)
0.830548 + 0.556947i \(0.188027\pi\)
\(888\) 2.05841 0.0690756
\(889\) 53.7507 1.80274
\(890\) −4.55377 −0.152643
\(891\) −1.00000 −0.0335013
\(892\) −107.177 −3.58856
\(893\) −30.3600 −1.01596
\(894\) −20.3768 −0.681502
\(895\) 11.2758 0.376910
\(896\) −50.4018 −1.68381
\(897\) 8.02655 0.267999
\(898\) 12.6448 0.421961
\(899\) 51.3432 1.71239
\(900\) −17.9890 −0.599632
\(901\) −7.22049 −0.240549
\(902\) −16.9624 −0.564787
\(903\) −19.4825 −0.648337
\(904\) 23.2224 0.772366
\(905\) −0.705791 −0.0234613
\(906\) 8.92182 0.296408
\(907\) −59.3623 −1.97109 −0.985547 0.169403i \(-0.945816\pi\)
−0.985547 + 0.169403i \(0.945816\pi\)
\(908\) 99.1752 3.29124
\(909\) −11.1096 −0.368482
\(910\) −5.15623 −0.170927
\(911\) −23.7337 −0.786334 −0.393167 0.919467i \(-0.628621\pi\)
−0.393167 + 0.919467i \(0.628621\pi\)
\(912\) −30.4633 −1.00874
\(913\) −3.73375 −0.123569
\(914\) −49.1732 −1.62650
\(915\) −3.90261 −0.129016
\(916\) −26.3421 −0.870369
\(917\) 13.2524 0.437634
\(918\) −6.46933 −0.213520
\(919\) 37.1293 1.22478 0.612392 0.790555i \(-0.290208\pi\)
0.612392 + 0.790555i \(0.290208\pi\)
\(920\) 32.1452 1.05980
\(921\) 23.3305 0.768765
\(922\) −25.8296 −0.850653
\(923\) −5.96382 −0.196302
\(924\) 11.0111 0.362239
\(925\) 1.75436 0.0576829
\(926\) −90.2173 −2.96472
\(927\) 10.1814 0.334400
\(928\) −7.41330 −0.243353
\(929\) −3.10364 −0.101827 −0.0509136 0.998703i \(-0.516213\pi\)
−0.0509136 + 0.998703i \(0.516213\pi\)
\(930\) −12.1467 −0.398307
\(931\) 1.64293 0.0538448
\(932\) −98.3956 −3.22306
\(933\) 4.43359 0.145149
\(934\) −5.99903 −0.196294
\(935\) 2.03465 0.0665403
\(936\) 5.15968 0.168649
\(937\) 23.1072 0.754880 0.377440 0.926034i \(-0.376804\pi\)
0.377440 + 0.926034i \(0.376804\pi\)
\(938\) −32.9334 −1.07531
\(939\) 17.4129 0.568247
\(940\) 14.4053 0.469849
\(941\) 1.36416 0.0444704 0.0222352 0.999753i \(-0.492922\pi\)
0.0222352 + 0.999753i \(0.492922\pi\)
\(942\) −49.5244 −1.61359
\(943\) −55.1676 −1.79650
\(944\) 49.2129 1.60174
\(945\) 2.08929 0.0679646
\(946\) −17.8625 −0.580761
\(947\) −18.6209 −0.605098 −0.302549 0.953134i \(-0.597838\pi\)
−0.302549 + 0.953134i \(0.597838\pi\)
\(948\) −8.77715 −0.285069
\(949\) 3.79648 0.123239
\(950\) −72.6244 −2.35625
\(951\) 30.8752 1.00120
\(952\) 36.4069 1.17995
\(953\) 19.4237 0.629194 0.314597 0.949225i \(-0.398131\pi\)
0.314597 + 0.949225i \(0.398131\pi\)
\(954\) −6.79788 −0.220090
\(955\) −9.65947 −0.312573
\(956\) 20.5104 0.663353
\(957\) −8.09695 −0.261737
\(958\) −4.85034 −0.156708
\(959\) −35.4978 −1.14628
\(960\) −5.31311 −0.171480
\(961\) 9.20907 0.297067
\(962\) −0.984558 −0.0317434
\(963\) 3.06133 0.0986501
\(964\) −102.222 −3.29235
\(965\) −14.2357 −0.458263
\(966\) 53.3209 1.71557
\(967\) −10.2413 −0.329338 −0.164669 0.986349i \(-0.552656\pi\)
−0.164669 + 0.986349i \(0.552656\pi\)
\(968\) 5.15968 0.165838
\(969\) −17.5415 −0.563513
\(970\) 34.1652 1.09698
\(971\) 8.71822 0.279781 0.139890 0.990167i \(-0.455325\pi\)
0.139890 + 0.990167i \(0.455325\pi\)
\(972\) −4.09069 −0.131209
\(973\) 29.6639 0.950980
\(974\) 55.4946 1.77816
\(975\) 4.39754 0.140834
\(976\) −22.8891 −0.732662
\(977\) −56.9127 −1.82080 −0.910400 0.413730i \(-0.864226\pi\)
−0.910400 + 0.413730i \(0.864226\pi\)
\(978\) −44.3801 −1.41912
\(979\) −2.37724 −0.0759770
\(980\) −0.779542 −0.0249016
\(981\) 13.1800 0.420804
\(982\) 42.6740 1.36178
\(983\) 25.1270 0.801425 0.400713 0.916204i \(-0.368763\pi\)
0.400713 + 0.916204i \(0.368763\pi\)
\(984\) −35.4632 −1.13052
\(985\) 6.18257 0.196993
\(986\) −52.3818 −1.66818
\(987\) 12.2123 0.388721
\(988\) 27.3739 0.870879
\(989\) −58.0951 −1.84732
\(990\) 1.91557 0.0608807
\(991\) −12.8268 −0.407458 −0.203729 0.979027i \(-0.565306\pi\)
−0.203729 + 0.979027i \(0.565306\pi\)
\(992\) −5.80567 −0.184330
\(993\) −6.72749 −0.213490
\(994\) −39.6180 −1.25661
\(995\) 11.3645 0.360279
\(996\) −15.2736 −0.483962
\(997\) 2.62596 0.0831650 0.0415825 0.999135i \(-0.486760\pi\)
0.0415825 + 0.999135i \(0.486760\pi\)
\(998\) 9.16799 0.290208
\(999\) 0.398941 0.0126219
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 429.2.a.h.1.4 4
3.2 odd 2 1287.2.a.m.1.1 4
4.3 odd 2 6864.2.a.bz.1.2 4
11.10 odd 2 4719.2.a.z.1.1 4
13.12 even 2 5577.2.a.m.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
429.2.a.h.1.4 4 1.1 even 1 trivial
1287.2.a.m.1.1 4 3.2 odd 2
4719.2.a.z.1.1 4 11.10 odd 2
5577.2.a.m.1.1 4 13.12 even 2
6864.2.a.bz.1.2 4 4.3 odd 2