Properties

Label 4256.2.j
Level $4256$
Weight $2$
Character orbit 4256.j
Rep. character $\chi_{4256}(2015,\cdot)$
Character field $\Q$
Dimension $144$
Sturm bound $1280$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4256 = 2^{5} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4256.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q\)
Sturm bound: \(1280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4256, [\chi])\).

Total New Old
Modular forms 656 144 512
Cusp forms 624 144 480
Eisenstein series 32 0 32

Decomposition of \(S_{2}^{\mathrm{new}}(4256, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(4256, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4256, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 2}\)