Defining parameters
Level: | \( N \) | \(=\) | \( 4256 = 2^{5} \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4256.j (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q\) | ||
Sturm bound: | \(1280\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4256, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 656 | 144 | 512 |
Cusp forms | 624 | 144 | 480 |
Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{new}}(4256, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(4256, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4256, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1064, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2128, [\chi])\)\(^{\oplus 2}\)