Properties

Label 425.4.c.a
Level $425$
Weight $4$
Character orbit 425.c
Analytic conductor $25.076$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(424,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.424");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.0758117524\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - 8 q^{3} + 7 q^{4} - 8 i q^{6} - 14 q^{7} + 15 i q^{8} + 37 q^{9} - 20 i q^{11} - 56 q^{12} + 58 i q^{13} - 14 i q^{14} + 41 q^{16} + ( - 17 i + 68) q^{17} + 37 i q^{18} - 80 q^{19} + 112 q^{21} + \cdots - 740 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16 q^{3} + 14 q^{4} - 28 q^{7} + 74 q^{9} - 112 q^{12} + 82 q^{16} + 136 q^{17} - 160 q^{19} + 224 q^{21} + 40 q^{22} - 236 q^{23} - 116 q^{26} - 160 q^{27} - 196 q^{28} + 34 q^{34} + 518 q^{36} - 268 q^{37}+ \cdots + 2752 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
424.1
1.00000i
1.00000i
1.00000i −8.00000 7.00000 0 8.00000i −14.0000 15.0000i 37.0000 0
424.2 1.00000i −8.00000 7.00000 0 8.00000i −14.0000 15.0000i 37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.4.c.a 2
5.b even 2 1 425.4.c.b 2
5.c odd 4 1 85.4.d.a 2
5.c odd 4 1 425.4.d.a 2
15.e even 4 1 765.4.g.a 2
17.b even 2 1 425.4.c.b 2
85.c even 2 1 inner 425.4.c.a 2
85.f odd 4 1 1445.4.a.e 1
85.g odd 4 1 85.4.d.a 2
85.g odd 4 1 425.4.d.a 2
85.i odd 4 1 1445.4.a.d 1
255.o even 4 1 765.4.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.d.a 2 5.c odd 4 1
85.4.d.a 2 85.g odd 4 1
425.4.c.a 2 1.a even 1 1 trivial
425.4.c.a 2 85.c even 2 1 inner
425.4.c.b 2 5.b even 2 1
425.4.c.b 2 17.b even 2 1
425.4.d.a 2 5.c odd 4 1
425.4.d.a 2 85.g odd 4 1
765.4.g.a 2 15.e even 4 1
765.4.g.a 2 255.o even 4 1
1445.4.a.d 1 85.i odd 4 1
1445.4.a.e 1 85.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(425, [\chi])\):

\( T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{3} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 8)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 14)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 400 \) Copy content Toggle raw display
$13$ \( T^{2} + 3364 \) Copy content Toggle raw display
$17$ \( T^{2} - 136T + 4913 \) Copy content Toggle raw display
$19$ \( (T + 80)^{2} \) Copy content Toggle raw display
$23$ \( (T + 118)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 15876 \) Copy content Toggle raw display
$31$ \( T^{2} + 4900 \) Copy content Toggle raw display
$37$ \( (T + 134)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 10000 \) Copy content Toggle raw display
$43$ \( T^{2} + 73984 \) Copy content Toggle raw display
$47$ \( T^{2} + 215296 \) Copy content Toggle raw display
$53$ \( T^{2} + 412164 \) Copy content Toggle raw display
$59$ \( (T - 180)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 12100 \) Copy content Toggle raw display
$67$ \( T^{2} + 853776 \) Copy content Toggle raw display
$71$ \( T^{2} + 8100 \) Copy content Toggle raw display
$73$ \( (T + 828)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 1779556 \) Copy content Toggle raw display
$83$ \( T^{2} + 304704 \) Copy content Toggle raw display
$89$ \( (T + 1490)^{2} \) Copy content Toggle raw display
$97$ \( (T - 1376)^{2} \) Copy content Toggle raw display
show more
show less