Properties

Label 425.3.u.f.401.7
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $128$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128,0,0,16,0,-16,0,0,16,0,-96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.7
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.f.301.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.116200 + 0.280533i) q^{2} +(-4.44521 - 2.97019i) q^{3} +(2.76323 + 2.76323i) q^{4} +(1.34977 - 0.901888i) q^{6} +(-2.10407 - 0.418526i) q^{7} +(-2.21840 + 0.918890i) q^{8} +(7.49367 + 18.0913i) q^{9} +(-3.66996 - 5.49249i) q^{11} +(-4.07581 - 20.4905i) q^{12} +(9.67560 - 9.67560i) q^{13} +(0.361904 - 0.541628i) q^{14} +14.9021i q^{16} +(-0.398523 + 16.9953i) q^{17} -5.94598 q^{18} +(4.71303 - 11.3783i) q^{19} +(8.10993 + 8.10993i) q^{21} +(1.96727 - 0.391315i) q^{22} +(1.56321 - 1.04450i) q^{23} +(12.5905 + 2.50441i) q^{24} +(1.59001 + 3.83863i) q^{26} +(11.0369 - 55.4861i) q^{27} +(-4.65755 - 6.97052i) q^{28} +(-5.73848 - 28.8493i) q^{29} +(27.7949 - 41.5980i) q^{31} +(-13.0541 - 5.40719i) q^{32} +35.3157i q^{33} +(-4.72144 - 2.08666i) q^{34} +(-29.2838 + 70.6973i) q^{36} +(-39.7482 - 26.5589i) q^{37} +(2.64432 + 2.64432i) q^{38} +(-71.7485 + 14.2717i) q^{39} +(-74.0482 - 14.7291i) q^{41} +(-3.21748 + 1.33272i) q^{42} +(-12.5935 - 30.4033i) q^{43} +(5.03606 - 25.3180i) q^{44} +(0.111372 + 0.559903i) q^{46} +(24.9678 - 24.9678i) q^{47} +(44.2621 - 66.2429i) q^{48} +(-41.0181 - 16.9903i) q^{49} +(52.2509 - 74.3641i) q^{51} +53.4719 q^{52} +(-10.3638 + 25.0205i) q^{53} +(14.2832 + 9.54371i) q^{54} +(5.05224 - 1.00495i) q^{56} +(-54.7460 + 36.5801i) q^{57} +(8.75998 + 1.74247i) q^{58} +(69.9951 - 28.9929i) q^{59} +(11.8582 - 59.6151i) q^{61} +(8.43982 + 12.6311i) q^{62} +(-8.19554 - 41.2018i) q^{63} +(-39.1157 + 39.1157i) q^{64} +(-9.90722 - 4.10371i) q^{66} -88.5032i q^{67} +(-48.0632 + 45.8608i) q^{68} -10.0512 q^{69} +(26.4277 + 17.6584i) q^{71} +(-33.2479 - 33.2479i) q^{72} +(42.8431 - 8.52203i) q^{73} +(12.0694 - 8.06452i) q^{74} +(44.4639 - 18.4176i) q^{76} +(5.42312 + 13.0926i) q^{77} +(4.33354 - 21.7862i) q^{78} +(23.2131 + 34.7408i) q^{79} +(-89.2469 + 89.2469i) q^{81} +(12.7364 - 19.0614i) q^{82} +(-87.2086 - 36.1230i) q^{83} +44.8192i q^{84} +9.99249 q^{86} +(-60.1792 + 145.285i) q^{87} +(13.1884 + 8.81222i) q^{88} +(62.4827 + 62.4827i) q^{89} +(-24.4077 + 16.3087i) q^{91} +(7.20571 + 1.43331i) q^{92} +(-247.108 + 102.356i) q^{93} +(4.10301 + 9.90555i) q^{94} +(41.9678 + 62.8093i) q^{96} +(1.86699 + 9.38597i) q^{97} +(9.53265 - 9.53265i) q^{98} +(71.8649 - 107.553i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 16 q^{4} - 16 q^{6} + 16 q^{9} - 96 q^{11} + 16 q^{14} + 16 q^{19} + 224 q^{21} + 160 q^{24} + 288 q^{26} + 176 q^{29} + 48 q^{31} - 48 q^{34} - 144 q^{36} - 336 q^{41} + 48 q^{44} - 224 q^{46}+ \cdots + 1664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.116200 + 0.280533i −0.0581002 + 0.140266i −0.950264 0.311446i \(-0.899187\pi\)
0.892164 + 0.451712i \(0.149187\pi\)
\(3\) −4.44521 2.97019i −1.48174 0.990064i −0.993061 0.117598i \(-0.962481\pi\)
−0.488675 0.872466i \(-0.662519\pi\)
\(4\) 2.76323 + 2.76323i 0.690808 + 0.690808i
\(5\) 0 0
\(6\) 1.34977 0.901888i 0.224962 0.150315i
\(7\) −2.10407 0.418526i −0.300582 0.0597894i 0.0424954 0.999097i \(-0.486469\pi\)
−0.343077 + 0.939307i \(0.611469\pi\)
\(8\) −2.21840 + 0.918890i −0.277300 + 0.114861i
\(9\) 7.49367 + 18.0913i 0.832630 + 2.01015i
\(10\) 0 0
\(11\) −3.66996 5.49249i −0.333633 0.499317i 0.626286 0.779593i \(-0.284574\pi\)
−0.959919 + 0.280276i \(0.909574\pi\)
\(12\) −4.07581 20.4905i −0.339651 1.70754i
\(13\) 9.67560 9.67560i 0.744277 0.744277i −0.229121 0.973398i \(-0.573585\pi\)
0.973398 + 0.229121i \(0.0735851\pi\)
\(14\) 0.361904 0.541628i 0.0258503 0.0386877i
\(15\) 0 0
\(16\) 14.9021i 0.931380i
\(17\) −0.398523 + 16.9953i −0.0234425 + 0.999725i
\(18\) −5.94598 −0.330332
\(19\) 4.71303 11.3783i 0.248054 0.598856i −0.749985 0.661455i \(-0.769939\pi\)
0.998039 + 0.0625996i \(0.0199391\pi\)
\(20\) 0 0
\(21\) 8.10993 + 8.10993i 0.386187 + 0.386187i
\(22\) 1.96727 0.391315i 0.0894215 0.0177871i
\(23\) 1.56321 1.04450i 0.0679656 0.0454132i −0.521123 0.853481i \(-0.674487\pi\)
0.589089 + 0.808068i \(0.299487\pi\)
\(24\) 12.5905 + 2.50441i 0.524605 + 0.104350i
\(25\) 0 0
\(26\) 1.59001 + 3.83863i 0.0611544 + 0.147640i
\(27\) 11.0369 55.4861i 0.408773 2.05504i
\(28\) −4.65755 6.97052i −0.166341 0.248947i
\(29\) −5.73848 28.8493i −0.197879 0.994803i −0.944239 0.329261i \(-0.893200\pi\)
0.746360 0.665542i \(-0.231800\pi\)
\(30\) 0 0
\(31\) 27.7949 41.5980i 0.896609 1.34187i −0.0428037 0.999084i \(-0.513629\pi\)
0.939413 0.342787i \(-0.111371\pi\)
\(32\) −13.0541 5.40719i −0.407941 0.168975i
\(33\) 35.3157i 1.07017i
\(34\) −4.72144 2.08666i −0.138866 0.0613725i
\(35\) 0 0
\(36\) −29.2838 + 70.6973i −0.813438 + 1.96381i
\(37\) −39.7482 26.5589i −1.07428 0.717809i −0.113056 0.993589i \(-0.536064\pi\)
−0.961221 + 0.275780i \(0.911064\pi\)
\(38\) 2.64432 + 2.64432i 0.0695873 + 0.0695873i
\(39\) −71.7485 + 14.2717i −1.83970 + 0.365940i
\(40\) 0 0
\(41\) −74.0482 14.7291i −1.80605 0.359247i −0.826897 0.562353i \(-0.809896\pi\)
−0.979157 + 0.203106i \(0.934896\pi\)
\(42\) −3.21748 + 1.33272i −0.0766067 + 0.0317315i
\(43\) −12.5935 30.4033i −0.292871 0.707053i 0.707129 0.707085i \(-0.249990\pi\)
−1.00000 3.12334e-5i \(0.999990\pi\)
\(44\) 5.03606 25.3180i 0.114456 0.575408i
\(45\) 0 0
\(46\) 0.111372 + 0.559903i 0.00242112 + 0.0121718i
\(47\) 24.9678 24.9678i 0.531230 0.531230i −0.389709 0.920938i \(-0.627424\pi\)
0.920938 + 0.389709i \(0.127424\pi\)
\(48\) 44.2621 66.2429i 0.922126 1.38006i
\(49\) −41.0181 16.9903i −0.837105 0.346740i
\(50\) 0 0
\(51\) 52.2509 74.3641i 1.02453 1.45812i
\(52\) 53.4719 1.02830
\(53\) −10.3638 + 25.0205i −0.195544 + 0.472085i −0.990989 0.133940i \(-0.957237\pi\)
0.795445 + 0.606025i \(0.207237\pi\)
\(54\) 14.2832 + 9.54371i 0.264503 + 0.176735i
\(55\) 0 0
\(56\) 5.05224 1.00495i 0.0902186 0.0179456i
\(57\) −54.7460 + 36.5801i −0.960456 + 0.641756i
\(58\) 8.75998 + 1.74247i 0.151034 + 0.0300426i
\(59\) 69.9951 28.9929i 1.18636 0.491405i 0.299790 0.954005i \(-0.403083\pi\)
0.886567 + 0.462600i \(0.153083\pi\)
\(60\) 0 0
\(61\) 11.8582 59.6151i 0.194397 0.977297i −0.753191 0.657802i \(-0.771487\pi\)
0.947588 0.319496i \(-0.103513\pi\)
\(62\) 8.43982 + 12.6311i 0.136126 + 0.203727i
\(63\) −8.19554 41.2018i −0.130088 0.653996i
\(64\) −39.1157 + 39.1157i −0.611183 + 0.611183i
\(65\) 0 0
\(66\) −9.90722 4.10371i −0.150109 0.0621774i
\(67\) 88.5032i 1.32094i −0.750851 0.660472i \(-0.770356\pi\)
0.750851 0.660472i \(-0.229644\pi\)
\(68\) −48.0632 + 45.8608i −0.706812 + 0.674424i
\(69\) −10.0512 −0.145669
\(70\) 0 0
\(71\) 26.4277 + 17.6584i 0.372221 + 0.248710i 0.727585 0.686018i \(-0.240643\pi\)
−0.355363 + 0.934728i \(0.615643\pi\)
\(72\) −33.2479 33.2479i −0.461776 0.461776i
\(73\) 42.8431 8.52203i 0.586892 0.116740i 0.107293 0.994227i \(-0.465782\pi\)
0.479600 + 0.877487i \(0.340782\pi\)
\(74\) 12.0694 8.06452i 0.163100 0.108980i
\(75\) 0 0
\(76\) 44.4639 18.4176i 0.585052 0.242336i
\(77\) 5.42312 + 13.0926i 0.0704301 + 0.170033i
\(78\) 4.33354 21.7862i 0.0555582 0.279310i
\(79\) 23.2131 + 34.7408i 0.293836 + 0.439757i 0.948788 0.315914i \(-0.102311\pi\)
−0.654952 + 0.755671i \(0.727311\pi\)
\(80\) 0 0
\(81\) −89.2469 + 89.2469i −1.10181 + 1.10181i
\(82\) 12.7364 19.0614i 0.155322 0.232456i
\(83\) −87.2086 36.1230i −1.05071 0.435217i −0.210562 0.977580i \(-0.567529\pi\)
−0.840144 + 0.542364i \(0.817529\pi\)
\(84\) 44.8192i 0.533562i
\(85\) 0 0
\(86\) 9.99249 0.116192
\(87\) −60.1792 + 145.285i −0.691715 + 1.66995i
\(88\) 13.1884 + 8.81222i 0.149868 + 0.100139i
\(89\) 62.4827 + 62.4827i 0.702053 + 0.702053i 0.964851 0.262798i \(-0.0846453\pi\)
−0.262798 + 0.964851i \(0.584645\pi\)
\(90\) 0 0
\(91\) −24.4077 + 16.3087i −0.268216 + 0.179216i
\(92\) 7.20571 + 1.43331i 0.0783230 + 0.0155794i
\(93\) −247.108 + 102.356i −2.65708 + 1.10060i
\(94\) 4.10301 + 9.90555i 0.0436491 + 0.105378i
\(95\) 0 0
\(96\) 41.9678 + 62.8093i 0.437165 + 0.654263i
\(97\) 1.86699 + 9.38597i 0.0192473 + 0.0967626i 0.989215 0.146472i \(-0.0467917\pi\)
−0.969968 + 0.243234i \(0.921792\pi\)
\(98\) 9.53265 9.53265i 0.0972720 0.0972720i
\(99\) 71.8649 107.553i 0.725908 1.08640i
\(100\) 0 0
\(101\) 8.14676i 0.0806610i 0.999186 + 0.0403305i \(0.0128411\pi\)
−0.999186 + 0.0403305i \(0.987159\pi\)
\(102\) 14.7900 + 23.2992i 0.145000 + 0.228424i
\(103\) 102.475 0.994907 0.497454 0.867491i \(-0.334268\pi\)
0.497454 + 0.867491i \(0.334268\pi\)
\(104\) −12.5735 + 30.3551i −0.120899 + 0.291876i
\(105\) 0 0
\(106\) −5.81479 5.81479i −0.0548565 0.0548565i
\(107\) −12.8048 + 2.54704i −0.119671 + 0.0238041i −0.254563 0.967056i \(-0.581932\pi\)
0.134891 + 0.990860i \(0.456932\pi\)
\(108\) 183.818 122.823i 1.70202 1.13725i
\(109\) 14.1717 + 2.81893i 0.130016 + 0.0258618i 0.259669 0.965698i \(-0.416386\pi\)
−0.129653 + 0.991559i \(0.541386\pi\)
\(110\) 0 0
\(111\) 97.8041 + 236.120i 0.881118 + 2.12721i
\(112\) 6.23691 31.3551i 0.0556867 0.279956i
\(113\) 79.4316 + 118.878i 0.702934 + 1.05202i 0.995406 + 0.0957415i \(0.0305222\pi\)
−0.292472 + 0.956274i \(0.594478\pi\)
\(114\) −3.90041 19.6087i −0.0342141 0.172006i
\(115\) 0 0
\(116\) 63.8605 95.5740i 0.550521 0.823914i
\(117\) 247.550 + 102.539i 2.11581 + 0.876399i
\(118\) 23.0049i 0.194957i
\(119\) 7.95151 35.5926i 0.0668194 0.299097i
\(120\) 0 0
\(121\) 29.6059 71.4750i 0.244677 0.590702i
\(122\) 15.3461 + 10.2539i 0.125787 + 0.0840485i
\(123\) 285.411 + 285.411i 2.32042 + 2.32042i
\(124\) 191.749 38.1412i 1.54636 0.307590i
\(125\) 0 0
\(126\) 12.5108 + 2.48855i 0.0992918 + 0.0197504i
\(127\) −29.6298 + 12.2731i −0.233306 + 0.0966384i −0.496274 0.868166i \(-0.665299\pi\)
0.262968 + 0.964805i \(0.415299\pi\)
\(128\) −28.0567 67.7349i −0.219193 0.529179i
\(129\) −34.3231 + 172.554i −0.266071 + 1.33763i
\(130\) 0 0
\(131\) −24.5534 123.438i −0.187431 0.942278i −0.953929 0.300032i \(-0.903003\pi\)
0.766498 0.642246i \(-0.221997\pi\)
\(132\) −97.5856 + 97.5856i −0.739285 + 0.739285i
\(133\) −14.6786 + 21.9681i −0.110366 + 0.165174i
\(134\) 24.8281 + 10.2841i 0.185284 + 0.0767471i
\(135\) 0 0
\(136\) −14.7328 38.0686i −0.108329 0.279916i
\(137\) −3.84544 −0.0280689 −0.0140345 0.999902i \(-0.504467\pi\)
−0.0140345 + 0.999902i \(0.504467\pi\)
\(138\) 1.16795 2.81968i 0.00846341 0.0204325i
\(139\) −148.938 99.5172i −1.07150 0.715951i −0.110881 0.993834i \(-0.535367\pi\)
−0.960615 + 0.277883i \(0.910367\pi\)
\(140\) 0 0
\(141\) −185.146 + 36.8279i −1.31309 + 0.261191i
\(142\) −8.02468 + 5.36192i −0.0565118 + 0.0377600i
\(143\) −88.6522 17.6340i −0.619946 0.123315i
\(144\) −269.599 + 111.671i −1.87221 + 0.775496i
\(145\) 0 0
\(146\) −2.58768 + 13.0092i −0.0177239 + 0.0891039i
\(147\) 131.870 + 197.357i 0.897073 + 1.34257i
\(148\) −36.4451 183.222i −0.246251 1.23799i
\(149\) −62.0836 + 62.0836i −0.416669 + 0.416669i −0.884054 0.467385i \(-0.845196\pi\)
0.467385 + 0.884054i \(0.345196\pi\)
\(150\) 0 0
\(151\) −81.3591 33.7000i −0.538802 0.223179i 0.0966516 0.995318i \(-0.469187\pi\)
−0.635453 + 0.772139i \(0.719187\pi\)
\(152\) 29.5722i 0.194554i
\(153\) −310.454 + 120.148i −2.02911 + 0.785279i
\(154\) −4.30306 −0.0279420
\(155\) 0 0
\(156\) −237.693 158.822i −1.52368 1.01809i
\(157\) 120.763 + 120.763i 0.769190 + 0.769190i 0.977964 0.208774i \(-0.0669474\pi\)
−0.208774 + 0.977964i \(0.566947\pi\)
\(158\) −12.4433 + 2.47513i −0.0787550 + 0.0156653i
\(159\) 120.385 80.4387i 0.757139 0.505904i
\(160\) 0 0
\(161\) −3.72626 + 1.54347i −0.0231445 + 0.00958675i
\(162\) −14.6661 35.4072i −0.0905317 0.218563i
\(163\) 37.9067 190.570i 0.232556 1.16914i −0.671261 0.741221i \(-0.734247\pi\)
0.903818 0.427918i \(-0.140753\pi\)
\(164\) −163.912 245.312i −0.999466 1.49581i
\(165\) 0 0
\(166\) 20.2674 20.2674i 0.122093 0.122093i
\(167\) −165.394 + 247.530i −0.990385 + 1.48222i −0.118230 + 0.992986i \(0.537722\pi\)
−0.872155 + 0.489230i \(0.837278\pi\)
\(168\) −25.4432 10.5389i −0.151447 0.0627316i
\(169\) 18.2346i 0.107897i
\(170\) 0 0
\(171\) 241.166 1.41033
\(172\) 49.2127 118.810i 0.286120 0.690756i
\(173\) 56.3529 + 37.6538i 0.325740 + 0.217652i 0.707677 0.706536i \(-0.249743\pi\)
−0.381938 + 0.924188i \(0.624743\pi\)
\(174\) −33.7645 33.7645i −0.194049 0.194049i
\(175\) 0 0
\(176\) 81.8495 54.6901i 0.465054 0.310739i
\(177\) −397.257 79.0194i −2.24439 0.446437i
\(178\) −24.7890 + 10.2679i −0.139264 + 0.0576850i
\(179\) −25.4676 61.4842i −0.142277 0.343487i 0.836638 0.547757i \(-0.184518\pi\)
−0.978915 + 0.204270i \(0.934518\pi\)
\(180\) 0 0
\(181\) 128.248 + 191.936i 0.708551 + 1.06042i 0.994758 + 0.102253i \(0.0326053\pi\)
−0.286208 + 0.958168i \(0.592395\pi\)
\(182\) −1.73894 8.74222i −0.00955459 0.0480342i
\(183\) −229.781 + 229.781i −1.25563 + 1.25563i
\(184\) −2.50803 + 3.75354i −0.0136306 + 0.0203997i
\(185\) 0 0
\(186\) 81.2157i 0.436643i
\(187\) 94.8092 60.1833i 0.507001 0.321836i
\(188\) 137.984 0.733955
\(189\) −46.4447 + 112.127i −0.245739 + 0.593267i
\(190\) 0 0
\(191\) −170.119 170.119i −0.890677 0.890677i 0.103910 0.994587i \(-0.466865\pi\)
−0.994587 + 0.103910i \(0.966865\pi\)
\(192\) 290.058 57.6962i 1.51072 0.300501i
\(193\) 225.040 150.367i 1.16601 0.779103i 0.186889 0.982381i \(-0.440160\pi\)
0.979121 + 0.203278i \(0.0651595\pi\)
\(194\) −2.85002 0.566903i −0.0146908 0.00292218i
\(195\) 0 0
\(196\) −66.3946 160.291i −0.338748 0.817809i
\(197\) 27.0338 135.908i 0.137227 0.689889i −0.849511 0.527571i \(-0.823103\pi\)
0.986739 0.162318i \(-0.0518970\pi\)
\(198\) 21.8215 + 32.6582i 0.110210 + 0.164940i
\(199\) −2.68533 13.5001i −0.0134941 0.0678397i 0.973451 0.228893i \(-0.0735107\pi\)
−0.986946 + 0.161054i \(0.948511\pi\)
\(200\) 0 0
\(201\) −262.872 + 393.415i −1.30782 + 1.95729i
\(202\) −2.28543 0.946658i −0.0113140 0.00468642i
\(203\) 63.1027i 0.310851i
\(204\) 349.866 61.1038i 1.71503 0.299528i
\(205\) 0 0
\(206\) −11.9077 + 28.7477i −0.0578043 + 0.139552i
\(207\) 30.6106 + 20.4534i 0.147877 + 0.0988086i
\(208\) 144.187 + 144.187i 0.693205 + 0.693205i
\(209\) −79.7916 + 15.8715i −0.381778 + 0.0759404i
\(210\) 0 0
\(211\) 299.532 + 59.5806i 1.41958 + 0.282373i 0.844427 0.535671i \(-0.179941\pi\)
0.575156 + 0.818044i \(0.304941\pi\)
\(212\) −97.7751 + 40.4998i −0.461203 + 0.191037i
\(213\) −65.0277 156.991i −0.305295 0.737046i
\(214\) 0.773400 3.88815i 0.00361402 0.0181689i
\(215\) 0 0
\(216\) 26.5014 + 133.232i 0.122692 + 0.616813i
\(217\) −75.8923 + 75.8923i −0.349734 + 0.349734i
\(218\) −2.43756 + 3.64807i −0.0111815 + 0.0167343i
\(219\) −215.759 89.3702i −0.985200 0.408083i
\(220\) 0 0
\(221\) 160.584 + 168.296i 0.726625 + 0.761520i
\(222\) −77.6042 −0.349569
\(223\) 8.52903 20.5909i 0.0382468 0.0923359i −0.903602 0.428373i \(-0.859087\pi\)
0.941849 + 0.336037i \(0.109087\pi\)
\(224\) 25.2037 + 16.8406i 0.112517 + 0.0751812i
\(225\) 0 0
\(226\) −42.5791 + 8.46951i −0.188403 + 0.0374757i
\(227\) 113.145 75.6008i 0.498434 0.333043i −0.280810 0.959763i \(-0.590603\pi\)
0.779244 + 0.626720i \(0.215603\pi\)
\(228\) −252.355 50.1966i −1.10682 0.220160i
\(229\) 149.301 61.8425i 0.651970 0.270055i −0.0320854 0.999485i \(-0.510215\pi\)
0.684055 + 0.729431i \(0.260215\pi\)
\(230\) 0 0
\(231\) 14.7806 74.3069i 0.0639851 0.321675i
\(232\) 39.2395 + 58.7261i 0.169136 + 0.253130i
\(233\) −30.0835 151.240i −0.129114 0.649099i −0.990088 0.140450i \(-0.955145\pi\)
0.860974 0.508649i \(-0.169855\pi\)
\(234\) −57.5309 + 57.5309i −0.245859 + 0.245859i
\(235\) 0 0
\(236\) 273.527 + 113.298i 1.15901 + 0.480078i
\(237\) 223.377i 0.942520i
\(238\) 9.06092 + 6.36653i 0.0380711 + 0.0267501i
\(239\) −24.6360 −0.103079 −0.0515397 0.998671i \(-0.516413\pi\)
−0.0515397 + 0.998671i \(0.516413\pi\)
\(240\) 0 0
\(241\) −211.730 141.474i −0.878548 0.587027i 0.0324336 0.999474i \(-0.489674\pi\)
−0.910982 + 0.412447i \(0.864674\pi\)
\(242\) 16.6108 + 16.6108i 0.0686399 + 0.0686399i
\(243\) 162.427 32.3087i 0.668423 0.132958i
\(244\) 197.497 131.963i 0.809415 0.540834i
\(245\) 0 0
\(246\) −113.232 + 46.9023i −0.460293 + 0.190660i
\(247\) −64.4901 155.693i −0.261094 0.630336i
\(248\) −23.4361 + 117.821i −0.0945004 + 0.475086i
\(249\) 280.368 + 419.601i 1.12598 + 1.68514i
\(250\) 0 0
\(251\) −58.8552 + 58.8552i −0.234483 + 0.234483i −0.814561 0.580078i \(-0.803022\pi\)
0.580078 + 0.814561i \(0.303022\pi\)
\(252\) 91.2038 136.496i 0.361920 0.541651i
\(253\) −11.4738 4.75262i −0.0453512 0.0187851i
\(254\) 9.73828i 0.0383397i
\(255\) 0 0
\(256\) −199.010 −0.777381
\(257\) 22.7940 55.0296i 0.0886926 0.214123i −0.873309 0.487167i \(-0.838030\pi\)
0.962002 + 0.273044i \(0.0880304\pi\)
\(258\) −44.4187 29.6796i −0.172165 0.115037i
\(259\) 72.5176 + 72.5176i 0.279991 + 0.279991i
\(260\) 0 0
\(261\) 478.920 320.004i 1.83494 1.22607i
\(262\) 37.4816 + 7.45556i 0.143060 + 0.0284563i
\(263\) −413.855 + 171.424i −1.57359 + 0.651803i −0.987382 0.158357i \(-0.949380\pi\)
−0.586209 + 0.810160i \(0.699380\pi\)
\(264\) −32.4513 78.3443i −0.122922 0.296759i
\(265\) 0 0
\(266\) −4.45712 6.67055i −0.0167561 0.0250773i
\(267\) −92.1629 463.334i −0.345179 1.73533i
\(268\) 244.555 244.555i 0.912518 0.912518i
\(269\) −249.394 + 373.244i −0.927115 + 1.38753i −0.00526195 + 0.999986i \(0.501675\pi\)
−0.921853 + 0.387540i \(0.873325\pi\)
\(270\) 0 0
\(271\) 130.751i 0.482478i 0.970466 + 0.241239i \(0.0775537\pi\)
−0.970466 + 0.241239i \(0.922446\pi\)
\(272\) −253.266 5.93882i −0.931125 0.0218339i
\(273\) 156.937 0.574861
\(274\) 0.446842 1.07877i 0.00163081 0.00393712i
\(275\) 0 0
\(276\) −27.7737 27.7737i −0.100629 0.100629i
\(277\) −364.857 + 72.5746i −1.31717 + 0.262002i −0.803151 0.595775i \(-0.796845\pi\)
−0.514022 + 0.857777i \(0.671845\pi\)
\(278\) 45.2245 30.2180i 0.162678 0.108698i
\(279\) 960.849 + 191.125i 3.44390 + 0.685035i
\(280\) 0 0
\(281\) −135.694 327.595i −0.482898 1.16582i −0.958227 0.286010i \(-0.907671\pi\)
0.475329 0.879808i \(-0.342329\pi\)
\(282\) 11.1826 56.2190i 0.0396548 0.199358i
\(283\) 139.027 + 208.069i 0.491263 + 0.735227i 0.991421 0.130707i \(-0.0417248\pi\)
−0.500158 + 0.865934i \(0.666725\pi\)
\(284\) 24.2316 + 121.820i 0.0853224 + 0.428944i
\(285\) 0 0
\(286\) 15.2484 22.8208i 0.0533159 0.0797929i
\(287\) 149.638 + 61.9822i 0.521388 + 0.215966i
\(288\) 276.686i 0.960715i
\(289\) −288.682 13.5461i −0.998901 0.0468721i
\(290\) 0 0
\(291\) 19.5790 47.2679i 0.0672818 0.162433i
\(292\) 141.934 + 94.8372i 0.486075 + 0.324785i
\(293\) 1.31220 + 1.31220i 0.00447848 + 0.00447848i 0.709342 0.704864i \(-0.248992\pi\)
−0.704864 + 0.709342i \(0.748992\pi\)
\(294\) −70.6884 + 14.0608i −0.240437 + 0.0478259i
\(295\) 0 0
\(296\) 112.582 + 22.3940i 0.380345 + 0.0756553i
\(297\) −345.261 + 143.012i −1.16250 + 0.481522i
\(298\) −10.2023 24.6306i −0.0342360 0.0826531i
\(299\) 5.01880 25.2312i 0.0167853 0.0843853i
\(300\) 0 0
\(301\) 13.7730 + 69.2414i 0.0457574 + 0.230038i
\(302\) 18.9079 18.9079i 0.0626090 0.0626090i
\(303\) 24.1975 36.2141i 0.0798596 0.119518i
\(304\) 169.560 + 70.2340i 0.557762 + 0.231033i
\(305\) 0 0
\(306\) 2.36961 101.054i 0.00774382 0.330241i
\(307\) 493.288 1.60680 0.803401 0.595438i \(-0.203022\pi\)
0.803401 + 0.595438i \(0.203022\pi\)
\(308\) −21.1925 + 51.1631i −0.0688067 + 0.166114i
\(309\) −455.525 304.372i −1.47419 0.985022i
\(310\) 0 0
\(311\) 311.842 62.0293i 1.00271 0.199451i 0.333678 0.942687i \(-0.391710\pi\)
0.669029 + 0.743236i \(0.266710\pi\)
\(312\) 146.052 97.5891i 0.468117 0.312786i
\(313\) −163.744 32.5707i −0.523144 0.104060i −0.0735477 0.997292i \(-0.523432\pi\)
−0.449596 + 0.893232i \(0.648432\pi\)
\(314\) −47.9106 + 19.8452i −0.152582 + 0.0632013i
\(315\) 0 0
\(316\) −31.8538 + 160.140i −0.100803 + 0.506772i
\(317\) −50.1758 75.0934i −0.158283 0.236888i 0.743848 0.668348i \(-0.232998\pi\)
−0.902132 + 0.431461i \(0.857998\pi\)
\(318\) 8.57690 + 43.1190i 0.0269714 + 0.135594i
\(319\) −137.394 + 137.394i −0.430703 + 0.430703i
\(320\) 0 0
\(321\) 64.4854 + 26.7107i 0.200889 + 0.0832110i
\(322\) 1.22469i 0.00380338i
\(323\) 191.499 + 84.6340i 0.592876 + 0.262025i
\(324\) −493.219 −1.52228
\(325\) 0 0
\(326\) 49.0562 + 32.7783i 0.150479 + 0.100547i
\(327\) −54.6235 54.6235i −0.167044 0.167044i
\(328\) 177.803 35.3672i 0.542081 0.107827i
\(329\) −62.9837 + 42.0844i −0.191440 + 0.127916i
\(330\) 0 0
\(331\) −401.574 + 166.337i −1.21321 + 0.502530i −0.895246 0.445572i \(-0.853000\pi\)
−0.317968 + 0.948102i \(0.603000\pi\)
\(332\) −141.161 340.794i −0.425185 1.02649i
\(333\) 182.626 918.123i 0.548426 2.75712i
\(334\) −50.2214 75.1616i −0.150363 0.225035i
\(335\) 0 0
\(336\) −120.855 + 120.855i −0.359687 + 0.359687i
\(337\) 181.045 270.954i 0.537227 0.804016i −0.459213 0.888326i \(-0.651869\pi\)
0.996440 + 0.0843097i \(0.0268685\pi\)
\(338\) 5.11540 + 2.11887i 0.0151343 + 0.00626884i
\(339\) 764.363i 2.25476i
\(340\) 0 0
\(341\) −330.483 −0.969158
\(342\) −28.0236 + 67.6549i −0.0819402 + 0.197821i
\(343\) 166.598 + 111.317i 0.485708 + 0.324540i
\(344\) 55.8746 + 55.8746i 0.162426 + 0.162426i
\(345\) 0 0
\(346\) −17.1114 + 11.4335i −0.0494548 + 0.0330447i
\(347\) 182.204 + 36.2426i 0.525083 + 0.104445i 0.450512 0.892770i \(-0.351241\pi\)
0.0745707 + 0.997216i \(0.476241\pi\)
\(348\) −567.746 + 235.168i −1.63145 + 0.675771i
\(349\) 118.699 + 286.566i 0.340113 + 0.821105i 0.997704 + 0.0677297i \(0.0215756\pi\)
−0.657591 + 0.753375i \(0.728424\pi\)
\(350\) 0 0
\(351\) −430.073 643.649i −1.22528 1.83376i
\(352\) 18.2092 + 91.5437i 0.0517306 + 0.260067i
\(353\) −216.640 + 216.640i −0.613710 + 0.613710i −0.943911 0.330201i \(-0.892884\pi\)
0.330201 + 0.943911i \(0.392884\pi\)
\(354\) 68.3290 102.262i 0.193020 0.288874i
\(355\) 0 0
\(356\) 345.308i 0.969967i
\(357\) −141.063 + 134.599i −0.395134 + 0.377028i
\(358\) 20.2077 0.0564460
\(359\) 19.7227 47.6147i 0.0549378 0.132632i −0.894027 0.448012i \(-0.852132\pi\)
0.948965 + 0.315381i \(0.102132\pi\)
\(360\) 0 0
\(361\) 148.013 + 148.013i 0.410010 + 0.410010i
\(362\) −68.7468 + 13.6746i −0.189908 + 0.0377751i
\(363\) −343.899 + 229.786i −0.947380 + 0.633019i
\(364\) −112.509 22.3794i −0.309090 0.0614817i
\(365\) 0 0
\(366\) −37.7604 91.1616i −0.103170 0.249075i
\(367\) 8.58594 43.1645i 0.0233949 0.117614i −0.967323 0.253546i \(-0.918403\pi\)
0.990718 + 0.135932i \(0.0434029\pi\)
\(368\) 15.5653 + 23.2951i 0.0422970 + 0.0633019i
\(369\) −288.424 1450.01i −0.781637 3.92956i
\(370\) 0 0
\(371\) 32.2780 48.3074i 0.0870026 0.130209i
\(372\) −965.649 399.985i −2.59583 1.07523i
\(373\) 173.156i 0.464226i 0.972689 + 0.232113i \(0.0745639\pi\)
−0.972689 + 0.232113i \(0.925436\pi\)
\(374\) 5.86653 + 33.5904i 0.0156859 + 0.0898139i
\(375\) 0 0
\(376\) −32.4458 + 78.3311i −0.0862920 + 0.208327i
\(377\) −334.657 223.611i −0.887686 0.593133i
\(378\) −26.0585 26.0585i −0.0689379 0.0689379i
\(379\) −262.544 + 52.2233i −0.692729 + 0.137792i −0.528885 0.848694i \(-0.677390\pi\)
−0.163845 + 0.986486i \(0.552390\pi\)
\(380\) 0 0
\(381\) 168.164 + 33.4499i 0.441376 + 0.0877951i
\(382\) 67.4920 27.9561i 0.176681 0.0731835i
\(383\) −252.268 609.029i −0.658664 1.59016i −0.799869 0.600175i \(-0.795098\pi\)
0.141205 0.989980i \(-0.454902\pi\)
\(384\) −76.4678 + 384.430i −0.199135 + 1.00112i
\(385\) 0 0
\(386\) 16.0331 + 80.6038i 0.0415365 + 0.208818i
\(387\) 455.665 455.665i 1.17743 1.17743i
\(388\) −20.7767 + 31.0945i −0.0535482 + 0.0801405i
\(389\) −16.8059 6.96124i −0.0432029 0.0178952i 0.360977 0.932575i \(-0.382443\pi\)
−0.404180 + 0.914679i \(0.632443\pi\)
\(390\) 0 0
\(391\) 17.1287 + 26.9835i 0.0438074 + 0.0690116i
\(392\) 106.607 0.271956
\(393\) −257.491 + 621.638i −0.655193 + 1.58178i
\(394\) 34.9853 + 23.3764i 0.0887952 + 0.0593311i
\(395\) 0 0
\(396\) 495.774 98.6156i 1.25196 0.249029i
\(397\) −305.188 + 203.920i −0.768736 + 0.513653i −0.877012 0.480468i \(-0.840467\pi\)
0.108276 + 0.994121i \(0.465467\pi\)
\(398\) 4.09925 + 0.815392i 0.0102996 + 0.00204872i
\(399\) 130.499 54.0546i 0.327066 0.135475i
\(400\) 0 0
\(401\) −60.1594 + 302.442i −0.150023 + 0.754219i 0.830377 + 0.557202i \(0.188125\pi\)
−0.980400 + 0.197016i \(0.936875\pi\)
\(402\) −79.8200 119.459i −0.198557 0.297162i
\(403\) −133.553 671.418i −0.331398 1.66605i
\(404\) −22.5114 + 22.5114i −0.0557213 + 0.0557213i
\(405\) 0 0
\(406\) −17.7024 7.33256i −0.0436019 0.0180605i
\(407\) 315.787i 0.775890i
\(408\) −47.5808 + 212.982i −0.116620 + 0.522014i
\(409\) 91.6025 0.223967 0.111983 0.993710i \(-0.464280\pi\)
0.111983 + 0.993710i \(0.464280\pi\)
\(410\) 0 0
\(411\) 17.0938 + 11.4217i 0.0415907 + 0.0277900i
\(412\) 283.163 + 283.163i 0.687290 + 0.687290i
\(413\) −159.409 + 31.7084i −0.385978 + 0.0767758i
\(414\) −9.29481 + 6.21059i −0.0224512 + 0.0150014i
\(415\) 0 0
\(416\) −178.624 + 73.9886i −0.429385 + 0.177857i
\(417\) 366.475 + 884.749i 0.878837 + 2.12170i
\(418\) 4.81933 24.2284i 0.0115295 0.0579628i
\(419\) −71.2015 106.561i −0.169932 0.254321i 0.736722 0.676195i \(-0.236372\pi\)
−0.906654 + 0.421874i \(0.861372\pi\)
\(420\) 0 0
\(421\) 157.702 157.702i 0.374588 0.374588i −0.494557 0.869145i \(-0.664670\pi\)
0.869145 + 0.494557i \(0.164670\pi\)
\(422\) −51.5201 + 77.1052i −0.122085 + 0.182714i
\(423\) 638.801 + 264.600i 1.51017 + 0.625532i
\(424\) 65.0286i 0.153369i
\(425\) 0 0
\(426\) 51.5973 0.121120
\(427\) −49.9010 + 120.472i −0.116864 + 0.282135i
\(428\) −42.4208 28.3447i −0.0991141 0.0662259i
\(429\) 341.701 + 341.701i 0.796506 + 0.796506i
\(430\) 0 0
\(431\) −348.736 + 233.018i −0.809133 + 0.540646i −0.889936 0.456085i \(-0.849251\pi\)
0.0808033 + 0.996730i \(0.474251\pi\)
\(432\) 826.858 + 164.472i 1.91402 + 0.380723i
\(433\) 694.649 287.733i 1.60427 0.664511i 0.612259 0.790657i \(-0.290261\pi\)
0.992012 + 0.126147i \(0.0402610\pi\)
\(434\) −12.4715 30.1090i −0.0287363 0.0693755i
\(435\) 0 0
\(436\) 31.3704 + 46.9491i 0.0719505 + 0.107682i
\(437\) −4.51718 22.7094i −0.0103368 0.0519665i
\(438\) 50.1425 50.1425i 0.114481 0.114481i
\(439\) −208.517 + 312.068i −0.474982 + 0.710860i −0.989163 0.146821i \(-0.953096\pi\)
0.514181 + 0.857681i \(0.328096\pi\)
\(440\) 0 0
\(441\) 869.392i 1.97141i
\(442\) −65.8725 + 25.4930i −0.149033 + 0.0576765i
\(443\) 357.099 0.806092 0.403046 0.915180i \(-0.367951\pi\)
0.403046 + 0.915180i \(0.367951\pi\)
\(444\) −382.199 + 922.709i −0.860808 + 2.07817i
\(445\) 0 0
\(446\) 4.78534 + 4.78534i 0.0107295 + 0.0107295i
\(447\) 460.375 91.5743i 1.02992 0.204864i
\(448\) 98.6731 65.9313i 0.220253 0.147168i
\(449\) 154.177 + 30.6676i 0.343378 + 0.0683021i 0.363767 0.931490i \(-0.381491\pi\)
−0.0203891 + 0.999792i \(0.506491\pi\)
\(450\) 0 0
\(451\) 190.855 + 460.764i 0.423181 + 1.02165i
\(452\) −108.999 + 547.975i −0.241148 + 1.21233i
\(453\) 261.562 + 391.456i 0.577400 + 0.864141i
\(454\) 8.06105 + 40.5256i 0.0177556 + 0.0892635i
\(455\) 0 0
\(456\) 87.8352 131.455i 0.192621 0.288278i
\(457\) 158.906 + 65.8210i 0.347716 + 0.144029i 0.549704 0.835359i \(-0.314740\pi\)
−0.201989 + 0.979388i \(0.564740\pi\)
\(458\) 49.0699i 0.107140i
\(459\) 938.605 + 209.688i 2.04489 + 0.456836i
\(460\) 0 0
\(461\) −206.066 + 497.487i −0.446997 + 1.07915i 0.526444 + 0.850210i \(0.323525\pi\)
−0.973441 + 0.228937i \(0.926475\pi\)
\(462\) 19.1280 + 12.7809i 0.0414026 + 0.0276643i
\(463\) −153.031 153.031i −0.330522 0.330522i 0.522263 0.852785i \(-0.325088\pi\)
−0.852785 + 0.522263i \(0.825088\pi\)
\(464\) 429.915 85.5153i 0.926540 0.184300i
\(465\) 0 0
\(466\) 45.9235 + 9.13475i 0.0985483 + 0.0196025i
\(467\) 217.434 90.0641i 0.465597 0.192857i −0.137536 0.990497i \(-0.543918\pi\)
0.603134 + 0.797640i \(0.293918\pi\)
\(468\) 400.701 + 967.377i 0.856198 + 2.06704i
\(469\) −37.0409 + 186.217i −0.0789785 + 0.397052i
\(470\) 0 0
\(471\) −178.127 895.504i −0.378189 1.90128i
\(472\) −128.636 + 128.636i −0.272533 + 0.272533i
\(473\) −120.772 + 180.748i −0.255332 + 0.382132i
\(474\) 62.6646 + 25.9565i 0.132204 + 0.0547606i
\(475\) 0 0
\(476\) 120.322 76.3787i 0.252778 0.160460i
\(477\) −530.317 −1.11178
\(478\) 2.86271 6.91119i 0.00598893 0.0144586i
\(479\) 474.069 + 316.763i 0.989706 + 0.661300i 0.941315 0.337528i \(-0.109591\pi\)
0.0483902 + 0.998829i \(0.484591\pi\)
\(480\) 0 0
\(481\) −641.562 + 127.615i −1.33381 + 0.265311i
\(482\) 64.2911 42.9579i 0.133384 0.0891243i
\(483\) 21.1484 + 4.20667i 0.0437855 + 0.00870947i
\(484\) 279.310 115.694i 0.577086 0.239037i
\(485\) 0 0
\(486\) −9.81042 + 49.3203i −0.0201861 + 0.101482i
\(487\) −367.228 549.596i −0.754062 1.12853i −0.987723 0.156216i \(-0.950070\pi\)
0.233661 0.972318i \(-0.424930\pi\)
\(488\) 28.4736 + 143.146i 0.0583475 + 0.293333i
\(489\) −734.531 + 734.531i −1.50211 + 1.50211i
\(490\) 0 0
\(491\) −573.097 237.385i −1.16720 0.483472i −0.286937 0.957949i \(-0.592637\pi\)
−0.880268 + 0.474478i \(0.842637\pi\)
\(492\) 1577.32i 3.20593i
\(493\) 492.590 86.0302i 0.999168 0.174504i
\(494\) 51.1707 0.103584
\(495\) 0 0
\(496\) 619.897 + 414.202i 1.24979 + 0.835084i
\(497\) −48.2153 48.2153i −0.0970127 0.0970127i
\(498\) −150.291 + 29.8947i −0.301788 + 0.0600294i
\(499\) 137.147 91.6387i 0.274844 0.183645i −0.410508 0.911857i \(-0.634649\pi\)
0.685351 + 0.728212i \(0.259649\pi\)
\(500\) 0 0
\(501\) 1470.42 609.070i 2.93498 1.21571i
\(502\) −9.67181 23.3498i −0.0192666 0.0465136i
\(503\) −59.8169 + 300.720i −0.118920 + 0.597853i 0.874661 + 0.484735i \(0.161084\pi\)
−0.993582 + 0.113118i \(0.963916\pi\)
\(504\) 56.0408 + 83.8710i 0.111192 + 0.166411i
\(505\) 0 0
\(506\) 2.66653 2.66653i 0.00526983 0.00526983i
\(507\) −54.1603 + 81.0566i −0.106825 + 0.159875i
\(508\) −115.787 47.9607i −0.227928 0.0944109i
\(509\) 562.728i 1.10556i −0.833328 0.552778i \(-0.813568\pi\)
0.833328 0.552778i \(-0.186432\pi\)
\(510\) 0 0
\(511\) −93.7117 −0.183389
\(512\) 135.352 326.768i 0.264359 0.638219i
\(513\) −579.318 387.088i −1.12927 0.754557i
\(514\) 12.7889 + 12.7889i 0.0248812 + 0.0248812i
\(515\) 0 0
\(516\) −571.649 + 381.964i −1.10785 + 0.740240i
\(517\) −228.766 45.5044i −0.442488 0.0880163i
\(518\) −28.7701 + 11.9170i −0.0555408 + 0.0230057i
\(519\) −138.661 334.758i −0.267170 0.645006i
\(520\) 0 0
\(521\) 320.835 + 480.163i 0.615806 + 0.921619i 0.999999 0.00163417i \(-0.000520173\pi\)
−0.384193 + 0.923253i \(0.625520\pi\)
\(522\) 34.1209 + 171.537i 0.0653656 + 0.328615i
\(523\) 249.718 249.718i 0.477472 0.477472i −0.426850 0.904322i \(-0.640377\pi\)
0.904322 + 0.426850i \(0.140377\pi\)
\(524\) 273.242 408.936i 0.521454 0.780412i
\(525\) 0 0
\(526\) 136.019i 0.258592i
\(527\) 695.895 + 488.961i 1.32048 + 0.927820i
\(528\) −526.278 −0.996739
\(529\) −201.087 + 485.467i −0.380126 + 0.917706i
\(530\) 0 0
\(531\) 1049.04 + 1049.04i 1.97559 + 1.97559i
\(532\) −101.264 + 20.1426i −0.190345 + 0.0378620i
\(533\) −858.974 + 573.948i −1.61158 + 1.07683i
\(534\) 140.690 + 27.9849i 0.263464 + 0.0524063i
\(535\) 0 0
\(536\) 81.3247 + 196.335i 0.151725 + 0.366297i
\(537\) −69.4112 + 348.954i −0.129257 + 0.649821i
\(538\) −75.7276 113.334i −0.140758 0.210659i
\(539\) 57.2162 + 287.645i 0.106153 + 0.533665i
\(540\) 0 0
\(541\) 487.484 729.572i 0.901080 1.34856i −0.0359647 0.999353i \(-0.511450\pi\)
0.937045 0.349209i \(-0.113550\pi\)
\(542\) −36.6801 15.1934i −0.0676754 0.0280321i
\(543\) 1234.12i 2.27277i
\(544\) 97.0993 219.704i 0.178491 0.403868i
\(545\) 0 0
\(546\) −18.2361 + 44.0260i −0.0333995 + 0.0806336i
\(547\) 380.643 + 254.337i 0.695873 + 0.464968i 0.852525 0.522686i \(-0.175070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(548\) −10.6258 10.6258i −0.0193902 0.0193902i
\(549\) 1167.38 232.206i 2.12637 0.422962i
\(550\) 0 0
\(551\) −355.300 70.6736i −0.644828 0.128264i
\(552\) 22.2975 9.23591i 0.0403940 0.0167317i
\(553\) −34.3020 82.8124i −0.0620290 0.149751i
\(554\) 22.0370 110.787i 0.0397780 0.199977i
\(555\) 0 0
\(556\) −136.561 686.539i −0.245613 1.23478i
\(557\) −374.871 + 374.871i −0.673018 + 0.673018i −0.958411 0.285393i \(-0.907876\pi\)
0.285393 + 0.958411i \(0.407876\pi\)
\(558\) −165.268 + 247.341i −0.296179 + 0.443263i
\(559\) −416.020 172.321i −0.744221 0.308266i
\(560\) 0 0
\(561\) −600.203 14.0741i −1.06988 0.0250876i
\(562\) 107.669 0.191582
\(563\) 125.291 302.480i 0.222542 0.537265i −0.772692 0.634782i \(-0.781090\pi\)
0.995234 + 0.0975170i \(0.0310900\pi\)
\(564\) −613.366 409.838i −1.08753 0.726663i
\(565\) 0 0
\(566\) −74.5253 + 14.8240i −0.131670 + 0.0261908i
\(567\) 225.134 150.430i 0.397062 0.265308i
\(568\) −74.8533 14.8892i −0.131784 0.0262135i
\(569\) −261.743 + 108.417i −0.460005 + 0.190540i −0.600637 0.799522i \(-0.705086\pi\)
0.140633 + 0.990062i \(0.455086\pi\)
\(570\) 0 0
\(571\) −170.415 + 856.733i −0.298450 + 1.50041i 0.482545 + 0.875871i \(0.339712\pi\)
−0.780995 + 0.624538i \(0.785288\pi\)
\(572\) −196.240 293.694i −0.343076 0.513450i
\(573\) 250.928 + 1261.50i 0.437921 + 2.20158i
\(574\) −34.7761 + 34.7761i −0.0605855 + 0.0605855i
\(575\) 0 0
\(576\) −1000.77 414.535i −1.73746 0.719678i
\(577\) 801.517i 1.38911i −0.719439 0.694555i \(-0.755601\pi\)
0.719439 0.694555i \(-0.244399\pi\)
\(578\) 37.3451 79.4108i 0.0646110 0.137389i
\(579\) −1446.97 −2.49908
\(580\) 0 0
\(581\) 168.375 + 112.504i 0.289802 + 0.193639i
\(582\) 10.9851 + 10.9851i 0.0188747 + 0.0188747i
\(583\) 175.460 34.9011i 0.300960 0.0598647i
\(584\) −87.2122 + 58.2734i −0.149336 + 0.0997831i
\(585\) 0 0
\(586\) −0.520591 + 0.215636i −0.000888381 + 0.000367979i
\(587\) −100.076 241.606i −0.170488 0.411594i 0.815423 0.578865i \(-0.196504\pi\)
−0.985911 + 0.167271i \(0.946504\pi\)
\(588\) −180.957 + 909.730i −0.307749 + 1.54716i
\(589\) −342.315 512.310i −0.581179 0.869796i
\(590\) 0 0
\(591\) −523.844 + 523.844i −0.886369 + 0.886369i
\(592\) 395.783 592.332i 0.668553 1.00056i
\(593\) 133.678 + 55.3714i 0.225427 + 0.0933751i 0.492538 0.870291i \(-0.336069\pi\)
−0.267111 + 0.963666i \(0.586069\pi\)
\(594\) 113.475i 0.191036i
\(595\) 0 0
\(596\) −343.103 −0.575676
\(597\) −28.1610 + 67.9867i −0.0471709 + 0.113881i
\(598\) 6.49499 + 4.33981i 0.0108612 + 0.00725721i
\(599\) 2.96833 + 2.96833i 0.00495547 + 0.00495547i 0.709580 0.704625i \(-0.248885\pi\)
−0.704625 + 0.709580i \(0.748885\pi\)
\(600\) 0 0
\(601\) 91.4982 61.1372i 0.152243 0.101726i −0.477115 0.878841i \(-0.658318\pi\)
0.629359 + 0.777115i \(0.283318\pi\)
\(602\) −21.0249 4.18211i −0.0349251 0.00694703i
\(603\) 1601.14 663.214i 2.65529 1.09986i
\(604\) −131.693 317.935i −0.218035 0.526382i
\(605\) 0 0
\(606\) 7.34747 + 10.9963i 0.0121245 + 0.0181457i
\(607\) 113.239 + 569.290i 0.186555 + 0.937875i 0.954693 + 0.297591i \(0.0961832\pi\)
−0.768138 + 0.640284i \(0.778817\pi\)
\(608\) −123.049 + 123.049i −0.202383 + 0.202383i
\(609\) 187.427 280.504i 0.307762 0.460598i
\(610\) 0 0
\(611\) 483.157i 0.790764i
\(612\) −1189.85 525.862i −1.94420 0.859251i
\(613\) −32.4493 −0.0529353 −0.0264676 0.999650i \(-0.508426\pi\)
−0.0264676 + 0.999650i \(0.508426\pi\)
\(614\) −57.3203 + 138.383i −0.0933556 + 0.225380i
\(615\) 0 0
\(616\) −24.0612 24.0612i −0.0390605 0.0390605i
\(617\) 150.267 29.8900i 0.243545 0.0484440i −0.0718085 0.997418i \(-0.522877\pi\)
0.315353 + 0.948974i \(0.397877\pi\)
\(618\) 138.318 92.4214i 0.223816 0.149549i
\(619\) 143.212 + 28.4867i 0.231361 + 0.0460205i 0.309409 0.950929i \(-0.399869\pi\)
−0.0780483 + 0.996950i \(0.524869\pi\)
\(620\) 0 0
\(621\) −40.7024 98.2644i −0.0655434 0.158236i
\(622\) −18.8350 + 94.6897i −0.0302813 + 0.152234i
\(623\) −105.317 157.619i −0.169049 0.253000i
\(624\) −212.677 1069.20i −0.340829 1.71346i
\(625\) 0 0
\(626\) 28.1643 42.1508i 0.0449909 0.0673336i
\(627\) 401.832 + 166.444i 0.640880 + 0.265461i
\(628\) 667.391i 1.06272i
\(629\) 467.218 664.950i 0.742795 1.05715i
\(630\) 0 0
\(631\) 144.897 349.813i 0.229631 0.554379i −0.766501 0.642243i \(-0.778004\pi\)
0.996133 + 0.0878637i \(0.0280040\pi\)
\(632\) −83.4187 55.7386i −0.131992 0.0881940i
\(633\) −1154.52 1154.52i −1.82388 1.82388i
\(634\) 26.8966 5.35007i 0.0424237 0.00843859i
\(635\) 0 0
\(636\) 554.923 + 110.381i 0.872520 + 0.173555i
\(637\) −561.266 + 232.484i −0.881109 + 0.364967i
\(638\) −22.5783 54.5089i −0.0353892 0.0854371i
\(639\) −121.424 + 610.439i −0.190022 + 0.955304i
\(640\) 0 0
\(641\) 45.3274 + 227.876i 0.0707136 + 0.355502i 0.999900 0.0141089i \(-0.00449115\pi\)
−0.929187 + 0.369610i \(0.879491\pi\)
\(642\) −14.9865 + 14.9865i −0.0233434 + 0.0233434i
\(643\) −143.286 + 214.442i −0.222839 + 0.333502i −0.925997 0.377532i \(-0.876773\pi\)
0.703158 + 0.711034i \(0.251773\pi\)
\(644\) −14.5615 6.03156i −0.0226110 0.00936577i
\(645\) 0 0
\(646\) −45.9949 + 43.8872i −0.0711995 + 0.0679369i
\(647\) 175.220 0.270820 0.135410 0.990790i \(-0.456765\pi\)
0.135410 + 0.990790i \(0.456765\pi\)
\(648\) 115.977 279.993i 0.178977 0.432088i
\(649\) −416.123 278.044i −0.641175 0.428419i
\(650\) 0 0
\(651\) 562.772 111.942i 0.864473 0.171954i
\(652\) 631.333 421.843i 0.968302 0.646999i
\(653\) 852.370 + 169.547i 1.30531 + 0.259643i 0.798282 0.602284i \(-0.205743\pi\)
0.507032 + 0.861927i \(0.330743\pi\)
\(654\) 21.6710 8.97641i 0.0331360 0.0137254i
\(655\) 0 0
\(656\) 219.494 1103.47i 0.334595 1.68212i
\(657\) 475.227 + 711.228i 0.723329 + 1.08254i
\(658\) −4.48731 22.5592i −0.00681961 0.0342845i
\(659\) −795.445 + 795.445i −1.20705 + 1.20705i −0.235070 + 0.971978i \(0.575532\pi\)
−0.971978 + 0.235070i \(0.924468\pi\)
\(660\) 0 0
\(661\) 66.2141 + 27.4268i 0.100173 + 0.0414929i 0.432207 0.901774i \(-0.357735\pi\)
−0.332034 + 0.943267i \(0.607735\pi\)
\(662\) 131.983i 0.199370i
\(663\) −213.958 1225.08i −0.322712 1.84778i
\(664\) 226.656 0.341350
\(665\) 0 0
\(666\) 236.342 + 157.919i 0.354868 + 0.237115i
\(667\) −39.1036 39.1036i −0.0586261 0.0586261i
\(668\) −1141.01 + 226.960i −1.70809 + 0.339761i
\(669\) −99.0722 + 66.1979i −0.148090 + 0.0989506i
\(670\) 0 0
\(671\) −370.955 + 153.654i −0.552838 + 0.228993i
\(672\) −62.0160 149.720i −0.0922857 0.222797i
\(673\) −59.5700 + 299.478i −0.0885141 + 0.444990i 0.910958 + 0.412499i \(0.135344\pi\)
−0.999472 + 0.0324911i \(0.989656\pi\)
\(674\) 54.9738 + 82.2741i 0.0815635 + 0.122068i
\(675\) 0 0
\(676\) 50.3864 50.3864i 0.0745361 0.0745361i
\(677\) −231.305 + 346.173i −0.341662 + 0.511333i −0.962018 0.272987i \(-0.911988\pi\)
0.620356 + 0.784321i \(0.286988\pi\)
\(678\) 214.429 + 88.8194i 0.316267 + 0.131002i
\(679\) 20.5301i 0.0302358i
\(680\) 0 0
\(681\) −727.500 −1.06828
\(682\) 38.4022 92.7112i 0.0563083 0.135940i
\(683\) 208.782 + 139.504i 0.305684 + 0.204251i 0.698945 0.715175i \(-0.253653\pi\)
−0.393261 + 0.919427i \(0.628653\pi\)
\(684\) 666.397 + 666.397i 0.974264 + 0.974264i
\(685\) 0 0
\(686\) −50.5868 + 33.8010i −0.0737417 + 0.0492726i
\(687\) −847.358 168.550i −1.23342 0.245342i
\(688\) 453.073 187.669i 0.658536 0.272774i
\(689\) 141.812 + 342.365i 0.205823 + 0.496901i
\(690\) 0 0
\(691\) −247.207 369.971i −0.357752 0.535414i 0.608318 0.793693i \(-0.291844\pi\)
−0.966070 + 0.258279i \(0.916844\pi\)
\(692\) 51.6700 + 259.762i 0.0746676 + 0.375379i
\(693\) −196.223 + 196.223i −0.283150 + 0.283150i
\(694\) −31.3394 + 46.9027i −0.0451576 + 0.0675832i
\(695\) 0 0
\(696\) 377.599i 0.542527i
\(697\) 279.836 1252.60i 0.401486 1.79714i
\(698\) −94.1839 −0.134934
\(699\) −315.485 + 761.647i −0.451337 + 1.08962i
\(700\) 0 0
\(701\) 532.113 + 532.113i 0.759077 + 0.759077i 0.976154 0.217078i \(-0.0696525\pi\)
−0.217078 + 0.976154i \(0.569653\pi\)
\(702\) 230.539 45.8571i 0.328404 0.0653235i
\(703\) −489.529 + 327.093i −0.696343 + 0.465281i
\(704\) 358.396 + 71.2893i 0.509085 + 0.101263i
\(705\) 0 0
\(706\) −35.6009 85.9481i −0.0504262 0.121740i
\(707\) 3.40963 17.1414i 0.00482268 0.0242452i
\(708\) −879.365 1316.06i −1.24204 1.85884i
\(709\) −82.6803 415.662i −0.116615 0.586265i −0.994263 0.106959i \(-0.965888\pi\)
0.877648 0.479306i \(-0.159112\pi\)
\(710\) 0 0
\(711\) −454.556 + 680.291i −0.639319 + 0.956809i
\(712\) −196.026 81.1967i −0.275318 0.114040i
\(713\) 94.0582i 0.131919i
\(714\) −21.3678 55.2132i −0.0299269 0.0773295i
\(715\) 0 0
\(716\) 99.5222 240.268i 0.138998 0.335570i
\(717\) 109.512 + 73.1735i 0.152736 + 0.102055i
\(718\) 11.0657 + 11.0657i 0.0154118 + 0.0154118i
\(719\) 45.5078 9.05206i 0.0632932 0.0125898i −0.163342 0.986569i \(-0.552227\pi\)
0.226635 + 0.973980i \(0.427227\pi\)
\(720\) 0 0
\(721\) −215.616 42.8886i −0.299051 0.0594849i
\(722\) −58.7218 + 24.3234i −0.0813322 + 0.0336889i
\(723\) 520.981 + 1257.76i 0.720582 + 1.73964i
\(724\) −175.986 + 884.742i −0.243075 + 1.22202i
\(725\) 0 0
\(726\) −24.5012 123.176i −0.0337483 0.169664i
\(727\) 350.335 350.335i 0.481892 0.481892i −0.423844 0.905735i \(-0.639319\pi\)
0.905735 + 0.423844i \(0.139319\pi\)
\(728\) 39.1600 58.6070i 0.0537912 0.0805042i
\(729\) 231.476 + 95.8805i 0.317525 + 0.131523i
\(730\) 0 0
\(731\) 521.733 201.914i 0.713725 0.276216i
\(732\) −1269.87 −1.73480
\(733\) 380.396 918.356i 0.518957 1.25287i −0.419587 0.907715i \(-0.637825\pi\)
0.938544 0.345159i \(-0.112175\pi\)
\(734\) 11.1114 + 7.42437i 0.0151381 + 0.0101149i
\(735\) 0 0
\(736\) −26.0541 + 5.18249i −0.0353996 + 0.00704143i
\(737\) −486.103 + 324.804i −0.659570 + 0.440711i
\(738\) 440.289 + 87.5789i 0.596598 + 0.118671i
\(739\) 144.114 59.6940i 0.195012 0.0807768i −0.283040 0.959108i \(-0.591343\pi\)
0.478052 + 0.878331i \(0.341343\pi\)
\(740\) 0 0
\(741\) −175.766 + 883.635i −0.237201 + 1.19249i
\(742\) 9.80109 + 14.6684i 0.0132090 + 0.0197687i
\(743\) 161.000 + 809.400i 0.216689 + 1.08937i 0.923979 + 0.382444i \(0.124917\pi\)
−0.707290 + 0.706923i \(0.750083\pi\)
\(744\) 454.130 454.130i 0.610390 0.610390i
\(745\) 0 0
\(746\) −48.5760 20.1208i −0.0651152 0.0269716i
\(747\) 1848.41i 2.47445i
\(748\) 428.280 + 95.6792i 0.572567 + 0.127913i
\(749\) 28.0083 0.0373943
\(750\) 0 0
\(751\) −17.3029 11.5614i −0.0230398 0.0153947i 0.543997 0.839087i \(-0.316910\pi\)
−0.567037 + 0.823692i \(0.691910\pi\)
\(752\) 372.072 + 372.072i 0.494777 + 0.494777i
\(753\) 436.435 86.8123i 0.579595 0.115289i
\(754\) 101.618 67.8987i 0.134771 0.0900513i
\(755\) 0 0
\(756\) −438.171 + 181.497i −0.579592 + 0.240075i
\(757\) −112.139 270.728i −0.148136 0.357632i 0.832341 0.554263i \(-0.187000\pi\)
−0.980478 + 0.196631i \(0.937000\pi\)
\(758\) 15.8574 79.7207i 0.0209201 0.105172i
\(759\) 36.8874 + 55.2059i 0.0486000 + 0.0727351i
\(760\) 0 0
\(761\) 526.662 526.662i 0.692066 0.692066i −0.270620 0.962686i \(-0.587229\pi\)
0.962686 + 0.270620i \(0.0872288\pi\)
\(762\) −28.9246 + 43.2887i −0.0379587 + 0.0568093i
\(763\) −28.6385 11.8625i −0.0375341 0.0155471i
\(764\) 940.158i 1.23057i
\(765\) 0 0
\(766\) 200.166 0.261314
\(767\) 396.721 957.768i 0.517237 1.24872i
\(768\) 884.639 + 591.097i 1.15187 + 0.769658i
\(769\) 777.888 + 777.888i 1.01156 + 1.01156i 0.999932 + 0.0116255i \(0.00370060\pi\)
0.0116255 + 0.999932i \(0.496299\pi\)
\(770\) 0 0
\(771\) −264.773 + 176.915i −0.343415 + 0.229462i
\(772\) 1037.34 + 206.339i 1.34370 + 0.267278i
\(773\) 596.572 247.108i 0.771762 0.319674i 0.0381759 0.999271i \(-0.487845\pi\)
0.733586 + 0.679597i \(0.237845\pi\)
\(774\) 74.8804 + 180.777i 0.0967447 + 0.233562i
\(775\) 0 0
\(776\) −12.7664 19.1062i −0.0164515 0.0246214i
\(777\) −106.964 537.747i −0.137663 0.692081i
\(778\) 3.90571 3.90571i 0.00502020 0.00502020i
\(779\) −516.583 + 773.121i −0.663136 + 0.992453i
\(780\) 0 0
\(781\) 209.960i 0.268834i
\(782\) −9.56012 + 1.66966i −0.0122252 + 0.00213512i
\(783\) −1664.07 −2.12525
\(784\) 253.191 611.256i 0.322947 0.779663i
\(785\) 0 0
\(786\) −144.469 144.469i −0.183803 0.183803i
\(787\) −1462.32 + 290.874i −1.85810 + 0.369599i −0.991575 0.129537i \(-0.958651\pi\)
−0.866524 + 0.499135i \(0.833651\pi\)
\(788\) 450.246 300.845i 0.571378 0.381783i
\(789\) 2348.83 + 467.212i 2.97697 + 0.592157i
\(790\) 0 0
\(791\) −117.376 283.372i −0.148390 0.358245i
\(792\) −60.5951 + 304.632i −0.0765089 + 0.384636i
\(793\) −462.077 691.547i −0.582695 0.872065i
\(794\) −21.7433 109.311i −0.0273845 0.137671i
\(795\) 0 0
\(796\) 29.8837 44.7241i 0.0375423 0.0561860i
\(797\) 471.706 + 195.387i 0.591852 + 0.245153i 0.658447 0.752627i \(-0.271214\pi\)
−0.0665952 + 0.997780i \(0.521214\pi\)
\(798\) 42.8905i 0.0537475i
\(799\) 414.386 + 434.286i 0.518630 + 0.543537i
\(800\) 0 0
\(801\) −662.170 + 1598.62i −0.826679 + 1.99578i
\(802\) −77.8542 52.0205i −0.0970751 0.0648635i
\(803\) −204.040 204.040i −0.254097 0.254097i
\(804\) −1813.47 + 360.722i −2.25556 + 0.448659i
\(805\) 0 0
\(806\) 203.874 + 40.5530i 0.252945 + 0.0503139i
\(807\) 2217.22 918.401i 2.74748 1.13804i
\(808\) −7.48598 18.0727i −0.00926482 0.0223673i
\(809\) 49.4862 248.784i 0.0611696 0.307520i −0.938073 0.346438i \(-0.887391\pi\)
0.999242 + 0.0389179i \(0.0123911\pi\)
\(810\) 0 0
\(811\) 93.1315 + 468.204i 0.114835 + 0.577316i 0.994763 + 0.102209i \(0.0325909\pi\)
−0.879928 + 0.475108i \(0.842409\pi\)
\(812\) −174.367 + 174.367i −0.214738 + 0.214738i
\(813\) 388.357 581.217i 0.477684 0.714904i
\(814\) −88.5886 36.6946i −0.108831 0.0450794i
\(815\) 0 0
\(816\) 1108.18 + 778.648i 1.35806 + 0.954225i
\(817\) −405.290 −0.496071
\(818\) −10.6442 + 25.6975i −0.0130125 + 0.0314150i
\(819\) −477.949 319.355i −0.583576 0.389933i
\(820\) 0 0
\(821\) 745.074 148.204i 0.907520 0.180517i 0.280805 0.959765i \(-0.409399\pi\)
0.626716 + 0.779248i \(0.284399\pi\)
\(822\) −5.19046 + 3.46816i −0.00631443 + 0.00421917i
\(823\) −511.327 101.709i −0.621296 0.123584i −0.125602 0.992081i \(-0.540086\pi\)
−0.495694 + 0.868497i \(0.665086\pi\)
\(824\) −227.331 + 94.1637i −0.275887 + 0.114276i
\(825\) 0 0
\(826\) 9.62814 48.4040i 0.0116563 0.0586004i
\(827\) −11.9567 17.8944i −0.0144579 0.0216378i 0.824170 0.566342i \(-0.191642\pi\)
−0.838628 + 0.544704i \(0.816642\pi\)
\(828\) 28.0669 + 141.102i 0.0338972 + 0.170413i
\(829\) 459.219 459.219i 0.553943 0.553943i −0.373633 0.927577i \(-0.621888\pi\)
0.927577 + 0.373633i \(0.121888\pi\)
\(830\) 0 0
\(831\) 1837.43 + 761.086i 2.21110 + 0.915868i
\(832\) 756.936i 0.909778i
\(833\) 305.102 690.346i 0.366269 0.828746i
\(834\) −290.786 −0.348664
\(835\) 0 0
\(836\) −264.339 176.626i −0.316195 0.211275i
\(837\) −2001.34 2001.34i −2.39109 2.39109i
\(838\) 38.1674 7.59196i 0.0455458 0.00905962i
\(839\) 659.294 440.526i 0.785810 0.525061i −0.0967235 0.995311i \(-0.530836\pi\)
0.882533 + 0.470250i \(0.155836\pi\)
\(840\) 0 0
\(841\) −22.3682 + 9.26521i −0.0265971 + 0.0110169i
\(842\) 25.9155 + 62.5655i 0.0307785 + 0.0743058i
\(843\) −369.831 + 1859.27i −0.438708 + 2.20553i
\(844\) 663.041 + 992.311i 0.785594 + 1.17572i
\(845\) 0 0
\(846\) −148.458 + 148.458i −0.175482 + 0.175482i
\(847\) −92.2071 + 137.998i −0.108863 + 0.162925i
\(848\) −372.858 154.443i −0.439691 0.182126i
\(849\) 1337.85i 1.57579i
\(850\) 0 0
\(851\) −89.8757 −0.105612
\(852\) 254.115 613.489i 0.298257 0.720057i
\(853\) −1340.48 895.677i −1.57148 1.05003i −0.967447 0.253075i \(-0.918558\pi\)
−0.604037 0.796956i \(-0.706442\pi\)
\(854\) −27.9977 27.9977i −0.0327842 0.0327842i
\(855\) 0 0
\(856\) 26.0658 17.4166i 0.0304507 0.0203465i
\(857\) −717.863 142.792i −0.837647 0.166618i −0.242415 0.970173i \(-0.577940\pi\)
−0.595232 + 0.803554i \(0.702940\pi\)
\(858\) −135.564 + 56.1525i −0.158000 + 0.0654458i
\(859\) −313.269 756.298i −0.364690 0.880440i −0.994601 0.103773i \(-0.966909\pi\)
0.629911 0.776667i \(-0.283091\pi\)
\(860\) 0 0
\(861\) −481.074 719.978i −0.558739 0.836212i
\(862\) −24.8459 124.909i −0.0288236 0.144906i
\(863\) 776.208 776.208i 0.899430 0.899430i −0.0959560 0.995386i \(-0.530591\pi\)
0.995386 + 0.0959560i \(0.0305908\pi\)
\(864\) −444.100 + 664.643i −0.514005 + 0.769262i
\(865\) 0 0
\(866\) 228.307i 0.263633i
\(867\) 1243.02 + 917.657i 1.43370 + 1.05843i
\(868\) −419.416 −0.483198
\(869\) 105.622 254.995i 0.121545 0.293435i
\(870\) 0 0
\(871\) −856.322 856.322i −0.983148 0.983148i
\(872\) −34.0288 + 6.76875i −0.0390239 + 0.00776233i
\(873\) −155.814 + 104.112i −0.178481 + 0.119257i
\(874\) 6.89562 + 1.37162i 0.00788973 + 0.00156936i
\(875\) 0 0
\(876\) −349.241 843.142i −0.398677 0.962490i
\(877\) 43.1465 216.912i 0.0491979 0.247334i −0.948359 0.317200i \(-0.897257\pi\)
0.997556 + 0.0698660i \(0.0222572\pi\)
\(878\) −63.3154 94.7582i −0.0721132 0.107925i
\(879\) −1.93551 9.73045i −0.00220194 0.0110699i
\(880\) 0 0
\(881\) −659.231 + 986.609i −0.748276 + 1.11987i 0.240527 + 0.970643i \(0.422680\pi\)
−0.988802 + 0.149231i \(0.952320\pi\)
\(882\) 243.893 + 101.024i 0.276523 + 0.114539i
\(883\) 1451.19i 1.64348i 0.569861 + 0.821741i \(0.306997\pi\)
−0.569861 + 0.821741i \(0.693003\pi\)
\(884\) −21.3098 + 908.772i −0.0241061 + 1.02802i
\(885\) 0 0
\(886\) −41.4950 + 100.178i −0.0468341 + 0.113068i
\(887\) −895.845 598.585i −1.00997 0.674842i −0.0636182 0.997974i \(-0.520264\pi\)
−0.946354 + 0.323133i \(0.895264\pi\)
\(888\) −433.936 433.936i −0.488667 0.488667i
\(889\) 67.4799 13.4226i 0.0759054 0.0150985i
\(890\) 0 0
\(891\) 817.720 + 162.655i 0.917756 + 0.182553i
\(892\) 80.4651 33.3297i 0.0902075 0.0373652i
\(893\) −166.416 401.764i −0.186356 0.449904i
\(894\) −27.8062 + 139.791i −0.0311031 + 0.156366i
\(895\) 0 0
\(896\) 30.6845 + 154.262i 0.0342461 + 0.172167i
\(897\) −97.2511 + 97.2511i −0.108418 + 0.108418i
\(898\) −26.5187 + 39.6880i −0.0295308 + 0.0441960i
\(899\) −1359.57 563.153i −1.51232 0.626422i
\(900\) 0 0
\(901\) −421.101 186.108i −0.467371 0.206557i
\(902\) −151.437 −0.167890
\(903\) 144.437 348.701i 0.159952 0.386158i
\(904\) −285.446 190.729i −0.315759 0.210984i
\(905\) 0 0
\(906\) −140.210 + 27.8895i −0.154757 + 0.0307831i
\(907\) −1304.29 + 871.497i −1.43802 + 0.960857i −0.440002 + 0.897997i \(0.645022\pi\)
−0.998022 + 0.0628601i \(0.979978\pi\)
\(908\) 521.547 + 103.742i 0.574391 + 0.114254i
\(909\) −147.386 + 61.0492i −0.162141 + 0.0671608i
\(910\) 0 0
\(911\) 195.704 983.872i 0.214824 1.07999i −0.711334 0.702854i \(-0.751909\pi\)
0.926158 0.377137i \(-0.123091\pi\)
\(912\) −545.120 815.830i −0.597719 0.894550i
\(913\) 121.647 + 611.562i 0.133239 + 0.669838i
\(914\) −36.9299 + 36.9299i −0.0404047 + 0.0404047i
\(915\) 0 0
\(916\) 583.438 + 241.668i 0.636941 + 0.263830i
\(917\) 270.000i 0.294438i
\(918\) −167.891 + 238.944i −0.182887 + 0.260287i
\(919\) −806.204 −0.877263 −0.438631 0.898667i \(-0.644537\pi\)
−0.438631 + 0.898667i \(0.644537\pi\)
\(920\) 0 0
\(921\) −2192.77 1465.16i −2.38086 1.59084i
\(922\) −115.616 115.616i −0.125397 0.125397i
\(923\) 426.560 84.8481i 0.462145 0.0919264i
\(924\) 246.169 164.485i 0.266417 0.178014i
\(925\) 0 0
\(926\) 60.7127 25.1480i 0.0655644 0.0271577i
\(927\) 767.918 + 1853.92i 0.828390 + 1.99991i
\(928\) −81.0828 + 407.631i −0.0873737 + 0.439257i
\(929\) −523.957 784.157i −0.564001 0.844087i 0.434394 0.900723i \(-0.356963\pi\)
−0.998395 + 0.0566357i \(0.981963\pi\)
\(930\) 0 0
\(931\) −386.639 + 386.639i −0.415295 + 0.415295i
\(932\) 334.783 501.039i 0.359210 0.537595i
\(933\) −1570.44 650.498i −1.68322 0.697211i
\(934\) 71.4628i 0.0765127i
\(935\) 0 0
\(936\) −643.387 −0.687379
\(937\) −409.745 + 989.212i −0.437295 + 1.05572i 0.539585 + 0.841931i \(0.318581\pi\)
−0.976879 + 0.213791i \(0.931419\pi\)
\(938\) −47.9358 32.0297i −0.0511043 0.0341468i
\(939\) 631.135 + 631.135i 0.672135 + 0.672135i
\(940\) 0 0
\(941\) 1352.29 903.568i 1.43707 0.960221i 0.438979 0.898497i \(-0.355340\pi\)
0.998093 0.0617240i \(-0.0196599\pi\)
\(942\) 271.917 + 54.0876i 0.288659 + 0.0574178i
\(943\) −131.137 + 54.3189i −0.139064 + 0.0576023i
\(944\) 432.055 + 1043.07i 0.457685 + 1.10495i
\(945\) 0 0
\(946\) −36.6721 54.8836i −0.0387654 0.0580165i
\(947\) 197.127 + 991.024i 0.208159 + 1.04649i 0.933631 + 0.358236i \(0.116622\pi\)
−0.725472 + 0.688252i \(0.758378\pi\)
\(948\) 617.243 617.243i 0.651100 0.651100i
\(949\) 332.077 496.989i 0.349924 0.523698i
\(950\) 0 0
\(951\) 482.838i 0.507716i
\(952\) 15.0661 + 86.2650i 0.0158257 + 0.0906145i
\(953\) 178.213 0.187002 0.0935009 0.995619i \(-0.470194\pi\)
0.0935009 + 0.995619i \(0.470194\pi\)
\(954\) 61.6231 148.771i 0.0645944 0.155945i
\(955\) 0 0
\(956\) −68.0748 68.0748i −0.0712080 0.0712080i
\(957\) 1018.83 202.659i 1.06461 0.211765i
\(958\) −143.949 + 96.1839i −0.150260 + 0.100401i
\(959\) 8.09108 + 1.60942i 0.00843700 + 0.00167822i
\(960\) 0 0
\(961\) −590.078 1424.58i −0.614025 1.48239i
\(962\) 38.7497 194.808i 0.0402804 0.202503i
\(963\) −142.035 212.570i −0.147492 0.220737i
\(964\) −194.135 975.983i −0.201385 1.01243i
\(965\) 0 0
\(966\) −3.63756 + 5.44399i −0.00376559 + 0.00563560i
\(967\) 644.262 + 266.862i 0.666248 + 0.275969i 0.690065 0.723747i \(-0.257582\pi\)
−0.0238171 + 0.999716i \(0.507582\pi\)
\(968\) 185.764i 0.191905i
\(969\) −599.874 945.004i −0.619065 0.975237i
\(970\) 0 0
\(971\) 555.901 1342.06i 0.572503 1.38214i −0.326914 0.945054i \(-0.606009\pi\)
0.899417 0.437091i \(-0.143991\pi\)
\(972\) 538.099 + 359.546i 0.553600 + 0.369904i
\(973\) 271.726 + 271.726i 0.279266 + 0.279266i
\(974\) 196.852 39.1562i 0.202107 0.0402015i
\(975\) 0 0
\(976\) 888.390 + 176.712i 0.910236 + 0.181057i
\(977\) 947.460 392.451i 0.969765 0.401690i 0.159140 0.987256i \(-0.449128\pi\)
0.810625 + 0.585566i \(0.199128\pi\)
\(978\) −120.707 291.413i −0.123422 0.297968i
\(979\) 113.876 572.495i 0.116319 0.584775i
\(980\) 0 0
\(981\) 55.2001 + 277.510i 0.0562692 + 0.282884i
\(982\) 133.188 133.188i 0.135630 0.135630i
\(983\) 269.449 403.258i 0.274108 0.410232i −0.668718 0.743516i \(-0.733157\pi\)
0.942827 + 0.333284i \(0.108157\pi\)
\(984\) −895.417 370.894i −0.909977 0.376925i
\(985\) 0 0
\(986\) −33.1049 + 148.184i −0.0335749 + 0.150288i
\(987\) 404.974 0.410308
\(988\) 252.014 608.417i 0.255075 0.615806i
\(989\) −51.4426 34.3728i −0.0520147 0.0347551i
\(990\) 0 0
\(991\) 1266.33 251.888i 1.27783 0.254175i 0.490896 0.871218i \(-0.336669\pi\)
0.786930 + 0.617043i \(0.211669\pi\)
\(992\) −587.766 + 392.732i −0.592506 + 0.395900i
\(993\) 2279.13 + 453.348i 2.29520 + 0.456544i
\(994\) 19.1286 7.92333i 0.0192441 0.00797116i
\(995\) 0 0
\(996\) −384.731 + 1934.18i −0.386276 + 1.94194i
\(997\) 531.311 + 795.163i 0.532910 + 0.797556i 0.996056 0.0887260i \(-0.0282796\pi\)
−0.463146 + 0.886282i \(0.653280\pi\)
\(998\) 9.77110 + 49.1227i 0.00979068 + 0.0492211i
\(999\) −1912.35 + 1912.35i −1.91426 + 1.91426i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.f.401.7 128
5.2 odd 4 85.3.p.a.44.7 yes 128
5.3 odd 4 85.3.p.a.44.10 yes 128
5.4 even 2 inner 425.3.u.f.401.10 128
17.12 odd 16 inner 425.3.u.f.301.7 128
85.12 even 16 85.3.p.a.29.10 yes 128
85.29 odd 16 inner 425.3.u.f.301.10 128
85.63 even 16 85.3.p.a.29.7 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.p.a.29.7 128 85.63 even 16
85.3.p.a.29.10 yes 128 85.12 even 16
85.3.p.a.44.7 yes 128 5.2 odd 4
85.3.p.a.44.10 yes 128 5.3 odd 4
425.3.u.f.301.7 128 17.12 odd 16 inner
425.3.u.f.301.10 128 85.29 odd 16 inner
425.3.u.f.401.7 128 1.1 even 1 trivial
425.3.u.f.401.10 128 5.4 even 2 inner