Properties

Label 425.3.u.f.401.16
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $128$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [128,0,0,16,0,-16,0,0,16,0,-96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(16\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.16
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.f.301.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42932 - 3.45068i) q^{2} +(-2.42313 - 1.61908i) q^{3} +(-7.03579 - 7.03579i) q^{4} +(-9.05036 + 6.04726i) q^{6} +(-8.53763 - 1.69824i) q^{7} +(-20.5319 + 8.50460i) q^{8} +(-0.194021 - 0.468407i) q^{9} +(1.94402 + 2.90944i) q^{11} +(5.65711 + 28.4402i) q^{12} +(11.5538 - 11.5538i) q^{13} +(-18.0631 + 27.0333i) q^{14} +43.2043i q^{16} +(10.9247 - 13.0250i) q^{17} -1.89364 q^{18} +(-6.12848 + 14.7955i) q^{19} +(17.9382 + 17.9382i) q^{21} +(12.8182 - 2.54969i) q^{22} +(15.7311 - 10.5112i) q^{23} +(63.5212 + 12.6352i) q^{24} +(-23.3545 - 56.3826i) q^{26} +(-5.40518 + 27.1737i) q^{27} +(48.1206 + 72.0175i) q^{28} +(-0.161105 - 0.809929i) q^{29} +(-27.1672 + 40.6586i) q^{31} +(66.9565 + 27.7343i) q^{32} -10.1975i q^{33} +(-29.3301 - 56.3145i) q^{34} +(-1.93053 + 4.66071i) q^{36} +(-12.7024 - 8.48749i) q^{37} +(42.2948 + 42.2948i) q^{38} +(-46.7031 + 9.28982i) q^{39} +(7.15520 + 1.42326i) q^{41} +(87.5383 - 36.2596i) q^{42} +(-29.6179 - 71.5040i) q^{43} +(6.79245 - 34.1480i) q^{44} +(-13.7859 - 69.3066i) q^{46} +(-6.97451 + 6.97451i) q^{47} +(69.9515 - 104.690i) q^{48} +(24.7371 + 10.2464i) q^{49} +(-47.5606 + 13.8732i) q^{51} -162.581 q^{52} +(-20.2772 + 48.9536i) q^{53} +(86.0418 + 57.4913i) q^{54} +(189.737 - 37.7410i) q^{56} +(38.8052 - 25.9288i) q^{57} +(-3.02507 - 0.601725i) q^{58} +(-18.5654 + 7.69002i) q^{59} +(6.09486 - 30.6409i) q^{61} +(101.469 + 151.859i) q^{62} +(0.861009 + 4.32858i) q^{63} +(69.2039 - 69.2039i) q^{64} +(-35.1883 - 14.5755i) q^{66} -32.7490i q^{67} +(-168.505 + 14.7769i) q^{68} -55.1369 q^{69} +(47.1234 + 31.4868i) q^{71} +(7.96724 + 7.96724i) q^{72} +(-132.555 + 26.3668i) q^{73} +(-47.4434 + 31.7007i) q^{74} +(147.217 - 60.9791i) q^{76} +(-11.6564 - 28.1411i) q^{77} +(-34.6974 + 174.435i) q^{78} +(33.2990 + 49.8354i) q^{79} +(53.8674 - 53.8674i) q^{81} +(15.1382 - 22.6560i) q^{82} +(90.0810 + 37.3128i) q^{83} -252.419i q^{84} -289.071 q^{86} +(-0.920966 + 2.22341i) q^{87} +(-64.6582 - 43.2032i) q^{88} +(-65.9279 - 65.9279i) q^{89} +(-118.264 + 79.0212i) q^{91} +(-184.635 - 36.7262i) q^{92} +(131.659 - 54.5351i) q^{93} +(14.0980 + 34.0355i) q^{94} +(-117.340 - 175.612i) q^{96} +(3.04857 + 15.3262i) q^{97} +(70.7142 - 70.7142i) q^{98} +(0.985622 - 1.47509i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 128 q + 16 q^{4} - 16 q^{6} + 16 q^{9} - 96 q^{11} + 16 q^{14} + 16 q^{19} + 224 q^{21} + 160 q^{24} + 288 q^{26} + 176 q^{29} + 48 q^{31} - 48 q^{34} - 144 q^{36} - 336 q^{41} + 48 q^{44} - 224 q^{46}+ \cdots + 1664 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42932 3.45068i 0.714659 1.72534i 0.0266401 0.999645i \(-0.491519\pi\)
0.688018 0.725693i \(-0.258481\pi\)
\(3\) −2.42313 1.61908i −0.807710 0.539695i 0.0817791 0.996650i \(-0.473940\pi\)
−0.889489 + 0.456956i \(0.848940\pi\)
\(4\) −7.03579 7.03579i −1.75895 1.75895i
\(5\) 0 0
\(6\) −9.05036 + 6.04726i −1.50839 + 1.00788i
\(7\) −8.53763 1.69824i −1.21966 0.242606i −0.457037 0.889447i \(-0.651089\pi\)
−0.762624 + 0.646842i \(0.776089\pi\)
\(8\) −20.5319 + 8.50460i −2.56649 + 1.06308i
\(9\) −0.194021 0.468407i −0.0215579 0.0520453i
\(10\) 0 0
\(11\) 1.94402 + 2.90944i 0.176730 + 0.264494i 0.909250 0.416251i \(-0.136656\pi\)
−0.732520 + 0.680745i \(0.761656\pi\)
\(12\) 5.65711 + 28.4402i 0.471426 + 2.37002i
\(13\) 11.5538 11.5538i 0.888756 0.888756i −0.105647 0.994404i \(-0.533691\pi\)
0.994404 + 0.105647i \(0.0336914\pi\)
\(14\) −18.0631 + 27.0333i −1.29022 + 1.93095i
\(15\) 0 0
\(16\) 43.2043i 2.70027i
\(17\) 10.9247 13.0250i 0.642631 0.766176i
\(18\) −1.89364 −0.105202
\(19\) −6.12848 + 14.7955i −0.322551 + 0.778708i 0.676553 + 0.736394i \(0.263473\pi\)
−0.999104 + 0.0423141i \(0.986527\pi\)
\(20\) 0 0
\(21\) 17.9382 + 17.9382i 0.854200 + 0.854200i
\(22\) 12.8182 2.54969i 0.582644 0.115895i
\(23\) 15.7311 10.5112i 0.683959 0.457007i −0.164424 0.986390i \(-0.552576\pi\)
0.848383 + 0.529383i \(0.177576\pi\)
\(24\) 63.5212 + 12.6352i 2.64672 + 0.526465i
\(25\) 0 0
\(26\) −23.3545 56.3826i −0.898248 2.16856i
\(27\) −5.40518 + 27.1737i −0.200192 + 1.00643i
\(28\) 48.1206 + 72.0175i 1.71859 + 2.57205i
\(29\) −0.161105 0.809929i −0.00555534 0.0279286i 0.977908 0.209035i \(-0.0670322\pi\)
−0.983464 + 0.181106i \(0.942032\pi\)
\(30\) 0 0
\(31\) −27.1672 + 40.6586i −0.876361 + 1.31157i 0.0729847 + 0.997333i \(0.476748\pi\)
−0.949346 + 0.314234i \(0.898252\pi\)
\(32\) 66.9565 + 27.7343i 2.09239 + 0.866697i
\(33\) 10.1975i 0.309015i
\(34\) −29.3301 56.3145i −0.862650 1.65631i
\(35\) 0 0
\(36\) −1.93053 + 4.66071i −0.0536258 + 0.129464i
\(37\) −12.7024 8.48749i −0.343309 0.229392i 0.371948 0.928254i \(-0.378690\pi\)
−0.715256 + 0.698862i \(0.753690\pi\)
\(38\) 42.2948 + 42.2948i 1.11302 + 1.11302i
\(39\) −46.7031 + 9.28982i −1.19752 + 0.238201i
\(40\) 0 0
\(41\) 7.15520 + 1.42326i 0.174517 + 0.0347136i 0.281575 0.959539i \(-0.409143\pi\)
−0.107058 + 0.994253i \(0.534143\pi\)
\(42\) 87.5383 36.2596i 2.08425 0.863323i
\(43\) −29.6179 71.5040i −0.688789 1.66288i −0.747206 0.664593i \(-0.768605\pi\)
0.0584166 0.998292i \(-0.481395\pi\)
\(44\) 6.79245 34.1480i 0.154374 0.776090i
\(45\) 0 0
\(46\) −13.7859 69.3066i −0.299694 1.50667i
\(47\) −6.97451 + 6.97451i −0.148394 + 0.148394i −0.777400 0.629006i \(-0.783462\pi\)
0.629006 + 0.777400i \(0.283462\pi\)
\(48\) 69.9515 104.690i 1.45732 2.18104i
\(49\) 24.7371 + 10.2464i 0.504838 + 0.209111i
\(50\) 0 0
\(51\) −47.5606 + 13.8732i −0.932561 + 0.272023i
\(52\) −162.581 −3.12655
\(53\) −20.2772 + 48.9536i −0.382590 + 0.923653i 0.608874 + 0.793267i \(0.291622\pi\)
−0.991463 + 0.130386i \(0.958378\pi\)
\(54\) 86.0418 + 57.4913i 1.59337 + 1.06465i
\(55\) 0 0
\(56\) 189.737 37.7410i 3.38816 0.673947i
\(57\) 38.8052 25.9288i 0.680793 0.454891i
\(58\) −3.02507 0.601725i −0.0521565 0.0103746i
\(59\) −18.5654 + 7.69002i −0.314667 + 0.130339i −0.534427 0.845215i \(-0.679473\pi\)
0.219760 + 0.975554i \(0.429473\pi\)
\(60\) 0 0
\(61\) 6.09486 30.6409i 0.0999157 0.502310i −0.898125 0.439741i \(-0.855070\pi\)
0.998041 0.0625698i \(-0.0199296\pi\)
\(62\) 101.469 + 151.859i 1.63660 + 2.44934i
\(63\) 0.861009 + 4.32858i 0.0136668 + 0.0687077i
\(64\) 69.2039 69.2039i 1.08131 1.08131i
\(65\) 0 0
\(66\) −35.1883 14.5755i −0.533155 0.220840i
\(67\) 32.7490i 0.488791i −0.969676 0.244396i \(-0.921410\pi\)
0.969676 0.244396i \(-0.0785896\pi\)
\(68\) −168.505 + 14.7769i −2.47802 + 0.217308i
\(69\) −55.1369 −0.799085
\(70\) 0 0
\(71\) 47.1234 + 31.4868i 0.663710 + 0.443477i 0.841257 0.540636i \(-0.181816\pi\)
−0.177547 + 0.984112i \(0.556816\pi\)
\(72\) 7.96724 + 7.96724i 0.110656 + 0.110656i
\(73\) −132.555 + 26.3668i −1.81582 + 0.361189i −0.981706 0.190403i \(-0.939020\pi\)
−0.834114 + 0.551592i \(0.814020\pi\)
\(74\) −47.4434 + 31.7007i −0.641127 + 0.428387i
\(75\) 0 0
\(76\) 147.217 60.9791i 1.93706 0.802356i
\(77\) −11.6564 28.1411i −0.151382 0.365469i
\(78\) −34.6974 + 174.435i −0.444838 + 2.23635i
\(79\) 33.2990 + 49.8354i 0.421506 + 0.630828i 0.980075 0.198630i \(-0.0636493\pi\)
−0.558569 + 0.829458i \(0.688649\pi\)
\(80\) 0 0
\(81\) 53.8674 53.8674i 0.665029 0.665029i
\(82\) 15.1382 22.6560i 0.184613 0.276292i
\(83\) 90.0810 + 37.3128i 1.08531 + 0.449552i 0.852370 0.522939i \(-0.175164\pi\)
0.232943 + 0.972490i \(0.425164\pi\)
\(84\) 252.419i 3.00499i
\(85\) 0 0
\(86\) −289.071 −3.36129
\(87\) −0.920966 + 2.22341i −0.0105858 + 0.0255564i
\(88\) −64.6582 43.2032i −0.734752 0.490946i
\(89\) −65.9279 65.9279i −0.740763 0.740763i 0.231962 0.972725i \(-0.425485\pi\)
−0.972725 + 0.231962i \(0.925485\pi\)
\(90\) 0 0
\(91\) −118.264 + 79.0212i −1.29960 + 0.868365i
\(92\) −184.635 36.7262i −2.00690 0.399197i
\(93\) 131.659 54.5351i 1.41569 0.586399i
\(94\) 14.0980 + 34.0355i 0.149979 + 0.362080i
\(95\) 0 0
\(96\) −117.340 175.612i −1.22229 1.82929i
\(97\) 3.04857 + 15.3262i 0.0314285 + 0.158002i 0.993313 0.115455i \(-0.0368328\pi\)
−0.961884 + 0.273457i \(0.911833\pi\)
\(98\) 70.7142 70.7142i 0.721573 0.721573i
\(99\) 0.985622 1.47509i 0.00995578 0.0148999i
\(100\) 0 0
\(101\) 144.225i 1.42797i −0.700161 0.713985i \(-0.746889\pi\)
0.700161 0.713985i \(-0.253111\pi\)
\(102\) −20.1073 + 183.945i −0.197131 + 1.80339i
\(103\) −92.8389 −0.901349 −0.450675 0.892688i \(-0.648816\pi\)
−0.450675 + 0.892688i \(0.648816\pi\)
\(104\) −138.962 + 335.483i −1.33617 + 3.22580i
\(105\) 0 0
\(106\) 139.940 + 139.940i 1.32019 + 1.32019i
\(107\) −22.6903 + 4.51338i −0.212059 + 0.0421811i −0.299976 0.953947i \(-0.596979\pi\)
0.0879176 + 0.996128i \(0.471979\pi\)
\(108\) 229.218 153.159i 2.12239 1.41813i
\(109\) −88.5096 17.6056i −0.812014 0.161520i −0.228418 0.973563i \(-0.573355\pi\)
−0.583597 + 0.812044i \(0.698355\pi\)
\(110\) 0 0
\(111\) 17.0377 + 41.1326i 0.153493 + 0.370564i
\(112\) 73.3714 368.863i 0.655102 3.29342i
\(113\) −23.4547 35.1025i −0.207564 0.310642i 0.713052 0.701112i \(-0.247313\pi\)
−0.920616 + 0.390470i \(0.872313\pi\)
\(114\) −34.0070 170.965i −0.298307 1.49969i
\(115\) 0 0
\(116\) −4.56500 + 6.83200i −0.0393534 + 0.0588965i
\(117\) −7.65359 3.17022i −0.0654153 0.0270959i
\(118\) 75.0545i 0.636055i
\(119\) −115.391 + 92.6497i −0.969671 + 0.778569i
\(120\) 0 0
\(121\) 41.6191 100.477i 0.343959 0.830392i
\(122\) −97.0204 64.8270i −0.795250 0.531369i
\(123\) −15.0336 15.0336i −0.122224 0.122224i
\(124\) 477.208 94.9226i 3.84845 0.765505i
\(125\) 0 0
\(126\) 16.1672 + 3.21586i 0.128311 + 0.0255227i
\(127\) −54.7476 + 22.6772i −0.431084 + 0.178561i −0.587665 0.809104i \(-0.699953\pi\)
0.156581 + 0.987665i \(0.449953\pi\)
\(128\) −28.9487 69.8883i −0.226162 0.546002i
\(129\) −44.0029 + 221.218i −0.341108 + 1.71487i
\(130\) 0 0
\(131\) 20.7486 + 104.310i 0.158386 + 0.796263i 0.975536 + 0.219838i \(0.0705527\pi\)
−0.817150 + 0.576425i \(0.804447\pi\)
\(132\) −71.7475 + 71.7475i −0.543541 + 0.543541i
\(133\) 77.4489 115.911i 0.582323 0.871508i
\(134\) −113.006 46.8087i −0.843331 0.349319i
\(135\) 0 0
\(136\) −113.533 + 360.339i −0.834805 + 2.64955i
\(137\) 20.0630 0.146445 0.0732225 0.997316i \(-0.476672\pi\)
0.0732225 + 0.997316i \(0.476672\pi\)
\(138\) −78.8081 + 190.260i −0.571073 + 1.37869i
\(139\) 168.627 + 112.673i 1.21314 + 0.810596i 0.986561 0.163396i \(-0.0522448\pi\)
0.226582 + 0.973992i \(0.427245\pi\)
\(140\) 0 0
\(141\) 28.1925 5.60783i 0.199946 0.0397718i
\(142\) 176.005 117.603i 1.23947 0.828190i
\(143\) 56.0761 + 11.1542i 0.392141 + 0.0780016i
\(144\) 20.2372 8.38254i 0.140536 0.0582121i
\(145\) 0 0
\(146\) −98.4796 + 495.090i −0.674518 + 3.39103i
\(147\) −43.3513 64.8798i −0.294907 0.441359i
\(148\) 29.6554 + 149.088i 0.200375 + 1.00735i
\(149\) −67.3690 + 67.3690i −0.452141 + 0.452141i −0.896065 0.443924i \(-0.853586\pi\)
0.443924 + 0.896065i \(0.353586\pi\)
\(150\) 0 0
\(151\) −118.654 49.1479i −0.785786 0.325483i −0.0465378 0.998917i \(-0.514819\pi\)
−0.739248 + 0.673433i \(0.764819\pi\)
\(152\) 355.899i 2.34144i
\(153\) −8.22062 2.59011i −0.0537296 0.0169288i
\(154\) −113.767 −0.738745
\(155\) 0 0
\(156\) 393.955 + 263.232i 2.52535 + 1.68739i
\(157\) 34.9319 + 34.9319i 0.222496 + 0.222496i 0.809549 0.587053i \(-0.199712\pi\)
−0.587053 + 0.809549i \(0.699712\pi\)
\(158\) 219.561 43.6733i 1.38962 0.276414i
\(159\) 128.394 85.7904i 0.807512 0.539562i
\(160\) 0 0
\(161\) −152.157 + 63.0253i −0.945072 + 0.391461i
\(162\) −108.885 262.872i −0.672131 1.62267i
\(163\) 28.5906 143.735i 0.175403 0.881808i −0.788394 0.615170i \(-0.789087\pi\)
0.963797 0.266638i \(-0.0859128\pi\)
\(164\) −40.3287 60.3562i −0.245907 0.368026i
\(165\) 0 0
\(166\) 257.509 257.509i 1.55126 1.55126i
\(167\) −31.0169 + 46.4201i −0.185730 + 0.277965i −0.912637 0.408772i \(-0.865957\pi\)
0.726907 + 0.686736i \(0.240957\pi\)
\(168\) −520.863 215.749i −3.10038 1.28422i
\(169\) 97.9822i 0.579776i
\(170\) 0 0
\(171\) 8.11935 0.0474816
\(172\) −294.702 + 711.474i −1.71338 + 4.13647i
\(173\) −128.670 85.9747i −0.743759 0.496964i 0.125026 0.992153i \(-0.460099\pi\)
−0.868785 + 0.495190i \(0.835099\pi\)
\(174\) 6.35591 + 6.35591i 0.0365282 + 0.0365282i
\(175\) 0 0
\(176\) −125.700 + 83.9903i −0.714207 + 0.477218i
\(177\) 57.4371 + 11.4249i 0.324503 + 0.0645477i
\(178\) −321.728 + 133.264i −1.80746 + 0.748674i
\(179\) −75.8446 183.105i −0.423713 1.02293i −0.981243 0.192776i \(-0.938251\pi\)
0.557530 0.830157i \(-0.311749\pi\)
\(180\) 0 0
\(181\) 14.6367 + 21.9053i 0.0808655 + 0.121024i 0.869697 0.493585i \(-0.164314\pi\)
−0.788832 + 0.614609i \(0.789314\pi\)
\(182\) 103.640 + 521.036i 0.569453 + 2.86283i
\(183\) −64.3789 + 64.3789i −0.351797 + 0.351797i
\(184\) −233.596 + 349.601i −1.26954 + 1.90000i
\(185\) 0 0
\(186\) 532.262i 2.86162i
\(187\) 59.1333 + 6.46394i 0.316221 + 0.0345665i
\(188\) 98.1424 0.522034
\(189\) 92.2948 222.819i 0.488332 1.17894i
\(190\) 0 0
\(191\) −8.07395 8.07395i −0.0422720 0.0422720i 0.685655 0.727927i \(-0.259516\pi\)
−0.727927 + 0.685655i \(0.759516\pi\)
\(192\) −279.737 + 55.6431i −1.45696 + 0.289808i
\(193\) −44.4550 + 29.7039i −0.230337 + 0.153906i −0.665383 0.746502i \(-0.731732\pi\)
0.435047 + 0.900408i \(0.356732\pi\)
\(194\) 57.2431 + 11.3864i 0.295067 + 0.0586926i
\(195\) 0 0
\(196\) −101.953 246.137i −0.520169 1.25580i
\(197\) 41.8171 210.229i 0.212270 1.06715i −0.716809 0.697269i \(-0.754398\pi\)
0.929079 0.369882i \(-0.120602\pi\)
\(198\) −3.68128 5.50943i −0.0185923 0.0278254i
\(199\) −13.6665 68.7059i −0.0686757 0.345256i 0.931136 0.364673i \(-0.118819\pi\)
−0.999811 + 0.0194167i \(0.993819\pi\)
\(200\) 0 0
\(201\) −53.0234 + 79.3552i −0.263798 + 0.394802i
\(202\) −497.673 206.143i −2.46373 1.02051i
\(203\) 7.18848i 0.0354112i
\(204\) 432.236 + 237.018i 2.11880 + 1.16185i
\(205\) 0 0
\(206\) −132.696 + 320.357i −0.644157 + 1.55513i
\(207\) −7.97566 5.32916i −0.0385298 0.0257448i
\(208\) 499.176 + 499.176i 2.39988 + 2.39988i
\(209\) −54.9604 + 10.9323i −0.262968 + 0.0523077i
\(210\) 0 0
\(211\) 91.8067 + 18.2615i 0.435103 + 0.0865473i 0.407782 0.913079i \(-0.366302\pi\)
0.0273209 + 0.999627i \(0.491302\pi\)
\(212\) 487.094 201.761i 2.29761 0.951703i
\(213\) −63.2063 152.594i −0.296743 0.716402i
\(214\) −16.8574 + 84.7479i −0.0787729 + 0.396018i
\(215\) 0 0
\(216\) −120.122 603.896i −0.556122 2.79582i
\(217\) 300.992 300.992i 1.38706 1.38706i
\(218\) −187.260 + 280.254i −0.858989 + 1.28557i
\(219\) 363.888 + 150.727i 1.66159 + 0.688252i
\(220\) 0 0
\(221\) −24.2660 276.711i −0.109801 1.25209i
\(222\) 166.288 0.749043
\(223\) 125.735 303.552i 0.563836 1.36122i −0.342841 0.939393i \(-0.611389\pi\)
0.906677 0.421826i \(-0.138611\pi\)
\(224\) −524.551 350.494i −2.34174 1.56470i
\(225\) 0 0
\(226\) −154.652 + 30.7621i −0.684299 + 0.136116i
\(227\) −162.059 + 108.285i −0.713918 + 0.477025i −0.858726 0.512435i \(-0.828743\pi\)
0.144808 + 0.989460i \(0.453743\pi\)
\(228\) −455.455 90.5957i −1.99761 0.397349i
\(229\) 286.132 118.520i 1.24948 0.517553i 0.342817 0.939402i \(-0.388619\pi\)
0.906666 + 0.421849i \(0.138619\pi\)
\(230\) 0 0
\(231\) −17.3178 + 87.0624i −0.0749688 + 0.376894i
\(232\) 10.1959 + 15.2593i 0.0439480 + 0.0657728i
\(233\) −13.7868 69.3111i −0.0591709 0.297472i 0.939856 0.341570i \(-0.110959\pi\)
−0.999027 + 0.0440978i \(0.985959\pi\)
\(234\) −21.8788 + 21.8788i −0.0934991 + 0.0934991i
\(235\) 0 0
\(236\) 184.727 + 76.5166i 0.782743 + 0.324223i
\(237\) 174.672i 0.737011i
\(238\) 154.774 + 530.603i 0.650311 + 2.22942i
\(239\) −152.671 −0.638791 −0.319396 0.947621i \(-0.603480\pi\)
−0.319396 + 0.947621i \(0.603480\pi\)
\(240\) 0 0
\(241\) 246.844 + 164.936i 1.02425 + 0.684381i 0.949804 0.312845i \(-0.101282\pi\)
0.0744436 + 0.997225i \(0.476282\pi\)
\(242\) −287.228 287.228i −1.18689 1.18689i
\(243\) 26.8194 5.33471i 0.110368 0.0219535i
\(244\) −258.465 + 172.701i −1.05928 + 0.707791i
\(245\) 0 0
\(246\) −73.3639 + 30.3883i −0.298227 + 0.123530i
\(247\) 100.137 + 241.752i 0.405412 + 0.978752i
\(248\) 212.010 1065.85i 0.854878 4.29776i
\(249\) −157.866 236.263i −0.633998 0.948846i
\(250\) 0 0
\(251\) 79.1736 79.1736i 0.315433 0.315433i −0.531577 0.847010i \(-0.678400\pi\)
0.847010 + 0.531577i \(0.178400\pi\)
\(252\) 24.3972 36.5129i 0.0968141 0.144893i
\(253\) 61.1632 + 25.3346i 0.241752 + 0.100137i
\(254\) 221.329i 0.871375i
\(255\) 0 0
\(256\) 108.937 0.425537
\(257\) 50.1084 120.972i 0.194974 0.470710i −0.795912 0.605413i \(-0.793008\pi\)
0.990886 + 0.134703i \(0.0430080\pi\)
\(258\) 700.456 + 468.030i 2.71495 + 1.81407i
\(259\) 94.0349 + 94.0349i 0.363069 + 0.363069i
\(260\) 0 0
\(261\) −0.348119 + 0.232606i −0.00133379 + 0.000891210i
\(262\) 389.598 + 77.4958i 1.48701 + 0.295786i
\(263\) −140.222 + 58.0817i −0.533162 + 0.220843i −0.632987 0.774162i \(-0.718172\pi\)
0.0998256 + 0.995005i \(0.468172\pi\)
\(264\) 86.7256 + 209.374i 0.328506 + 0.793084i
\(265\) 0 0
\(266\) −289.271 432.924i −1.08748 1.62753i
\(267\) 53.0091 + 266.495i 0.198536 + 0.998107i
\(268\) −230.415 + 230.415i −0.859759 + 0.859759i
\(269\) 125.901 188.425i 0.468035 0.700464i −0.520091 0.854111i \(-0.674102\pi\)
0.988126 + 0.153647i \(0.0491020\pi\)
\(270\) 0 0
\(271\) 410.506i 1.51478i −0.652960 0.757392i \(-0.726473\pi\)
0.652960 0.757392i \(-0.273527\pi\)
\(272\) 562.736 + 471.996i 2.06888 + 1.73528i
\(273\) 414.510 1.51835
\(274\) 28.6763 69.2308i 0.104658 0.252667i
\(275\) 0 0
\(276\) 387.932 + 387.932i 1.40555 + 1.40555i
\(277\) −452.347 + 89.9775i −1.63302 + 0.324828i −0.924594 0.380954i \(-0.875596\pi\)
−0.708429 + 0.705782i \(0.750596\pi\)
\(278\) 629.819 420.831i 2.26554 1.51378i
\(279\) 24.3158 + 4.83671i 0.0871533 + 0.0173359i
\(280\) 0 0
\(281\) −162.874 393.212i −0.579622 1.39933i −0.893153 0.449754i \(-0.851512\pi\)
0.313530 0.949578i \(-0.398488\pi\)
\(282\) 20.9452 105.298i 0.0742736 0.373399i
\(283\) −123.528 184.873i −0.436494 0.653260i 0.546380 0.837537i \(-0.316005\pi\)
−0.982874 + 0.184278i \(0.941005\pi\)
\(284\) −110.016 553.086i −0.387379 1.94748i
\(285\) 0 0
\(286\) 118.640 177.558i 0.414826 0.620831i
\(287\) −58.6714 24.3025i −0.204430 0.0846777i
\(288\) 36.7440i 0.127583i
\(289\) −50.3005 284.589i −0.174050 0.984737i
\(290\) 0 0
\(291\) 17.4273 42.0732i 0.0598877 0.144582i
\(292\) 1118.14 + 747.117i 3.82925 + 2.55862i
\(293\) −177.357 177.357i −0.605315 0.605315i 0.336403 0.941718i \(-0.390789\pi\)
−0.941718 + 0.336403i \(0.890789\pi\)
\(294\) −285.842 + 56.8575i −0.972252 + 0.193393i
\(295\) 0 0
\(296\) 332.988 + 66.2354i 1.12496 + 0.223768i
\(297\) −89.5679 + 37.1002i −0.301575 + 0.124917i
\(298\) 136.177 + 328.760i 0.456970 + 1.10322i
\(299\) 60.3099 303.198i 0.201705 1.01404i
\(300\) 0 0
\(301\) 131.436 + 660.774i 0.436665 + 2.19526i
\(302\) −339.187 + 339.187i −1.12314 + 1.12314i
\(303\) −233.512 + 349.476i −0.770668 + 1.15339i
\(304\) −639.228 264.777i −2.10272 0.870977i
\(305\) 0 0
\(306\) −20.6875 + 24.6646i −0.0676062 + 0.0806034i
\(307\) −405.125 −1.31963 −0.659813 0.751430i \(-0.729365\pi\)
−0.659813 + 0.751430i \(0.729365\pi\)
\(308\) −115.983 + 280.008i −0.376568 + 0.909116i
\(309\) 224.961 + 150.314i 0.728029 + 0.486453i
\(310\) 0 0
\(311\) 324.561 64.5592i 1.04360 0.207586i 0.356614 0.934252i \(-0.383931\pi\)
0.686991 + 0.726666i \(0.258931\pi\)
\(312\) 879.898 587.929i 2.82019 1.88439i
\(313\) 289.595 + 57.6040i 0.925223 + 0.184038i 0.634637 0.772811i \(-0.281150\pi\)
0.290586 + 0.956849i \(0.406150\pi\)
\(314\) 170.467 70.6099i 0.542889 0.224872i
\(315\) 0 0
\(316\) 116.347 584.916i 0.368187 1.85100i
\(317\) 36.3595 + 54.4158i 0.114699 + 0.171659i 0.884377 0.466773i \(-0.154583\pi\)
−0.769678 + 0.638432i \(0.779583\pi\)
\(318\) −112.519 565.669i −0.353832 1.77883i
\(319\) 2.04325 2.04325i 0.00640517 0.00640517i
\(320\) 0 0
\(321\) 62.2891 + 25.8010i 0.194047 + 0.0803769i
\(322\) 615.126i 1.91033i
\(323\) 125.759 + 241.460i 0.389346 + 0.747553i
\(324\) −757.999 −2.33950
\(325\) 0 0
\(326\) −455.117 304.100i −1.39606 0.932821i
\(327\) 185.965 + 185.965i 0.568701 + 0.568701i
\(328\) −159.014 + 31.6299i −0.484799 + 0.0964326i
\(329\) 71.3902 47.7014i 0.216991 0.144989i
\(330\) 0 0
\(331\) −382.193 + 158.310i −1.15466 + 0.478277i −0.876095 0.482139i \(-0.839860\pi\)
−0.278568 + 0.960416i \(0.589860\pi\)
\(332\) −371.267 896.317i −1.11827 2.69975i
\(333\) −1.51107 + 7.59666i −0.00453775 + 0.0228128i
\(334\) 115.848 + 173.378i 0.346849 + 0.519097i
\(335\) 0 0
\(336\) −775.009 + 775.009i −2.30657 + 2.30657i
\(337\) −222.500 + 332.995i −0.660239 + 0.988117i 0.338647 + 0.940914i \(0.390031\pi\)
−0.998885 + 0.0472035i \(0.984969\pi\)
\(338\) −338.105 140.048i −1.00031 0.414342i
\(339\) 123.033i 0.362930i
\(340\) 0 0
\(341\) −171.107 −0.501781
\(342\) 11.6051 28.0173i 0.0339331 0.0819218i
\(343\) 160.860 + 107.483i 0.468979 + 0.313362i
\(344\) 1216.23 + 1216.23i 3.53554 + 3.53554i
\(345\) 0 0
\(346\) −480.581 + 321.114i −1.38896 + 0.928076i
\(347\) −300.399 59.7530i −0.865702 0.172199i −0.257788 0.966202i \(-0.582994\pi\)
−0.607914 + 0.794003i \(0.707994\pi\)
\(348\) 22.1232 9.16372i 0.0635723 0.0263325i
\(349\) 57.6579 + 139.199i 0.165209 + 0.398850i 0.984704 0.174237i \(-0.0557458\pi\)
−0.819495 + 0.573087i \(0.805746\pi\)
\(350\) 0 0
\(351\) 251.509 + 376.410i 0.716551 + 1.07239i
\(352\) 49.4739 + 248.722i 0.140551 + 0.706597i
\(353\) −449.779 + 449.779i −1.27416 + 1.27416i −0.330276 + 0.943884i \(0.607142\pi\)
−0.943884 + 0.330276i \(0.892858\pi\)
\(354\) 121.520 181.867i 0.343276 0.513748i
\(355\) 0 0
\(356\) 927.710i 2.60593i
\(357\) 429.615 37.6748i 1.20340 0.105532i
\(358\) −740.242 −2.06772
\(359\) −118.700 + 286.568i −0.330641 + 0.798239i 0.667900 + 0.744251i \(0.267193\pi\)
−0.998542 + 0.0539879i \(0.982807\pi\)
\(360\) 0 0
\(361\) 73.9183 + 73.9183i 0.204760 + 0.204760i
\(362\) 96.5085 19.1967i 0.266598 0.0530297i
\(363\) −263.530 + 176.085i −0.725978 + 0.485083i
\(364\) 1388.06 + 276.101i 3.81334 + 0.758520i
\(365\) 0 0
\(366\) 130.133 + 314.169i 0.355554 + 0.858384i
\(367\) 72.4876 364.420i 0.197514 0.992970i −0.747081 0.664733i \(-0.768545\pi\)
0.944595 0.328237i \(-0.106455\pi\)
\(368\) 454.128 + 679.650i 1.23404 + 1.84688i
\(369\) −0.721592 3.62769i −0.00195553 0.00983113i
\(370\) 0 0
\(371\) 256.255 383.512i 0.690713 1.03373i
\(372\) −1310.03 542.630i −3.52157 1.45868i
\(373\) 180.910i 0.485014i 0.970150 + 0.242507i \(0.0779698\pi\)
−0.970150 + 0.242507i \(0.922030\pi\)
\(374\) 106.825 194.811i 0.285629 0.520885i
\(375\) 0 0
\(376\) 83.8846 202.515i 0.223097 0.538605i
\(377\) −11.2192 7.49641i −0.0297591 0.0198844i
\(378\) −636.959 636.959i −1.68508 1.68508i
\(379\) −433.860 + 86.3002i −1.14475 + 0.227705i −0.730798 0.682594i \(-0.760852\pi\)
−0.413952 + 0.910299i \(0.635852\pi\)
\(380\) 0 0
\(381\) 169.377 + 33.6912i 0.444559 + 0.0884283i
\(382\) −39.4008 + 16.3204i −0.103143 + 0.0427234i
\(383\) −217.522 525.146i −0.567944 1.37114i −0.903285 0.429041i \(-0.858852\pi\)
0.335341 0.942097i \(-0.391148\pi\)
\(384\) −43.0086 + 216.219i −0.112002 + 0.563070i
\(385\) 0 0
\(386\) 38.9582 + 195.856i 0.100928 + 0.507399i
\(387\) −27.7465 + 27.7465i −0.0716965 + 0.0716965i
\(388\) 86.3828 129.281i 0.222636 0.333198i
\(389\) 548.703 + 227.280i 1.41055 + 0.584268i 0.952467 0.304642i \(-0.0985370\pi\)
0.458081 + 0.888910i \(0.348537\pi\)
\(390\) 0 0
\(391\) 34.9499 319.728i 0.0893860 0.817720i
\(392\) −595.041 −1.51796
\(393\) 118.611 286.352i 0.301808 0.728630i
\(394\) −665.662 444.781i −1.68950 1.12889i
\(395\) 0 0
\(396\) −17.3130 + 3.44378i −0.0437198 + 0.00869641i
\(397\) 651.083 435.040i 1.64001 1.09582i 0.728059 0.685515i \(-0.240423\pi\)
0.911949 0.410303i \(-0.134577\pi\)
\(398\) −256.616 51.0440i −0.644763 0.128251i
\(399\) −375.338 + 155.470i −0.940696 + 0.389649i
\(400\) 0 0
\(401\) 0.0949249 0.477219i 0.000236720 0.00119007i −0.980667 0.195685i \(-0.937307\pi\)
0.980903 + 0.194495i \(0.0623069\pi\)
\(402\) 198.042 + 296.390i 0.492641 + 0.737290i
\(403\) 155.877 + 783.648i 0.386792 + 1.94454i
\(404\) −1014.74 + 1014.74i −2.51172 + 2.51172i
\(405\) 0 0
\(406\) 24.8051 + 10.2746i 0.0610963 + 0.0253069i
\(407\) 53.4568i 0.131344i
\(408\) 858.525 689.327i 2.10423 1.68953i
\(409\) 586.259 1.43340 0.716698 0.697383i \(-0.245652\pi\)
0.716698 + 0.697383i \(0.245652\pi\)
\(410\) 0 0
\(411\) −48.6152 32.4836i −0.118285 0.0790356i
\(412\) 653.196 + 653.196i 1.58543 + 1.58543i
\(413\) 171.564 34.1261i 0.415408 0.0826299i
\(414\) −29.7890 + 19.9044i −0.0719540 + 0.0480781i
\(415\) 0 0
\(416\) 1094.04 453.167i 2.62991 1.08934i
\(417\) −226.178 546.042i −0.542393 1.30945i
\(418\) −40.8320 + 205.276i −0.0976842 + 0.491092i
\(419\) 81.6559 + 122.207i 0.194883 + 0.291663i 0.916022 0.401127i \(-0.131381\pi\)
−0.721140 + 0.692790i \(0.756381\pi\)
\(420\) 0 0
\(421\) −176.167 + 176.167i −0.418450 + 0.418450i −0.884669 0.466219i \(-0.845616\pi\)
0.466219 + 0.884669i \(0.345616\pi\)
\(422\) 194.235 290.694i 0.460273 0.688848i
\(423\) 4.62011 + 1.91371i 0.0109222 + 0.00452414i
\(424\) 1177.56i 2.77727i
\(425\) 0 0
\(426\) −616.893 −1.44811
\(427\) −104.071 + 251.250i −0.243727 + 0.588409i
\(428\) 191.399 + 127.889i 0.447195 + 0.298806i
\(429\) −117.820 117.820i −0.274639 0.274639i
\(430\) 0 0
\(431\) −1.20310 + 0.803884i −0.00279141 + 0.00186516i −0.556965 0.830536i \(-0.688034\pi\)
0.554174 + 0.832401i \(0.313034\pi\)
\(432\) −1174.02 233.527i −2.71764 0.540572i
\(433\) 120.467 49.8989i 0.278214 0.115240i −0.239214 0.970967i \(-0.576890\pi\)
0.517428 + 0.855727i \(0.326890\pi\)
\(434\) −608.412 1468.84i −1.40187 3.38442i
\(435\) 0 0
\(436\) 498.865 + 746.605i 1.14419 + 1.71240i
\(437\) 59.1099 + 297.166i 0.135263 + 0.680013i
\(438\) 1040.22 1040.22i 2.37494 2.37494i
\(439\) 100.179 149.928i 0.228197 0.341521i −0.699647 0.714488i \(-0.746660\pi\)
0.927845 + 0.372967i \(0.121660\pi\)
\(440\) 0 0
\(441\) 13.5750i 0.0307824i
\(442\) −989.524 311.774i −2.23874 0.705371i
\(443\) −444.888 −1.00426 −0.502131 0.864792i \(-0.667450\pi\)
−0.502131 + 0.864792i \(0.667450\pi\)
\(444\) 169.527 409.274i 0.381817 0.921789i
\(445\) 0 0
\(446\) −867.744 867.744i −1.94561 1.94561i
\(447\) 272.320 54.1678i 0.609217 0.121181i
\(448\) −708.362 + 473.312i −1.58117 + 1.05650i
\(449\) −371.143 73.8248i −0.826598 0.164421i −0.236376 0.971662i \(-0.575960\pi\)
−0.590222 + 0.807241i \(0.700960\pi\)
\(450\) 0 0
\(451\) 9.76900 + 23.5845i 0.0216608 + 0.0522937i
\(452\) −81.9513 + 411.997i −0.181308 + 0.911497i
\(453\) 207.939 + 311.202i 0.459026 + 0.686980i
\(454\) 142.021 + 713.987i 0.312821 + 1.57266i
\(455\) 0 0
\(456\) −576.231 + 862.391i −1.26367 + 1.89121i
\(457\) 631.401 + 261.535i 1.38162 + 0.572287i 0.944915 0.327317i \(-0.106144\pi\)
0.436708 + 0.899603i \(0.356144\pi\)
\(458\) 1156.75i 2.52565i
\(459\) 294.886 + 367.267i 0.642454 + 0.800146i
\(460\) 0 0
\(461\) −322.539 + 778.678i −0.699651 + 1.68911i 0.0247194 + 0.999694i \(0.492131\pi\)
−0.724370 + 0.689411i \(0.757869\pi\)
\(462\) 275.672 + 184.198i 0.596692 + 0.398697i
\(463\) 201.457 + 201.457i 0.435113 + 0.435113i 0.890363 0.455251i \(-0.150450\pi\)
−0.455251 + 0.890363i \(0.650450\pi\)
\(464\) 34.9925 6.96044i 0.0754148 0.0150009i
\(465\) 0 0
\(466\) −258.876 51.4936i −0.555528 0.110501i
\(467\) 86.2764 35.7368i 0.184746 0.0765243i −0.288393 0.957512i \(-0.593121\pi\)
0.473139 + 0.880988i \(0.343121\pi\)
\(468\) 31.5440 + 76.1541i 0.0674018 + 0.162722i
\(469\) −55.6157 + 279.599i −0.118584 + 0.596160i
\(470\) 0 0
\(471\) −28.0868 141.202i −0.0596324 0.299792i
\(472\) 315.782 315.782i 0.669029 0.669029i
\(473\) 150.459 225.177i 0.318094 0.476062i
\(474\) −602.735 249.661i −1.27159 0.526711i
\(475\) 0 0
\(476\) 1463.73 + 160.002i 3.07507 + 0.336139i
\(477\) 26.8644 0.0563196
\(478\) −218.215 + 526.819i −0.456518 + 1.10213i
\(479\) −141.414 94.4898i −0.295228 0.197265i 0.399131 0.916894i \(-0.369312\pi\)
−0.694359 + 0.719629i \(0.744312\pi\)
\(480\) 0 0
\(481\) −244.825 + 48.6987i −0.508991 + 0.101245i
\(482\) 921.958 616.033i 1.91278 1.27808i
\(483\) 470.739 + 93.6357i 0.974614 + 0.193863i
\(484\) −999.762 + 414.115i −2.06562 + 0.855609i
\(485\) 0 0
\(486\) 19.9251 100.170i 0.0409981 0.206111i
\(487\) 149.487 + 223.723i 0.306955 + 0.459390i 0.952591 0.304255i \(-0.0984076\pi\)
−0.645636 + 0.763645i \(0.723408\pi\)
\(488\) 135.450 + 680.952i 0.277561 + 1.39539i
\(489\) −301.998 + 301.998i −0.617582 + 0.617582i
\(490\) 0 0
\(491\) −264.603 109.602i −0.538906 0.223222i 0.0965929 0.995324i \(-0.469206\pi\)
−0.635499 + 0.772102i \(0.719206\pi\)
\(492\) 211.547i 0.429973i
\(493\) −12.3093 6.74987i −0.0249683 0.0136914i
\(494\) 977.334 1.97841
\(495\) 0 0
\(496\) −1756.63 1173.74i −3.54159 2.36641i
\(497\) −348.850 348.850i −0.701911 0.701911i
\(498\) −1040.91 + 207.049i −2.09017 + 0.415761i
\(499\) 21.7691 14.5457i 0.0436255 0.0291497i −0.533566 0.845758i \(-0.679149\pi\)
0.577192 + 0.816609i \(0.304149\pi\)
\(500\) 0 0
\(501\) 150.316 62.2630i 0.300032 0.124277i
\(502\) −160.038 386.367i −0.318801 0.769655i
\(503\) −17.8608 + 89.7923i −0.0355085 + 0.178513i −0.994470 0.105024i \(-0.966508\pi\)
0.958961 + 0.283538i \(0.0915080\pi\)
\(504\) −54.4911 81.5516i −0.108117 0.161809i
\(505\) 0 0
\(506\) 174.843 174.843i 0.345540 0.345540i
\(507\) −158.641 + 237.424i −0.312902 + 0.468291i
\(508\) 544.745 + 225.641i 1.07233 + 0.444175i
\(509\) 268.089i 0.526698i −0.964701 0.263349i \(-0.915173\pi\)
0.964701 0.263349i \(-0.0848270\pi\)
\(510\) 0 0
\(511\) 1176.48 2.30231
\(512\) 271.501 655.461i 0.530275 1.28020i
\(513\) −368.921 246.505i −0.719144 0.480517i
\(514\) −345.816 345.816i −0.672793 0.672793i
\(515\) 0 0
\(516\) 1866.04 1246.85i 3.61635 2.41637i
\(517\) −33.8505 6.73329i −0.0654749 0.0130238i
\(518\) 458.890 190.078i 0.885887 0.366946i
\(519\) 172.585 + 416.656i 0.332533 + 0.802805i
\(520\) 0 0
\(521\) −421.790 631.254i −0.809578 1.21162i −0.974294 0.225278i \(-0.927671\pi\)
0.164716 0.986341i \(-0.447329\pi\)
\(522\) 0.305075 + 1.53371i 0.000584435 + 0.00293815i
\(523\) 51.8647 51.8647i 0.0991676 0.0991676i −0.655782 0.754950i \(-0.727661\pi\)
0.754950 + 0.655782i \(0.227661\pi\)
\(524\) 587.924 879.890i 1.12199 1.67918i
\(525\) 0 0
\(526\) 566.876i 1.07771i
\(527\) 232.783 + 798.036i 0.441714 + 1.51430i
\(528\) 440.576 0.834424
\(529\) −65.4577 + 158.029i −0.123738 + 0.298731i
\(530\) 0 0
\(531\) 7.20413 + 7.20413i 0.0135671 + 0.0135671i
\(532\) −1360.44 + 270.608i −2.55721 + 0.508661i
\(533\) 99.1140 66.2259i 0.185955 0.124251i
\(534\) 995.354 + 197.988i 1.86396 + 0.370764i
\(535\) 0 0
\(536\) 278.517 + 672.401i 0.519622 + 1.25448i
\(537\) −112.681 + 566.486i −0.209834 + 1.05491i
\(538\) −470.240 703.764i −0.874052 1.30811i
\(539\) 18.2781 + 91.8902i 0.0339111 + 0.170483i
\(540\) 0 0
\(541\) −159.386 + 238.538i −0.294614 + 0.440921i −0.949017 0.315225i \(-0.897920\pi\)
0.654403 + 0.756146i \(0.272920\pi\)
\(542\) −1416.53 586.744i −2.61352 1.08255i
\(543\) 76.7774i 0.141395i
\(544\) 1092.72 569.118i 2.00868 1.04617i
\(545\) 0 0
\(546\) 592.466 1430.34i 1.08510 2.61967i
\(547\) −784.088 523.911i −1.43343 0.957789i −0.998351 0.0573983i \(-0.981719\pi\)
−0.435082 0.900391i \(-0.643281\pi\)
\(548\) −141.159 141.159i −0.257589 0.257589i
\(549\) −15.5350 + 3.09010i −0.0282968 + 0.00562859i
\(550\) 0 0
\(551\) 12.9706 + 2.58001i 0.0235401 + 0.00468242i
\(552\) 1132.07 468.917i 2.05085 0.849488i
\(553\) −199.662 482.026i −0.361052 0.871657i
\(554\) −336.065 + 1689.51i −0.606615 + 3.04966i
\(555\) 0 0
\(556\) −393.681 1979.17i −0.708059 3.55965i
\(557\) −144.163 + 144.163i −0.258820 + 0.258820i −0.824574 0.565754i \(-0.808585\pi\)
0.565754 + 0.824574i \(0.308585\pi\)
\(558\) 51.4449 76.9927i 0.0921951 0.137980i
\(559\) −1168.35 483.945i −2.09007 0.865734i
\(560\) 0 0
\(561\) −132.822 111.405i −0.236760 0.198583i
\(562\) −1589.65 −2.82855
\(563\) −93.9226 + 226.749i −0.166825 + 0.402752i −0.985078 0.172106i \(-0.944943\pi\)
0.818253 + 0.574858i \(0.194943\pi\)
\(564\) −237.812 158.901i −0.421652 0.281739i
\(565\) 0 0
\(566\) −814.496 + 162.013i −1.43904 + 0.286243i
\(567\) −551.379 + 368.420i −0.972451 + 0.649771i
\(568\) −1235.32 245.720i −2.17485 0.432605i
\(569\) −629.952 + 260.935i −1.10712 + 0.458585i −0.859945 0.510386i \(-0.829502\pi\)
−0.247176 + 0.968971i \(0.579502\pi\)
\(570\) 0 0
\(571\) −10.2807 + 51.6844i −0.0180047 + 0.0905157i −0.988743 0.149625i \(-0.952193\pi\)
0.970738 + 0.240140i \(0.0771935\pi\)
\(572\) −316.061 473.019i −0.552554 0.826956i
\(573\) 6.49183 + 32.6366i 0.0113295 + 0.0569575i
\(574\) −167.720 + 167.720i −0.292195 + 0.292195i
\(575\) 0 0
\(576\) −45.8426 18.9886i −0.0795878 0.0329664i
\(577\) 906.394i 1.57087i −0.618942 0.785437i \(-0.712438\pi\)
0.618942 0.785437i \(-0.287562\pi\)
\(578\) −1053.92 233.197i −1.82339 0.403455i
\(579\) 155.813 0.269108
\(580\) 0 0
\(581\) −705.713 471.542i −1.21465 0.811604i
\(582\) −120.272 120.272i −0.206653 0.206653i
\(583\) −181.847 + 36.1716i −0.311916 + 0.0620439i
\(584\) 2497.37 1668.69i 4.27631 2.85734i
\(585\) 0 0
\(586\) −865.502 + 358.503i −1.47697 + 0.611779i
\(587\) 240.227 + 579.960i 0.409246 + 0.988006i 0.985337 + 0.170621i \(0.0545773\pi\)
−0.576091 + 0.817385i \(0.695423\pi\)
\(588\) −151.470 + 761.492i −0.257602 + 1.29505i
\(589\) −435.069 651.126i −0.738656 1.10548i
\(590\) 0 0
\(591\) −441.707 + 441.707i −0.747389 + 0.747389i
\(592\) 366.697 548.800i 0.619420 0.927027i
\(593\) 747.965 + 309.817i 1.26132 + 0.522457i 0.910315 0.413915i \(-0.135839\pi\)
0.351008 + 0.936373i \(0.385839\pi\)
\(594\) 362.098i 0.609592i
\(595\) 0 0
\(596\) 947.989 1.59059
\(597\) −78.1251 + 188.611i −0.130863 + 0.315931i
\(598\) −960.037 641.476i −1.60541 1.07270i
\(599\) −556.749 556.749i −0.929465 0.929465i 0.0682066 0.997671i \(-0.478272\pi\)
−0.997671 + 0.0682066i \(0.978272\pi\)
\(600\) 0 0
\(601\) 598.829 400.125i 0.996388 0.665765i 0.0533932 0.998574i \(-0.482996\pi\)
0.942994 + 0.332809i \(0.107996\pi\)
\(602\) 2467.98 + 490.912i 4.09963 + 0.815468i
\(603\) −15.3399 + 6.35399i −0.0254393 + 0.0105373i
\(604\) 489.028 + 1180.62i 0.809649 + 1.95466i
\(605\) 0 0
\(606\) 872.165 + 1305.29i 1.43922 + 2.15394i
\(607\) −20.2887 101.998i −0.0334246 0.168037i 0.960468 0.278392i \(-0.0898013\pi\)
−0.993892 + 0.110355i \(0.964801\pi\)
\(608\) −820.683 + 820.683i −1.34981 + 1.34981i
\(609\) 11.6387 17.4186i 0.0191112 0.0286020i
\(610\) 0 0
\(611\) 161.165i 0.263772i
\(612\) 39.6152 + 76.0621i 0.0647306 + 0.124284i
\(613\) 392.106 0.639650 0.319825 0.947477i \(-0.396376\pi\)
0.319825 + 0.947477i \(0.396376\pi\)
\(614\) −579.052 + 1397.96i −0.943082 + 2.27680i
\(615\) 0 0
\(616\) 478.658 + 478.658i 0.777043 + 0.777043i
\(617\) −90.5076 + 18.0031i −0.146690 + 0.0291784i −0.267889 0.963450i \(-0.586326\pi\)
0.121199 + 0.992628i \(0.461326\pi\)
\(618\) 840.226 561.421i 1.35959 0.908448i
\(619\) 116.029 + 23.0797i 0.187446 + 0.0372854i 0.287921 0.957654i \(-0.407036\pi\)
−0.100474 + 0.994940i \(0.532036\pi\)
\(620\) 0 0
\(621\) 200.597 + 484.285i 0.323023 + 0.779847i
\(622\) 241.128 1212.23i 0.387665 1.94892i
\(623\) 450.907 + 674.829i 0.723767 + 1.08319i
\(624\) −401.361 2017.78i −0.643206 3.23362i
\(625\) 0 0
\(626\) 612.696 916.964i 0.978747 1.46480i
\(627\) 150.877 + 62.4951i 0.240632 + 0.0996732i
\(628\) 491.547i 0.782718i
\(629\) −249.320 + 72.7254i −0.396375 + 0.115621i
\(630\) 0 0
\(631\) −102.872 + 248.356i −0.163030 + 0.393590i −0.984192 0.177106i \(-0.943327\pi\)
0.821161 + 0.570696i \(0.193327\pi\)
\(632\) −1107.52 740.023i −1.75241 1.17092i
\(633\) −192.893 192.893i −0.304728 0.304728i
\(634\) 239.741 47.6874i 0.378140 0.0752167i
\(635\) 0 0
\(636\) −1506.96 299.753i −2.36944 0.471310i
\(637\) 404.193 167.422i 0.634526 0.262829i
\(638\) −4.13014 9.97104i −0.00647357 0.0156286i
\(639\) 5.60576 28.1821i 0.00877271 0.0441034i
\(640\) 0 0
\(641\) 109.020 + 548.080i 0.170078 + 0.855039i 0.967743 + 0.251939i \(0.0810681\pi\)
−0.797665 + 0.603100i \(0.793932\pi\)
\(642\) 178.062 178.062i 0.277355 0.277355i
\(643\) −565.616 + 846.504i −0.879651 + 1.31649i 0.0681649 + 0.997674i \(0.478286\pi\)
−0.947816 + 0.318817i \(0.896714\pi\)
\(644\) 1513.98 + 627.109i 2.35089 + 0.973772i
\(645\) 0 0
\(646\) 1012.95 88.8298i 1.56803 0.137507i
\(647\) 640.405 0.989807 0.494903 0.868948i \(-0.335203\pi\)
0.494903 + 0.868948i \(0.335203\pi\)
\(648\) −647.880 + 1564.12i −0.999815 + 2.41377i
\(649\) −58.4651 39.0652i −0.0900850 0.0601929i
\(650\) 0 0
\(651\) −1216.67 + 242.011i −1.86893 + 0.371753i
\(652\) −1212.45 + 810.131i −1.85958 + 1.24253i
\(653\) 800.836 + 159.296i 1.22640 + 0.243945i 0.765457 0.643487i \(-0.222513\pi\)
0.460938 + 0.887432i \(0.347513\pi\)
\(654\) 907.509 375.903i 1.38763 0.574775i
\(655\) 0 0
\(656\) −61.4909 + 309.136i −0.0937361 + 0.471243i
\(657\) 38.0688 + 56.9740i 0.0579434 + 0.0867184i
\(658\) −62.5629 314.525i −0.0950803 0.478001i
\(659\) 800.307 800.307i 1.21443 1.21443i 0.244870 0.969556i \(-0.421255\pi\)
0.969556 0.244870i \(-0.0787452\pi\)
\(660\) 0 0
\(661\) −173.492 71.8629i −0.262470 0.108718i 0.247568 0.968870i \(-0.420369\pi\)
−0.510038 + 0.860152i \(0.670369\pi\)
\(662\) 1545.10i 2.33399i
\(663\) −389.219 + 709.796i −0.587057 + 1.07058i
\(664\) −2166.87 −3.26335
\(665\) 0 0
\(666\) 24.0538 + 16.0722i 0.0361168 + 0.0241325i
\(667\) −11.0477 11.0477i −0.0165632 0.0165632i
\(668\) 544.831 108.374i 0.815615 0.162236i
\(669\) −796.149 + 531.970i −1.19006 + 0.795172i
\(670\) 0 0
\(671\) 100.996 41.8341i 0.150516 0.0623459i
\(672\) 703.576 + 1698.58i 1.04699 + 2.52765i
\(673\) 126.681 636.869i 0.188233 0.946313i −0.764989 0.644043i \(-0.777256\pi\)
0.953222 0.302270i \(-0.0977443\pi\)
\(674\) 831.036 + 1243.73i 1.23299 + 1.84530i
\(675\) 0 0
\(676\) −689.382 + 689.382i −1.01980 + 1.01980i
\(677\) 400.638 599.596i 0.591784 0.885667i −0.407841 0.913053i \(-0.633718\pi\)
0.999625 + 0.0273861i \(0.00871834\pi\)
\(678\) 424.548 + 175.853i 0.626177 + 0.259371i
\(679\) 136.027i 0.200334i
\(680\) 0 0
\(681\) 568.013 0.834086
\(682\) −244.567 + 590.436i −0.358602 + 0.865742i
\(683\) −777.517 519.520i −1.13839 0.760645i −0.164207 0.986426i \(-0.552507\pi\)
−0.974178 + 0.225781i \(0.927507\pi\)
\(684\) −57.1261 57.1261i −0.0835177 0.0835177i
\(685\) 0 0
\(686\) 600.810 401.448i 0.875816 0.585201i
\(687\) −885.228 176.083i −1.28854 0.256307i
\(688\) 3089.29 1279.62i 4.49024 1.85992i
\(689\) 331.322 + 799.882i 0.480874 + 1.16093i
\(690\) 0 0
\(691\) 0.367324 + 0.549739i 0.000531583 + 0.000795571i 0.831735 0.555172i \(-0.187348\pi\)
−0.831204 + 0.555968i \(0.812348\pi\)
\(692\) 300.397 + 1510.20i 0.434100 + 2.18237i
\(693\) −10.9199 + 10.9199i −0.0157575 + 0.0157575i
\(694\) −635.553 + 951.173i −0.915783 + 1.37057i
\(695\) 0 0
\(696\) 53.4833i 0.0768438i
\(697\) 96.7065 77.6476i 0.138747 0.111403i
\(698\) 562.741 0.806219
\(699\) −78.8132 + 190.272i −0.112751 + 0.272206i
\(700\) 0 0
\(701\) −584.250 584.250i −0.833453 0.833453i 0.154535 0.987987i \(-0.450612\pi\)
−0.987987 + 0.154535i \(0.950612\pi\)
\(702\) 1658.36 329.868i 2.36233 0.469897i
\(703\) 203.423 135.923i 0.289364 0.193347i
\(704\) 335.878 + 66.8104i 0.477100 + 0.0949011i
\(705\) 0 0
\(706\) 909.164 + 2194.92i 1.28777 + 3.10895i
\(707\) −244.929 + 1231.34i −0.346434 + 1.74164i
\(708\) −323.732 484.499i −0.457248 0.684321i
\(709\) 112.540 + 565.777i 0.158731 + 0.797993i 0.975324 + 0.220779i \(0.0708601\pi\)
−0.816593 + 0.577214i \(0.804140\pi\)
\(710\) 0 0
\(711\) 16.8826 25.2666i 0.0237449 0.0355367i
\(712\) 1914.32 + 792.936i 2.68865 + 1.11367i
\(713\) 925.161i 1.29756i
\(714\) 484.053 1536.31i 0.677945 2.15170i
\(715\) 0 0
\(716\) −754.662 + 1821.92i −1.05400 + 2.54458i
\(717\) 369.942 + 247.188i 0.515959 + 0.344752i
\(718\) 819.192 + 819.192i 1.14094 + 1.14094i
\(719\) −163.392 + 32.5008i −0.227249 + 0.0452027i −0.307401 0.951580i \(-0.599459\pi\)
0.0801520 + 0.996783i \(0.474459\pi\)
\(720\) 0 0
\(721\) 792.625 + 157.663i 1.09934 + 0.218673i
\(722\) 360.721 149.415i 0.499613 0.206947i
\(723\) −331.090 799.322i −0.457939 1.10556i
\(724\) 51.1407 257.102i 0.0706363 0.355113i
\(725\) 0 0
\(726\) 230.945 + 1161.04i 0.318106 + 1.59923i
\(727\) 430.278 430.278i 0.591854 0.591854i −0.346278 0.938132i \(-0.612555\pi\)
0.938132 + 0.346278i \(0.112555\pi\)
\(728\) 1756.14 2628.24i 2.41227 3.61022i
\(729\) −707.054 292.871i −0.969896 0.401744i
\(730\) 0 0
\(731\) −1254.91 395.389i −1.71670 0.540888i
\(732\) 905.913 1.23759
\(733\) −132.180 + 319.111i −0.180327 + 0.435349i −0.988034 0.154236i \(-0.950709\pi\)
0.807707 + 0.589585i \(0.200709\pi\)
\(734\) −1153.89 771.003i −1.57205 1.05041i
\(735\) 0 0
\(736\) 1344.82 267.501i 1.82720 0.363452i
\(737\) 95.2813 63.6649i 0.129283 0.0863839i
\(738\) −13.5494 2.69514i −0.0183596 0.00365195i
\(739\) 221.305 91.6677i 0.299466 0.124043i −0.227891 0.973687i \(-0.573183\pi\)
0.527357 + 0.849644i \(0.323183\pi\)
\(740\) 0 0
\(741\) 148.772 747.926i 0.200772 1.00935i
\(742\) −957.108 1432.41i −1.28990 1.93048i
\(743\) 49.7495 + 250.108i 0.0669576 + 0.336619i 0.999715 0.0238869i \(-0.00760417\pi\)
−0.932757 + 0.360506i \(0.882604\pi\)
\(744\) −2239.42 + 2239.42i −3.00997 + 3.00997i
\(745\) 0 0
\(746\) 624.263 + 258.578i 0.836813 + 0.346619i
\(747\) 49.4341i 0.0661768i
\(748\) −370.571 461.529i −0.495416 0.617018i
\(749\) 201.386 0.268873
\(750\) 0 0
\(751\) 207.078 + 138.365i 0.275736 + 0.184241i 0.685748 0.727839i \(-0.259475\pi\)
−0.410011 + 0.912080i \(0.634475\pi\)
\(752\) −301.329 301.329i −0.400703 0.400703i
\(753\) −320.037 + 63.6593i −0.425016 + 0.0845409i
\(754\) −41.9034 + 27.9990i −0.0555749 + 0.0371339i
\(755\) 0 0
\(756\) −2217.08 + 918.344i −2.93264 + 1.21474i
\(757\) −92.0780 222.296i −0.121635 0.293654i 0.851320 0.524647i \(-0.175803\pi\)
−0.972955 + 0.230993i \(0.925803\pi\)
\(758\) −322.330 + 1620.46i −0.425237 + 2.13781i
\(759\) −107.187 160.417i −0.141222 0.211354i
\(760\) 0 0
\(761\) 126.760 126.760i 0.166570 0.166570i −0.618900 0.785470i \(-0.712421\pi\)
0.785470 + 0.618900i \(0.212421\pi\)
\(762\) 358.351 536.310i 0.470277 0.703819i
\(763\) 725.764 + 300.621i 0.951197 + 0.393999i
\(764\) 113.613i 0.148708i
\(765\) 0 0
\(766\) −2123.02 −2.77156
\(767\) −125.652 + 303.350i −0.163822 + 0.395502i
\(768\) −263.970 176.379i −0.343710 0.229660i
\(769\) 861.829 + 861.829i 1.12071 + 1.12071i 0.991634 + 0.129080i \(0.0412023\pi\)
0.129080 + 0.991634i \(0.458798\pi\)
\(770\) 0 0
\(771\) −317.284 + 212.002i −0.411522 + 0.274971i
\(772\) 521.767 + 103.786i 0.675864 + 0.134438i
\(773\) −1077.46 + 446.300i −1.39387 + 0.577361i −0.948154 0.317812i \(-0.897052\pi\)
−0.445719 + 0.895173i \(0.647052\pi\)
\(774\) 56.0857 + 135.403i 0.0724622 + 0.174939i
\(775\) 0 0
\(776\) −192.936 288.749i −0.248629 0.372100i
\(777\) −75.6084 380.109i −0.0973081 0.489201i
\(778\) 1568.54 1568.54i 2.01612 2.01612i
\(779\) −64.9082 + 97.1420i −0.0833225 + 0.124701i
\(780\) 0 0
\(781\) 198.314i 0.253923i
\(782\) −1053.33 577.594i −1.34696 0.738612i
\(783\) 22.8795 0.0292204
\(784\) −442.690 + 1068.75i −0.564656 + 1.36320i
\(785\) 0 0
\(786\) −818.574 818.574i −1.04144 1.04144i
\(787\) −378.371 + 75.2626i −0.480776 + 0.0956323i −0.429528 0.903054i \(-0.641320\pi\)
−0.0512482 + 0.998686i \(0.516320\pi\)
\(788\) −1773.34 + 1184.91i −2.25044 + 1.50369i
\(789\) 433.814 + 86.2910i 0.549828 + 0.109368i
\(790\) 0 0
\(791\) 140.635 + 339.524i 0.177795 + 0.429234i
\(792\) −7.69168 + 38.6687i −0.00971172 + 0.0488241i
\(793\) −283.601 424.439i −0.357631 0.535232i
\(794\) −570.578 2868.49i −0.718612 3.61270i
\(795\) 0 0
\(796\) −387.246 + 579.555i −0.486491 + 0.728085i
\(797\) 457.343 + 189.438i 0.573831 + 0.237688i 0.650677 0.759355i \(-0.274485\pi\)
−0.0768465 + 0.997043i \(0.524485\pi\)
\(798\) 1517.39i 1.90149i
\(799\) 14.6482 + 167.037i 0.0183332 + 0.209058i
\(800\) 0 0
\(801\) −18.0897 + 43.6725i −0.0225839 + 0.0545224i
\(802\) −1.51105 1.00965i −0.00188411 0.00125892i
\(803\) −334.402 334.402i −0.416441 0.416441i
\(804\) 931.389 185.265i 1.15844 0.230429i
\(805\) 0 0
\(806\) 2926.91 + 582.199i 3.63141 + 0.722331i
\(807\) −610.151 + 252.733i −0.756073 + 0.313176i
\(808\) 1226.58 + 2961.21i 1.51804 + 3.66487i
\(809\) 239.101 1202.04i 0.295552 1.48584i −0.492545 0.870287i \(-0.663933\pi\)
0.788097 0.615551i \(-0.211067\pi\)
\(810\) 0 0
\(811\) −192.807 969.306i −0.237740 1.19520i −0.896568 0.442906i \(-0.853948\pi\)
0.658828 0.752293i \(-0.271052\pi\)
\(812\) 50.5766 50.5766i 0.0622865 0.0622865i
\(813\) −664.645 + 994.711i −0.817521 + 1.22351i
\(814\) −184.462 76.4068i −0.226612 0.0938658i
\(815\) 0 0
\(816\) −599.382 2054.83i −0.734537 2.51817i
\(817\) 1239.45 1.51707
\(818\) 837.950 2022.99i 1.02439 2.47309i
\(819\) 59.9597 + 40.0638i 0.0732109 + 0.0489179i
\(820\) 0 0
\(821\) −703.792 + 139.993i −0.857238 + 0.170515i −0.604094 0.796913i \(-0.706465\pi\)
−0.253144 + 0.967429i \(0.581465\pi\)
\(822\) −181.577 + 121.326i −0.220897 + 0.147598i
\(823\) 147.140 + 29.2679i 0.178784 + 0.0355624i 0.283671 0.958922i \(-0.408448\pi\)
−0.104886 + 0.994484i \(0.533448\pi\)
\(824\) 1906.16 789.558i 2.31330 0.958202i
\(825\) 0 0
\(826\) 127.461 640.788i 0.154311 0.775772i
\(827\) −194.581 291.211i −0.235285 0.352129i 0.694972 0.719036i \(-0.255417\pi\)
−0.930257 + 0.366907i \(0.880417\pi\)
\(828\) 18.6202 + 93.6100i 0.0224881 + 0.113056i
\(829\) 494.252 494.252i 0.596203 0.596203i −0.343097 0.939300i \(-0.611476\pi\)
0.939300 + 0.343097i \(0.111476\pi\)
\(830\) 0 0
\(831\) 1241.78 + 514.361i 1.49432 + 0.618967i
\(832\) 1599.14i 1.92204i
\(833\) 403.705 210.260i 0.484640 0.252413i
\(834\) −2207.50 −2.64688
\(835\) 0 0
\(836\) 463.607 + 309.773i 0.554554 + 0.370541i
\(837\) −957.998 957.998i −1.14456 1.14456i
\(838\) 538.408 107.096i 0.642492 0.127800i
\(839\) 216.460 144.634i 0.257998 0.172389i −0.419844 0.907596i \(-0.637915\pi\)
0.677842 + 0.735208i \(0.262915\pi\)
\(840\) 0 0
\(841\) 776.353 321.576i 0.923130 0.382373i
\(842\) 356.098 + 859.695i 0.422919 + 1.02102i
\(843\) −241.979 + 1216.51i −0.287045 + 1.44307i
\(844\) −517.449 774.417i −0.613091 0.917556i
\(845\) 0 0
\(846\) 13.2072 13.2072i 0.0156113 0.0156113i
\(847\) −525.963 + 787.160i −0.620972 + 0.929350i
\(848\) −2115.01 876.065i −2.49411 1.03310i
\(849\) 647.972i 0.763218i
\(850\) 0 0
\(851\) −289.036 −0.339643
\(852\) −628.910 + 1518.32i −0.738157 + 1.78207i
\(853\) 108.122 + 72.2449i 0.126755 + 0.0846951i 0.617332 0.786703i \(-0.288214\pi\)
−0.490576 + 0.871398i \(0.663214\pi\)
\(854\) 718.233 + 718.233i 0.841022 + 0.841022i
\(855\) 0 0
\(856\) 427.491 285.640i 0.499405 0.333692i
\(857\) 378.726 + 75.3332i 0.441920 + 0.0879034i 0.411035 0.911620i \(-0.365167\pi\)
0.0308851 + 0.999523i \(0.490167\pi\)
\(858\) −574.962 + 238.157i −0.670118 + 0.277572i
\(859\) −97.4301 235.217i −0.113423 0.273827i 0.856967 0.515371i \(-0.172346\pi\)
−0.970390 + 0.241545i \(0.922346\pi\)
\(860\) 0 0
\(861\) 102.821 + 153.882i 0.119420 + 0.178725i
\(862\) 1.05434 + 5.30051i 0.00122313 + 0.00614908i
\(863\) 588.512 588.512i 0.681938 0.681938i −0.278499 0.960437i \(-0.589837\pi\)
0.960437 + 0.278499i \(0.0898369\pi\)
\(864\) −1115.55 + 1669.54i −1.29115 + 1.93234i
\(865\) 0 0
\(866\) 487.013i 0.562370i
\(867\) −338.889 + 771.037i −0.390875 + 0.889316i
\(868\) −4235.43 −4.87953
\(869\) −80.2591 + 193.763i −0.0923580 + 0.222972i
\(870\) 0 0
\(871\) −378.377 378.377i −0.434417 0.434417i
\(872\) 1967.00 391.261i 2.25574 0.448694i
\(873\) 6.58741 4.40157i 0.00754572 0.00504189i
\(874\) 1109.91 + 220.775i 1.26992 + 0.252603i
\(875\) 0 0
\(876\) −1499.75 3620.73i −1.71205 4.13325i
\(877\) 184.887 929.491i 0.210818 1.05985i −0.719890 0.694088i \(-0.755808\pi\)
0.930708 0.365764i \(-0.119192\pi\)
\(878\) −374.165 559.978i −0.426156 0.637788i
\(879\) 142.603 + 716.916i 0.162234 + 0.815604i
\(880\) 0 0
\(881\) 488.879 731.659i 0.554914 0.830487i −0.442900 0.896571i \(-0.646050\pi\)
0.997814 + 0.0660837i \(0.0210504\pi\)
\(882\) −46.8431 19.4030i −0.0531101 0.0219989i
\(883\) 1172.98i 1.32840i −0.747554 0.664201i \(-0.768772\pi\)
0.747554 0.664201i \(-0.231228\pi\)
\(884\) −1776.15 + 2117.61i −2.00922 + 2.39549i
\(885\) 0 0
\(886\) −635.886 + 1535.16i −0.717704 + 1.73269i
\(887\) −120.341 80.4091i −0.135672 0.0906528i 0.485882 0.874024i \(-0.338498\pi\)
−0.621554 + 0.783371i \(0.713498\pi\)
\(888\) −699.633 699.633i −0.787875 0.787875i
\(889\) 505.927 100.635i 0.569096 0.113200i
\(890\) 0 0
\(891\) 261.443 + 52.0043i 0.293427 + 0.0583662i
\(892\) −3020.38 + 1251.08i −3.38607 + 1.40256i
\(893\) −60.4479 145.934i −0.0676908 0.163420i
\(894\) 202.316 1017.11i 0.226304 1.13771i
\(895\) 0 0
\(896\) 128.466 + 645.842i 0.143377 + 0.720806i
\(897\) −637.042 + 637.042i −0.710192 + 0.710192i
\(898\) −785.226 + 1175.17i −0.874417 + 1.30866i
\(899\) 37.3073 + 15.4532i 0.0414987 + 0.0171893i
\(900\) 0 0
\(901\) 416.096 + 798.916i 0.461816 + 0.886699i
\(902\) 95.3453 0.105704
\(903\) 751.362 1813.95i 0.832073 2.00880i
\(904\) 780.104 + 521.249i 0.862947 + 0.576603i
\(905\) 0 0
\(906\) 1371.07 272.722i 1.51332 0.301018i
\(907\) −451.807 + 301.888i −0.498133 + 0.332842i −0.779125 0.626868i \(-0.784337\pi\)
0.280992 + 0.959710i \(0.409337\pi\)
\(908\) 1902.08 + 378.348i 2.09481 + 0.416683i
\(909\) −67.5560 + 27.9826i −0.0743190 + 0.0307840i
\(910\) 0 0
\(911\) −88.1446 + 443.133i −0.0967559 + 0.486425i 0.901773 + 0.432209i \(0.142266\pi\)
−0.998529 + 0.0542155i \(0.982734\pi\)
\(912\) 1120.24 + 1676.55i 1.22833 + 1.83833i
\(913\) 66.5605 + 334.622i 0.0729031 + 0.366508i
\(914\) 1804.95 1804.95i 1.97478 1.97478i
\(915\) 0 0
\(916\) −2847.04 1179.28i −3.10813 1.28743i
\(917\) 925.800i 1.00960i
\(918\) 1688.81 492.616i 1.83966 0.536619i
\(919\) 1007.28 1.09606 0.548028 0.836460i \(-0.315379\pi\)
0.548028 + 0.836460i \(0.315379\pi\)
\(920\) 0 0
\(921\) 981.672 + 655.932i 1.06588 + 0.712195i
\(922\) 2225.95 + 2225.95i 2.41427 + 2.41427i
\(923\) 908.250 180.662i 0.984019 0.195734i
\(924\) 734.398 490.709i 0.794803 0.531070i
\(925\) 0 0
\(926\) 983.110 407.217i 1.06167 0.439760i
\(927\) 18.0127 + 43.4865i 0.0194312 + 0.0469110i
\(928\) 11.6758 58.6982i 0.0125817 0.0632524i
\(929\) 700.044 + 1047.69i 0.753546 + 1.12776i 0.987822 + 0.155591i \(0.0497281\pi\)
−0.234276 + 0.972170i \(0.575272\pi\)
\(930\) 0 0
\(931\) −303.201 + 303.201i −0.325672 + 0.325672i
\(932\) −390.657 + 584.660i −0.419160 + 0.627317i
\(933\) −890.981 369.056i −0.954963 0.395559i
\(934\) 348.791i 0.373438i
\(935\) 0 0
\(936\) 184.104 0.196693
\(937\) 608.558 1469.19i 0.649475 1.56797i −0.164056 0.986451i \(-0.552458\pi\)
0.813531 0.581521i \(-0.197542\pi\)
\(938\) 885.314 + 591.548i 0.943831 + 0.630648i
\(939\) −608.460 608.460i −0.647988 0.647988i
\(940\) 0 0
\(941\) −507.987 + 339.426i −0.539837 + 0.360708i −0.795400 0.606085i \(-0.792739\pi\)
0.255563 + 0.966792i \(0.417739\pi\)
\(942\) −527.388 104.904i −0.559860 0.111363i
\(943\) 127.519 52.8201i 0.135227 0.0560128i
\(944\) −332.242 802.104i −0.351952 0.849686i
\(945\) 0 0
\(946\) −561.961 841.034i −0.594039 0.889042i
\(947\) −291.781 1466.88i −0.308110 1.54898i −0.755810 0.654791i \(-0.772756\pi\)
0.447699 0.894184i \(-0.352244\pi\)
\(948\) −1228.95 + 1228.95i −1.29636 + 1.29636i
\(949\) −1226.88 + 1836.15i −1.29281 + 1.93483i
\(950\) 0 0
\(951\) 190.726i 0.200553i
\(952\) 1581.25 2883.63i 1.66098 3.02902i
\(953\) 1573.72 1.65133 0.825664 0.564162i \(-0.190801\pi\)
0.825664 + 0.564162i \(0.190801\pi\)
\(954\) 38.3978 92.7005i 0.0402493 0.0971703i
\(955\) 0 0
\(956\) 1074.16 + 1074.16i 1.12360 + 1.12360i
\(957\) −8.25925 + 1.64287i −0.00863036 + 0.00171668i
\(958\) −528.179 + 352.918i −0.551335 + 0.368391i
\(959\) −171.290 34.0718i −0.178613 0.0355284i
\(960\) 0 0
\(961\) −547.305 1321.31i −0.569516 1.37493i
\(962\) −181.889 + 914.417i −0.189074 + 0.950537i
\(963\) 6.51649 + 9.75261i 0.00676686 + 0.0101273i
\(964\) −576.288 2897.20i −0.597809 3.00539i
\(965\) 0 0
\(966\) 995.941 1490.53i 1.03099 1.54299i
\(967\) 1634.44 + 677.006i 1.69021 + 0.700110i 0.999730 0.0232380i \(-0.00739755\pi\)
0.690484 + 0.723348i \(0.257398\pi\)
\(968\) 2416.95i 2.49685i
\(969\) 86.2141 788.702i 0.0889722 0.813934i
\(970\) 0 0
\(971\) 642.545 1551.24i 0.661735 1.59757i −0.133348 0.991069i \(-0.542573\pi\)
0.795083 0.606500i \(-0.207427\pi\)
\(972\) −226.230 151.162i −0.232747 0.155516i
\(973\) −1248.33 1248.33i −1.28297 1.28297i
\(974\) 985.660 196.060i 1.01197 0.201294i
\(975\) 0 0
\(976\) 1323.82 + 263.324i 1.35637 + 0.269800i
\(977\) −1086.81 + 450.173i −1.11240 + 0.460771i −0.861764 0.507310i \(-0.830640\pi\)
−0.250636 + 0.968081i \(0.580640\pi\)
\(978\) 610.446 + 1473.75i 0.624178 + 1.50690i
\(979\) 63.6477 319.979i 0.0650130 0.326842i
\(980\) 0 0
\(981\) 8.92607 + 44.8744i 0.00909895 + 0.0457435i
\(982\) −756.403 + 756.403i −0.770268 + 0.770268i
\(983\) −769.353 + 1151.42i −0.782658 + 1.17133i 0.198873 + 0.980025i \(0.436272\pi\)
−0.981531 + 0.191305i \(0.938728\pi\)
\(984\) 436.524 + 180.814i 0.443622 + 0.183754i
\(985\) 0 0
\(986\) −40.8856 + 32.8279i −0.0414661 + 0.0332940i
\(987\) −250.220 −0.253516
\(988\) 996.373 2405.46i 1.00847 2.43467i
\(989\) −1217.51 813.516i −1.23105 0.822564i
\(990\) 0 0
\(991\) 901.874 179.394i 0.910064 0.181023i 0.282209 0.959353i \(-0.408933\pi\)
0.627855 + 0.778330i \(0.283933\pi\)
\(992\) −2946.66 + 1968.89i −2.97042 + 1.98477i
\(993\) 1182.42 + 235.198i 1.19076 + 0.236856i
\(994\) −1702.39 + 705.151i −1.71266 + 0.709408i
\(995\) 0 0
\(996\) −551.585 + 2773.00i −0.553800 + 2.78414i
\(997\) 474.437 + 710.045i 0.475865 + 0.712182i 0.989292 0.145951i \(-0.0466243\pi\)
−0.513427 + 0.858133i \(0.671624\pi\)
\(998\) −19.0774 95.9087i −0.0191156 0.0961009i
\(999\) 299.295 299.295i 0.299595 0.299595i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.f.401.16 128
5.2 odd 4 85.3.p.a.44.16 yes 128
5.3 odd 4 85.3.p.a.44.1 yes 128
5.4 even 2 inner 425.3.u.f.401.1 128
17.12 odd 16 inner 425.3.u.f.301.16 128
85.12 even 16 85.3.p.a.29.1 128
85.29 odd 16 inner 425.3.u.f.301.1 128
85.63 even 16 85.3.p.a.29.16 yes 128
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.p.a.29.1 128 85.12 even 16
85.3.p.a.29.16 yes 128 85.63 even 16
85.3.p.a.44.1 yes 128 5.3 odd 4
85.3.p.a.44.16 yes 128 5.2 odd 4
425.3.u.f.301.1 128 85.29 odd 16 inner
425.3.u.f.301.16 128 17.12 odd 16 inner
425.3.u.f.401.1 128 5.4 even 2 inner
425.3.u.f.401.16 128 1.1 even 1 trivial