Properties

Label 425.3.u.e.401.10
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.10
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.e.301.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866790 - 2.09262i) q^{2} +(-2.52684 - 1.68838i) q^{3} +(-0.799289 - 0.799289i) q^{4} +(-5.72336 + 3.82423i) q^{6} +(-8.48985 - 1.68874i) q^{7} +(6.00504 - 2.48737i) q^{8} +(0.0901317 + 0.217597i) q^{9} +(-6.93341 - 10.3766i) q^{11} +(0.670170 + 3.36917i) q^{12} +(6.75230 - 6.75230i) q^{13} +(-10.8928 + 16.3022i) q^{14} -19.2437i q^{16} +(5.68096 + 16.0227i) q^{17} +0.533473 q^{18} +(-12.4006 + 29.9377i) q^{19} +(18.6012 + 18.6012i) q^{21} +(-27.7240 + 5.51465i) q^{22} +(-35.0679 + 23.4316i) q^{23} +(-19.3734 - 3.85361i) q^{24} +(-8.27714 - 19.9828i) q^{26} +(-5.19628 + 26.1235i) q^{27} +(5.43605 + 8.13563i) q^{28} +(1.11614 + 5.61123i) q^{29} +(9.85122 - 14.7434i) q^{31} +(-16.2496 - 6.73079i) q^{32} +37.9261i q^{33} +(38.4535 + 2.00023i) q^{34} +(0.101882 - 0.245964i) q^{36} +(-19.4435 - 12.9917i) q^{37} +(51.8994 + 51.8994i) q^{38} +(-28.4624 + 5.66152i) q^{39} +(-7.16994 - 1.42619i) q^{41} +(55.0486 - 22.8019i) q^{42} +(-2.27340 - 5.48847i) q^{43} +(-2.75209 + 13.8357i) q^{44} +(18.6369 + 93.6940i) q^{46} +(12.4219 - 12.4219i) q^{47} +(-32.4907 + 48.6258i) q^{48} +(23.9555 + 9.92271i) q^{49} +(12.6975 - 50.0783i) q^{51} -10.7941 q^{52} +(27.3491 - 66.0266i) q^{53} +(50.1623 + 33.5174i) q^{54} +(-55.1824 + 10.9765i) q^{56} +(81.8804 - 54.7107i) q^{57} +(12.7096 + 2.52810i) q^{58} +(-80.2486 + 33.2400i) q^{59} +(2.22963 - 11.2091i) q^{61} +(-22.3133 - 33.3942i) q^{62} +(-0.397740 - 1.99958i) q^{63} +(26.2596 - 26.2596i) q^{64} +(79.3648 + 32.8740i) q^{66} +48.2950i q^{67} +(8.26603 - 17.3475i) q^{68} +128.172 q^{69} +(-75.6574 - 50.5527i) q^{71} +(1.08249 + 1.08249i) q^{72} +(-48.4052 + 9.62839i) q^{73} +(-44.0401 + 29.4266i) q^{74} +(33.8405 - 14.0172i) q^{76} +(41.3403 + 99.8042i) q^{77} +(-12.8235 + 64.4682i) q^{78} +(13.0615 + 19.5479i) q^{79} +(58.7353 - 58.7353i) q^{81} +(-9.19930 + 13.7677i) q^{82} +(-101.811 - 42.1714i) q^{83} -29.7355i q^{84} -13.4558 q^{86} +(6.65357 - 16.0631i) q^{87} +(-67.4458 - 45.0658i) q^{88} +(-20.1124 - 20.1124i) q^{89} +(-68.7288 + 45.9231i) q^{91} +(46.7580 + 9.30075i) q^{92} +(-49.7849 + 20.6216i) q^{93} +(-15.2270 - 36.7613i) q^{94} +(29.6959 + 44.4430i) q^{96} +(-17.7309 - 89.1393i) q^{97} +(41.5289 - 41.5289i) q^{98} +(1.63299 - 2.44395i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 192 q^{12} + 48 q^{13} - 64 q^{14} - 16 q^{17} - 128 q^{18} + 48 q^{19} - 192 q^{22} - 112 q^{23} + 240 q^{24} - 224 q^{26} + 288 q^{27} + 480 q^{28} - 64 q^{31} + 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866790 2.09262i 0.433395 1.04631i −0.544790 0.838572i \(-0.683391\pi\)
0.978185 0.207735i \(-0.0666093\pi\)
\(3\) −2.52684 1.68838i −0.842279 0.562793i 0.0578954 0.998323i \(-0.481561\pi\)
−0.900174 + 0.435530i \(0.856561\pi\)
\(4\) −0.799289 0.799289i −0.199822 0.199822i
\(5\) 0 0
\(6\) −5.72336 + 3.82423i −0.953894 + 0.637372i
\(7\) −8.48985 1.68874i −1.21284 0.241248i −0.453087 0.891466i \(-0.649677\pi\)
−0.759748 + 0.650218i \(0.774677\pi\)
\(8\) 6.00504 2.48737i 0.750630 0.310921i
\(9\) 0.0901317 + 0.217597i 0.0100146 + 0.0241775i
\(10\) 0 0
\(11\) −6.93341 10.3766i −0.630310 0.943325i −0.999900 0.0141305i \(-0.995502\pi\)
0.369590 0.929195i \(-0.379498\pi\)
\(12\) 0.670170 + 3.36917i 0.0558475 + 0.280765i
\(13\) 6.75230 6.75230i 0.519408 0.519408i −0.397984 0.917392i \(-0.630290\pi\)
0.917392 + 0.397984i \(0.130290\pi\)
\(14\) −10.8928 + 16.3022i −0.778056 + 1.16444i
\(15\) 0 0
\(16\) 19.2437i 1.20273i
\(17\) 5.68096 + 16.0227i 0.334174 + 0.942511i
\(18\) 0.533473 0.0296374
\(19\) −12.4006 + 29.9377i −0.652663 + 1.57567i 0.156236 + 0.987720i \(0.450064\pi\)
−0.808899 + 0.587948i \(0.799936\pi\)
\(20\) 0 0
\(21\) 18.6012 + 18.6012i 0.885773 + 0.885773i
\(22\) −27.7240 + 5.51465i −1.26018 + 0.250666i
\(23\) −35.0679 + 23.4316i −1.52469 + 1.01877i −0.540565 + 0.841302i \(0.681789\pi\)
−0.984127 + 0.177464i \(0.943211\pi\)
\(24\) −19.3734 3.85361i −0.807224 0.160567i
\(25\) 0 0
\(26\) −8.27714 19.9828i −0.318352 0.768569i
\(27\) −5.19628 + 26.1235i −0.192455 + 0.967535i
\(28\) 5.43605 + 8.13563i 0.194145 + 0.290558i
\(29\) 1.11614 + 5.61123i 0.0384877 + 0.193491i 0.995246 0.0973936i \(-0.0310506\pi\)
−0.956758 + 0.290884i \(0.906051\pi\)
\(30\) 0 0
\(31\) 9.85122 14.7434i 0.317781 0.475593i −0.637849 0.770161i \(-0.720176\pi\)
0.955631 + 0.294568i \(0.0951757\pi\)
\(32\) −16.2496 6.73079i −0.507799 0.210337i
\(33\) 37.9261i 1.14928i
\(34\) 38.4535 + 2.00023i 1.13099 + 0.0588304i
\(35\) 0 0
\(36\) 0.101882 0.245964i 0.00283005 0.00683234i
\(37\) −19.4435 12.9917i −0.525499 0.351127i 0.264352 0.964426i \(-0.414842\pi\)
−0.789851 + 0.613299i \(0.789842\pi\)
\(38\) 51.8994 + 51.8994i 1.36577 + 1.36577i
\(39\) −28.4624 + 5.66152i −0.729805 + 0.145167i
\(40\) 0 0
\(41\) −7.16994 1.42619i −0.174877 0.0347851i 0.106875 0.994272i \(-0.465915\pi\)
−0.281752 + 0.959487i \(0.590915\pi\)
\(42\) 55.0486 22.8019i 1.31068 0.542902i
\(43\) −2.27340 5.48847i −0.0528698 0.127639i 0.895238 0.445589i \(-0.147006\pi\)
−0.948108 + 0.317950i \(0.897006\pi\)
\(44\) −2.75209 + 13.8357i −0.0625475 + 0.314447i
\(45\) 0 0
\(46\) 18.6369 + 93.6940i 0.405150 + 2.03683i
\(47\) 12.4219 12.4219i 0.264295 0.264295i −0.562501 0.826796i \(-0.690161\pi\)
0.826796 + 0.562501i \(0.190161\pi\)
\(48\) −32.4907 + 48.6258i −0.676890 + 1.01304i
\(49\) 23.9555 + 9.92271i 0.488889 + 0.202504i
\(50\) 0 0
\(51\) 12.6975 50.0783i 0.248971 0.981928i
\(52\) −10.7941 −0.207578
\(53\) 27.3491 66.0266i 0.516021 1.24579i −0.424308 0.905518i \(-0.639482\pi\)
0.940329 0.340267i \(-0.110518\pi\)
\(54\) 50.1623 + 33.5174i 0.928931 + 0.620692i
\(55\) 0 0
\(56\) −55.1824 + 10.9765i −0.985400 + 0.196008i
\(57\) 81.8804 54.7107i 1.43650 0.959838i
\(58\) 12.7096 + 2.52810i 0.219131 + 0.0435879i
\(59\) −80.2486 + 33.2400i −1.36014 + 0.563391i −0.939098 0.343648i \(-0.888337\pi\)
−0.421047 + 0.907039i \(0.638337\pi\)
\(60\) 0 0
\(61\) 2.22963 11.2091i 0.0365514 0.183756i −0.958197 0.286110i \(-0.907638\pi\)
0.994748 + 0.102354i \(0.0326376\pi\)
\(62\) −22.3133 33.3942i −0.359892 0.538617i
\(63\) −0.397740 1.99958i −0.00631334 0.0317393i
\(64\) 26.2596 26.2596i 0.410306 0.410306i
\(65\) 0 0
\(66\) 79.3648 + 32.8740i 1.20250 + 0.498091i
\(67\) 48.2950i 0.720821i 0.932794 + 0.360410i \(0.117363\pi\)
−0.932794 + 0.360410i \(0.882637\pi\)
\(68\) 8.26603 17.3475i 0.121559 0.255110i
\(69\) 128.172 1.85757
\(70\) 0 0
\(71\) −75.6574 50.5527i −1.06560 0.712009i −0.106279 0.994336i \(-0.533894\pi\)
−0.959318 + 0.282327i \(0.908894\pi\)
\(72\) 1.08249 + 1.08249i 0.0150346 + 0.0150346i
\(73\) −48.4052 + 9.62839i −0.663084 + 0.131896i −0.515148 0.857101i \(-0.672263\pi\)
−0.147936 + 0.988997i \(0.547263\pi\)
\(74\) −44.0401 + 29.4266i −0.595136 + 0.397657i
\(75\) 0 0
\(76\) 33.8405 14.0172i 0.445270 0.184437i
\(77\) 41.3403 + 99.8042i 0.536887 + 1.29616i
\(78\) −12.8235 + 64.4682i −0.164404 + 0.826516i
\(79\) 13.0615 + 19.5479i 0.165336 + 0.247442i 0.904881 0.425664i \(-0.139960\pi\)
−0.739546 + 0.673107i \(0.764960\pi\)
\(80\) 0 0
\(81\) 58.7353 58.7353i 0.725127 0.725127i
\(82\) −9.19930 + 13.7677i −0.112187 + 0.167899i
\(83\) −101.811 42.1714i −1.22663 0.508089i −0.327121 0.944982i \(-0.606079\pi\)
−0.899513 + 0.436894i \(0.856079\pi\)
\(84\) 29.7355i 0.353994i
\(85\) 0 0
\(86\) −13.4558 −0.156463
\(87\) 6.65357 16.0631i 0.0764778 0.184634i
\(88\) −67.4458 45.0658i −0.766430 0.512112i
\(89\) −20.1124 20.1124i −0.225982 0.225982i 0.585030 0.811012i \(-0.301083\pi\)
−0.811012 + 0.585030i \(0.801083\pi\)
\(90\) 0 0
\(91\) −68.7288 + 45.9231i −0.755262 + 0.504650i
\(92\) 46.7580 + 9.30075i 0.508240 + 0.101095i
\(93\) −49.7849 + 20.6216i −0.535321 + 0.221737i
\(94\) −15.2270 36.7613i −0.161990 0.391078i
\(95\) 0 0
\(96\) 29.6959 + 44.4430i 0.309332 + 0.462948i
\(97\) −17.7309 89.1393i −0.182793 0.918962i −0.957893 0.287124i \(-0.907301\pi\)
0.775101 0.631838i \(-0.217699\pi\)
\(98\) 41.5289 41.5289i 0.423764 0.423764i
\(99\) 1.63299 2.44395i 0.0164949 0.0246864i
\(100\) 0 0
\(101\) 93.8603i 0.929310i −0.885492 0.464655i \(-0.846178\pi\)
0.885492 0.464655i \(-0.153822\pi\)
\(102\) −93.7887 69.9784i −0.919497 0.686063i
\(103\) 200.081 1.94254 0.971269 0.237984i \(-0.0764866\pi\)
0.971269 + 0.237984i \(0.0764866\pi\)
\(104\) 23.7524 57.3433i 0.228388 0.551378i
\(105\) 0 0
\(106\) −114.462 114.462i −1.07983 1.07983i
\(107\) 120.129 23.8951i 1.12270 0.223318i 0.401372 0.915915i \(-0.368533\pi\)
0.721325 + 0.692597i \(0.243533\pi\)
\(108\) 25.0335 16.7269i 0.231792 0.154878i
\(109\) 21.4988 + 4.27638i 0.197237 + 0.0392329i 0.292720 0.956198i \(-0.405440\pi\)
−0.0954832 + 0.995431i \(0.530440\pi\)
\(110\) 0 0
\(111\) 27.1955 + 65.6559i 0.245005 + 0.591494i
\(112\) −32.4976 + 163.376i −0.290157 + 1.45872i
\(113\) −86.8616 129.998i −0.768687 1.15042i −0.984739 0.174040i \(-0.944318\pi\)
0.216052 0.976382i \(-0.430682\pi\)
\(114\) −43.5155 218.767i −0.381715 1.91901i
\(115\) 0 0
\(116\) 3.59287 5.37711i 0.0309730 0.0463544i
\(117\) 2.07788 + 0.860685i 0.0177596 + 0.00735628i
\(118\) 196.742i 1.66730i
\(119\) −21.1724 145.624i −0.177919 1.22373i
\(120\) 0 0
\(121\) −13.2965 + 32.1007i −0.109889 + 0.265295i
\(122\) −21.5238 14.3817i −0.176424 0.117883i
\(123\) 15.7093 + 15.7093i 0.127718 + 0.127718i
\(124\) −19.6582 + 3.91026i −0.158534 + 0.0315344i
\(125\) 0 0
\(126\) −4.52910 0.900894i −0.0359452 0.00714995i
\(127\) 4.34740 1.80075i 0.0342315 0.0141792i −0.365502 0.930811i \(-0.619103\pi\)
0.399734 + 0.916631i \(0.369103\pi\)
\(128\) −59.1128 142.711i −0.461819 1.11493i
\(129\) −3.52211 + 17.7068i −0.0273032 + 0.137262i
\(130\) 0 0
\(131\) 31.8006 + 159.872i 0.242753 + 1.22040i 0.889228 + 0.457465i \(0.151242\pi\)
−0.646475 + 0.762935i \(0.723758\pi\)
\(132\) 30.3139 30.3139i 0.229651 0.229651i
\(133\) 155.836 233.225i 1.17170 1.75357i
\(134\) 101.063 + 41.8616i 0.754200 + 0.312400i
\(135\) 0 0
\(136\) 73.9688 + 82.0863i 0.543888 + 0.603576i
\(137\) −138.971 −1.01439 −0.507193 0.861832i \(-0.669317\pi\)
−0.507193 + 0.861832i \(0.669317\pi\)
\(138\) 111.098 268.216i 0.805062 1.94359i
\(139\) −188.264 125.794i −1.35442 0.904992i −0.354865 0.934918i \(-0.615473\pi\)
−0.999552 + 0.0299254i \(0.990473\pi\)
\(140\) 0 0
\(141\) −52.3608 + 10.4152i −0.371353 + 0.0738668i
\(142\) −171.366 + 114.503i −1.20681 + 0.806362i
\(143\) −116.882 23.2493i −0.817358 0.162583i
\(144\) 4.18738 1.73447i 0.0290790 0.0120449i
\(145\) 0 0
\(146\) −21.8086 + 109.639i −0.149374 + 0.750953i
\(147\) −43.7785 65.5191i −0.297813 0.445708i
\(148\) 5.15682 + 25.9251i 0.0348434 + 0.175169i
\(149\) −105.654 + 105.654i −0.709084 + 0.709084i −0.966343 0.257259i \(-0.917181\pi\)
0.257259 + 0.966343i \(0.417181\pi\)
\(150\) 0 0
\(151\) −23.7275 9.82824i −0.157136 0.0650877i 0.302729 0.953077i \(-0.402102\pi\)
−0.459865 + 0.887989i \(0.652102\pi\)
\(152\) 210.622i 1.38567i
\(153\) −2.97446 + 2.68031i −0.0194409 + 0.0175184i
\(154\) 244.685 1.58887
\(155\) 0 0
\(156\) 27.2749 + 18.2245i 0.174839 + 0.116824i
\(157\) −140.205 140.205i −0.893028 0.893028i 0.101779 0.994807i \(-0.467546\pi\)
−0.994807 + 0.101779i \(0.967546\pi\)
\(158\) 52.2279 10.3888i 0.330556 0.0657517i
\(159\) −180.585 + 120.663i −1.13575 + 0.758886i
\(160\) 0 0
\(161\) 337.291 139.711i 2.09498 0.867767i
\(162\) −71.9993 173.822i −0.444440 1.07297i
\(163\) −34.1597 + 171.733i −0.209569 + 1.05357i 0.722522 + 0.691348i \(0.242983\pi\)
−0.932091 + 0.362225i \(0.882017\pi\)
\(164\) 4.59092 + 6.87079i 0.0279934 + 0.0418951i
\(165\) 0 0
\(166\) −176.497 + 176.497i −1.06323 + 1.06323i
\(167\) 77.6543 116.218i 0.464996 0.695916i −0.522662 0.852540i \(-0.675061\pi\)
0.987658 + 0.156624i \(0.0500611\pi\)
\(168\) 157.969 + 65.4330i 0.940294 + 0.389482i
\(169\) 77.8129i 0.460431i
\(170\) 0 0
\(171\) −7.63204 −0.0446318
\(172\) −2.56977 + 6.20398i −0.0149405 + 0.0360697i
\(173\) 179.105 + 119.674i 1.03529 + 0.691757i 0.952416 0.304803i \(-0.0985905\pi\)
0.0828726 + 0.996560i \(0.473591\pi\)
\(174\) −27.8467 27.8467i −0.160039 0.160039i
\(175\) 0 0
\(176\) −199.684 + 133.425i −1.13457 + 0.758095i
\(177\) 258.897 + 51.4978i 1.46269 + 0.290948i
\(178\) −59.5206 + 24.6542i −0.334385 + 0.138507i
\(179\) 10.2028 + 24.6318i 0.0569990 + 0.137608i 0.949813 0.312817i \(-0.101273\pi\)
−0.892814 + 0.450425i \(0.851273\pi\)
\(180\) 0 0
\(181\) 21.6217 + 32.3591i 0.119457 + 0.178780i 0.886379 0.462960i \(-0.153213\pi\)
−0.766922 + 0.641740i \(0.778213\pi\)
\(182\) 36.5260 + 183.629i 0.200692 + 1.00895i
\(183\) −24.5592 + 24.5592i −0.134203 + 0.134203i
\(184\) −152.301 + 227.935i −0.827724 + 1.23878i
\(185\) 0 0
\(186\) 122.055i 0.656210i
\(187\) 126.872 170.041i 0.678461 0.909309i
\(188\) −19.8573 −0.105624
\(189\) 88.2312 213.009i 0.466832 1.12703i
\(190\) 0 0
\(191\) −104.149 104.149i −0.545285 0.545285i 0.379789 0.925073i \(-0.375997\pi\)
−0.925073 + 0.379789i \(0.875997\pi\)
\(192\) −110.690 + 22.0176i −0.576509 + 0.114675i
\(193\) −191.054 + 127.658i −0.989915 + 0.661440i −0.941368 0.337381i \(-0.890459\pi\)
−0.0485471 + 0.998821i \(0.515459\pi\)
\(194\) −201.903 40.1610i −1.04074 0.207016i
\(195\) 0 0
\(196\) −11.2163 27.0785i −0.0572260 0.138156i
\(197\) −4.33655 + 21.8013i −0.0220130 + 0.110667i −0.990230 0.139446i \(-0.955468\pi\)
0.968217 + 0.250113i \(0.0804677\pi\)
\(198\) −3.69878 5.53562i −0.0186807 0.0279577i
\(199\) −51.4884 258.849i −0.258735 1.30075i −0.863501 0.504347i \(-0.831733\pi\)
0.604765 0.796404i \(-0.293267\pi\)
\(200\) 0 0
\(201\) 81.5402 122.034i 0.405673 0.607132i
\(202\) −196.413 81.3571i −0.972344 0.402758i
\(203\) 49.5233i 0.243957i
\(204\) −50.1760 + 29.8781i −0.245961 + 0.146461i
\(205\) 0 0
\(206\) 173.429 418.694i 0.841886 2.03249i
\(207\) −8.25939 5.51875i −0.0399004 0.0266606i
\(208\) −129.939 129.939i −0.624709 0.624709i
\(209\) 396.629 78.8944i 1.89775 0.377485i
\(210\) 0 0
\(211\) −88.8409 17.6715i −0.421047 0.0837514i −0.0199803 0.999800i \(-0.506360\pi\)
−0.401066 + 0.916049i \(0.631360\pi\)
\(212\) −74.6342 + 30.9145i −0.352048 + 0.145823i
\(213\) 105.822 + 255.477i 0.496817 + 1.19942i
\(214\) 54.1231 272.095i 0.252911 1.27147i
\(215\) 0 0
\(216\) 33.7748 + 169.798i 0.156365 + 0.786100i
\(217\) −108.533 + 108.533i −0.500152 + 0.500152i
\(218\) 27.5838 41.2820i 0.126531 0.189367i
\(219\) 138.568 + 57.3969i 0.632732 + 0.262086i
\(220\) 0 0
\(221\) 146.550 + 69.8305i 0.663120 + 0.315975i
\(222\) 160.965 0.725069
\(223\) −14.3366 + 34.6116i −0.0642897 + 0.155209i −0.952759 0.303726i \(-0.901769\pi\)
0.888470 + 0.458936i \(0.151769\pi\)
\(224\) 126.590 + 84.5846i 0.565133 + 0.377610i
\(225\) 0 0
\(226\) −347.326 + 69.0874i −1.53684 + 0.305697i
\(227\) 225.918 150.954i 0.995234 0.664994i 0.0525286 0.998619i \(-0.483272\pi\)
0.942706 + 0.333625i \(0.108272\pi\)
\(228\) −109.176 21.7164i −0.478841 0.0952474i
\(229\) 1.93040 0.799599i 0.00842971 0.00349170i −0.378465 0.925616i \(-0.623548\pi\)
0.386894 + 0.922124i \(0.373548\pi\)
\(230\) 0 0
\(231\) 64.0472 321.987i 0.277261 1.39388i
\(232\) 20.6597 + 30.9194i 0.0890504 + 0.133273i
\(233\) −48.1808 242.221i −0.206785 1.03958i −0.935113 0.354349i \(-0.884703\pi\)
0.728329 0.685228i \(-0.240297\pi\)
\(234\) 3.60217 3.60217i 0.0153939 0.0153939i
\(235\) 0 0
\(236\) 90.7102 + 37.5734i 0.384365 + 0.159209i
\(237\) 71.4472i 0.301465i
\(238\) −323.087 81.9195i −1.35751 0.344200i
\(239\) −73.3632 −0.306959 −0.153479 0.988152i \(-0.549048\pi\)
−0.153479 + 0.988152i \(0.549048\pi\)
\(240\) 0 0
\(241\) 181.747 + 121.439i 0.754137 + 0.503898i 0.872225 0.489105i \(-0.162676\pi\)
−0.118088 + 0.993003i \(0.537676\pi\)
\(242\) 55.6491 + 55.6491i 0.229955 + 0.229955i
\(243\) −12.4708 + 2.48060i −0.0513203 + 0.0102082i
\(244\) −10.7414 + 7.17721i −0.0440223 + 0.0294148i
\(245\) 0 0
\(246\) 46.4903 19.2569i 0.188985 0.0782801i
\(247\) 118.416 + 285.881i 0.479416 + 1.15741i
\(248\) 22.4847 113.038i 0.0906642 0.455800i
\(249\) 186.058 + 278.455i 0.747220 + 1.11829i
\(250\) 0 0
\(251\) 316.879 316.879i 1.26247 1.26247i 0.312573 0.949894i \(-0.398809\pi\)
0.949894 0.312573i \(-0.101191\pi\)
\(252\) −1.28033 + 1.91615i −0.00508067 + 0.00760376i
\(253\) 486.280 + 201.424i 1.92206 + 0.796142i
\(254\) 10.6583i 0.0419619i
\(255\) 0 0
\(256\) −201.331 −0.786450
\(257\) 47.6536 115.046i 0.185422 0.447649i −0.803646 0.595108i \(-0.797109\pi\)
0.989068 + 0.147459i \(0.0471093\pi\)
\(258\) 34.0007 + 22.7185i 0.131786 + 0.0880563i
\(259\) 143.132 + 143.132i 0.552635 + 0.552635i
\(260\) 0 0
\(261\) −1.12039 + 0.748619i −0.00429267 + 0.00286827i
\(262\) 362.116 + 72.0293i 1.38212 + 0.274921i
\(263\) −242.117 + 100.288i −0.920598 + 0.381324i −0.792104 0.610386i \(-0.791014\pi\)
−0.128494 + 0.991710i \(0.541014\pi\)
\(264\) 94.3363 + 227.748i 0.357335 + 0.862682i
\(265\) 0 0
\(266\) −352.973 528.262i −1.32697 1.98595i
\(267\) 16.8634 + 84.7779i 0.0631587 + 0.317520i
\(268\) 38.6016 38.6016i 0.144036 0.144036i
\(269\) 108.483 162.356i 0.403283 0.603556i −0.573131 0.819464i \(-0.694271\pi\)
0.976414 + 0.215908i \(0.0692712\pi\)
\(270\) 0 0
\(271\) 434.612i 1.60373i 0.597503 + 0.801867i \(0.296160\pi\)
−0.597503 + 0.801867i \(0.703840\pi\)
\(272\) 308.336 109.323i 1.13359 0.401923i
\(273\) 251.202 0.920154
\(274\) −120.459 + 290.813i −0.439630 + 1.06136i
\(275\) 0 0
\(276\) −102.447 102.447i −0.371184 0.371184i
\(277\) −208.517 + 41.4767i −0.752770 + 0.149735i −0.556538 0.830822i \(-0.687871\pi\)
−0.196232 + 0.980557i \(0.562871\pi\)
\(278\) −426.424 + 284.927i −1.53390 + 1.02492i
\(279\) 4.09603 + 0.814751i 0.0146811 + 0.00292025i
\(280\) 0 0
\(281\) 29.4340 + 71.0600i 0.104747 + 0.252883i 0.967560 0.252641i \(-0.0812993\pi\)
−0.862813 + 0.505524i \(0.831299\pi\)
\(282\) −23.5908 + 118.599i −0.0836553 + 0.420564i
\(283\) −189.480 283.577i −0.669540 1.00204i −0.998338 0.0576369i \(-0.981643\pi\)
0.328798 0.944400i \(-0.393357\pi\)
\(284\) 20.0659 + 100.878i 0.0706547 + 0.355205i
\(285\) 0 0
\(286\) −149.964 + 224.437i −0.524350 + 0.784746i
\(287\) 58.4633 + 24.2163i 0.203705 + 0.0843773i
\(288\) 4.14252i 0.0143837i
\(289\) −224.453 + 182.049i −0.776655 + 0.629926i
\(290\) 0 0
\(291\) −105.698 + 255.177i −0.363222 + 0.876896i
\(292\) 46.3856 + 30.9938i 0.158855 + 0.106143i
\(293\) −52.6621 52.6621i −0.179734 0.179734i 0.611506 0.791240i \(-0.290564\pi\)
−0.791240 + 0.611506i \(0.790564\pi\)
\(294\) −175.053 + 34.8202i −0.595419 + 0.118436i
\(295\) 0 0
\(296\) −149.074 29.6527i −0.503628 0.100178i
\(297\) 307.100 127.205i 1.03401 0.428300i
\(298\) 129.513 + 312.672i 0.434607 + 1.04923i
\(299\) −78.5717 + 395.007i −0.262782 + 1.32109i
\(300\) 0 0
\(301\) 10.0322 + 50.4355i 0.0333297 + 0.167560i
\(302\) −41.1335 + 41.1335i −0.136204 + 0.136204i
\(303\) −158.472 + 237.170i −0.523009 + 0.782738i
\(304\) 576.113 + 238.634i 1.89511 + 0.784979i
\(305\) 0 0
\(306\) 3.03064 + 8.54767i 0.00990404 + 0.0279336i
\(307\) −376.746 −1.22719 −0.613593 0.789623i \(-0.710276\pi\)
−0.613593 + 0.789623i \(0.710276\pi\)
\(308\) 46.7296 112.815i 0.151719 0.366283i
\(309\) −505.573 337.813i −1.63616 1.09325i
\(310\) 0 0
\(311\) 449.551 89.4212i 1.44550 0.287528i 0.590871 0.806766i \(-0.298784\pi\)
0.854630 + 0.519238i \(0.173784\pi\)
\(312\) −156.836 + 104.794i −0.502678 + 0.335879i
\(313\) 326.004 + 64.8462i 1.04155 + 0.207176i 0.686090 0.727516i \(-0.259325\pi\)
0.355456 + 0.934693i \(0.384325\pi\)
\(314\) −414.924 + 171.867i −1.32142 + 0.547348i
\(315\) 0 0
\(316\) 5.18453 26.0644i 0.0164067 0.0824822i
\(317\) −102.174 152.915i −0.322317 0.482381i 0.634561 0.772873i \(-0.281181\pi\)
−0.956877 + 0.290492i \(0.906181\pi\)
\(318\) 95.9720 + 482.484i 0.301799 + 1.51724i
\(319\) 50.4867 50.4867i 0.158265 0.158265i
\(320\) 0 0
\(321\) −343.889 142.444i −1.07131 0.443750i
\(322\) 826.920i 2.56807i
\(323\) −550.130 28.6160i −1.70319 0.0885946i
\(324\) −93.8929 −0.289793
\(325\) 0 0
\(326\) 329.761 + 220.339i 1.01154 + 0.675887i
\(327\) −47.1039 47.1039i −0.144048 0.144048i
\(328\) −46.6033 + 9.26997i −0.142083 + 0.0282621i
\(329\) −126.437 + 84.4825i −0.384307 + 0.256786i
\(330\) 0 0
\(331\) 254.365 105.362i 0.768475 0.318313i 0.0362206 0.999344i \(-0.488468\pi\)
0.732255 + 0.681031i \(0.238468\pi\)
\(332\) 47.6690 + 115.083i 0.143581 + 0.346636i
\(333\) 1.07449 5.40181i 0.00322669 0.0162216i
\(334\) −175.889 263.237i −0.526615 0.788135i
\(335\) 0 0
\(336\) 357.957 357.957i 1.06535 1.06535i
\(337\) −120.370 + 180.146i −0.357180 + 0.534558i −0.965930 0.258805i \(-0.916671\pi\)
0.608750 + 0.793362i \(0.291671\pi\)
\(338\) 162.832 + 67.4474i 0.481753 + 0.199549i
\(339\) 475.138i 1.40159i
\(340\) 0 0
\(341\) −221.289 −0.648940
\(342\) −6.61538 + 15.9709i −0.0193432 + 0.0466986i
\(343\) 166.048 + 110.950i 0.484104 + 0.323468i
\(344\) −27.3037 27.3037i −0.0793713 0.0793713i
\(345\) 0 0
\(346\) 405.678 271.065i 1.17248 0.783426i
\(347\) −633.392 125.990i −1.82534 0.363082i −0.841233 0.540672i \(-0.818170\pi\)
−0.984105 + 0.177590i \(0.943170\pi\)
\(348\) −18.1572 + 7.52096i −0.0521759 + 0.0216119i
\(349\) 197.003 + 475.608i 0.564480 + 1.36277i 0.906151 + 0.422955i \(0.139007\pi\)
−0.341671 + 0.939820i \(0.610993\pi\)
\(350\) 0 0
\(351\) 141.307 + 211.480i 0.402583 + 0.602508i
\(352\) 42.8223 + 215.282i 0.121654 + 0.611597i
\(353\) 338.137 338.137i 0.957896 0.957896i −0.0412527 0.999149i \(-0.513135\pi\)
0.999149 + 0.0412527i \(0.0131349\pi\)
\(354\) 332.174 497.134i 0.938345 1.40433i
\(355\) 0 0
\(356\) 32.1512i 0.0903123i
\(357\) −192.369 + 403.715i −0.538848 + 1.13085i
\(358\) 60.3886 0.168683
\(359\) 186.181 449.482i 0.518611 1.25204i −0.420145 0.907457i \(-0.638021\pi\)
0.938756 0.344582i \(-0.111979\pi\)
\(360\) 0 0
\(361\) −487.225 487.225i −1.34965 1.34965i
\(362\) 86.4567 17.1973i 0.238831 0.0475064i
\(363\) 87.7963 58.6636i 0.241863 0.161608i
\(364\) 91.6400 + 18.2283i 0.251758 + 0.0500779i
\(365\) 0 0
\(366\) 30.1053 + 72.6805i 0.0822548 + 0.198581i
\(367\) 1.25417 6.30513i 0.00341735 0.0171802i −0.979039 0.203673i \(-0.934712\pi\)
0.982456 + 0.186493i \(0.0597121\pi\)
\(368\) 450.912 + 674.838i 1.22530 + 1.83380i
\(369\) −0.335904 1.68870i −0.000910310 0.00457644i
\(370\) 0 0
\(371\) −343.691 + 514.370i −0.926392 + 1.38644i
\(372\) 56.2751 + 23.3099i 0.151277 + 0.0626610i
\(373\) 622.933i 1.67006i 0.550202 + 0.835031i \(0.314551\pi\)
−0.550202 + 0.835031i \(0.685449\pi\)
\(374\) −245.858 412.885i −0.657376 1.10397i
\(375\) 0 0
\(376\) 43.6961 105.492i 0.116213 0.280563i
\(377\) 45.4252 + 30.3522i 0.120491 + 0.0805097i
\(378\) −369.268 369.268i −0.976899 0.976899i
\(379\) 520.221 103.478i 1.37261 0.273030i 0.546937 0.837174i \(-0.315794\pi\)
0.825676 + 0.564144i \(0.190794\pi\)
\(380\) 0 0
\(381\) −14.0255 2.78985i −0.0368124 0.00732244i
\(382\) −308.220 + 127.669i −0.806859 + 0.334212i
\(383\) 208.008 + 502.177i 0.543103 + 1.31117i 0.922523 + 0.385942i \(0.126123\pi\)
−0.379420 + 0.925224i \(0.623877\pi\)
\(384\) −91.5817 + 460.412i −0.238494 + 1.19899i
\(385\) 0 0
\(386\) 101.536 + 510.455i 0.263046 + 1.32242i
\(387\) 0.989371 0.989371i 0.00255651 0.00255651i
\(388\) −57.0759 + 85.4201i −0.147103 + 0.220155i
\(389\) −98.6183 40.8491i −0.253518 0.105010i 0.252306 0.967648i \(-0.418811\pi\)
−0.505823 + 0.862637i \(0.668811\pi\)
\(390\) 0 0
\(391\) −574.657 428.768i −1.46971 1.09659i
\(392\) 168.536 0.429938
\(393\) 189.570 457.663i 0.482367 1.16454i
\(394\) 41.8629 + 27.9719i 0.106251 + 0.0709947i
\(395\) 0 0
\(396\) −3.25866 + 0.648187i −0.00822893 + 0.00163684i
\(397\) −422.031 + 281.992i −1.06305 + 0.710308i −0.958754 0.284239i \(-0.908259\pi\)
−0.104297 + 0.994546i \(0.533259\pi\)
\(398\) −586.302 116.623i −1.47312 0.293022i
\(399\) −787.544 + 326.211i −1.97379 + 0.817572i
\(400\) 0 0
\(401\) −31.1894 + 156.800i −0.0777791 + 0.391022i 0.922211 + 0.386686i \(0.126380\pi\)
−0.999991 + 0.00433613i \(0.998620\pi\)
\(402\) −184.691 276.410i −0.459431 0.687586i
\(403\) −33.0334 166.070i −0.0819688 0.412085i
\(404\) −75.0215 + 75.0215i −0.185697 + 0.185697i
\(405\) 0 0
\(406\) −103.633 42.9263i −0.255254 0.105730i
\(407\) 291.833i 0.717036i
\(408\) −48.3143 332.306i −0.118418 0.814475i
\(409\) −95.3354 −0.233094 −0.116547 0.993185i \(-0.537183\pi\)
−0.116547 + 0.993185i \(0.537183\pi\)
\(410\) 0 0
\(411\) 351.157 + 234.636i 0.854397 + 0.570890i
\(412\) −159.923 159.923i −0.388162 0.388162i
\(413\) 737.431 146.684i 1.78555 0.355168i
\(414\) −18.7078 + 12.5001i −0.0451879 + 0.0301936i
\(415\) 0 0
\(416\) −155.170 + 64.2737i −0.373006 + 0.154504i
\(417\) 263.324 + 635.721i 0.631474 + 1.52451i
\(418\) 178.698 898.377i 0.427508 2.14923i
\(419\) −388.725 581.769i −0.927745 1.38847i −0.921453 0.388489i \(-0.872997\pi\)
−0.00629204 0.999980i \(-0.502003\pi\)
\(420\) 0 0
\(421\) −312.222 + 312.222i −0.741619 + 0.741619i −0.972890 0.231270i \(-0.925712\pi\)
0.231270 + 0.972890i \(0.425712\pi\)
\(422\) −113.986 + 170.592i −0.270109 + 0.404247i
\(423\) 3.82257 + 1.58336i 0.00903680 + 0.00374317i
\(424\) 464.520i 1.09557i
\(425\) 0 0
\(426\) 626.340 1.47028
\(427\) −37.8585 + 91.3985i −0.0886616 + 0.214048i
\(428\) −115.117 76.9184i −0.268964 0.179716i
\(429\) 256.089 + 256.089i 0.596943 + 0.596943i
\(430\) 0 0
\(431\) 148.646 99.3222i 0.344887 0.230446i −0.371047 0.928614i \(-0.621001\pi\)
0.715934 + 0.698168i \(0.246001\pi\)
\(432\) 502.713 + 99.9958i 1.16369 + 0.231472i
\(433\) −111.126 + 46.0297i −0.256641 + 0.106304i −0.507295 0.861773i \(-0.669354\pi\)
0.250654 + 0.968077i \(0.419354\pi\)
\(434\) 133.043 + 321.193i 0.306550 + 0.740077i
\(435\) 0 0
\(436\) −13.7657 20.6018i −0.0315727 0.0472519i
\(437\) −266.626 1340.42i −0.610128 3.06732i
\(438\) 240.219 240.219i 0.548446 0.548446i
\(439\) −38.0431 + 56.9356i −0.0866586 + 0.129694i −0.872266 0.489031i \(-0.837350\pi\)
0.785608 + 0.618725i \(0.212350\pi\)
\(440\) 0 0
\(441\) 6.10701i 0.0138481i
\(442\) 273.156 246.144i 0.618000 0.556886i
\(443\) 50.2158 0.113354 0.0566770 0.998393i \(-0.481949\pi\)
0.0566770 + 0.998393i \(0.481949\pi\)
\(444\) 30.7409 74.2151i 0.0692363 0.167151i
\(445\) 0 0
\(446\) 60.0020 + 60.0020i 0.134534 + 0.134534i
\(447\) 445.352 88.5861i 0.996314 0.198179i
\(448\) −267.285 + 178.594i −0.596619 + 0.398648i
\(449\) 307.311 + 61.1279i 0.684434 + 0.136142i 0.525046 0.851074i \(-0.324048\pi\)
0.159388 + 0.987216i \(0.449048\pi\)
\(450\) 0 0
\(451\) 34.9132 + 84.2879i 0.0774128 + 0.186891i
\(452\) −34.4781 + 173.333i −0.0762790 + 0.383481i
\(453\) 43.3617 + 64.8953i 0.0957211 + 0.143257i
\(454\) −120.065 603.605i −0.264459 1.32953i
\(455\) 0 0
\(456\) 355.610 532.207i 0.779845 1.16712i
\(457\) 454.099 + 188.094i 0.993652 + 0.411584i 0.819465 0.573129i \(-0.194270\pi\)
0.174187 + 0.984713i \(0.444270\pi\)
\(458\) 4.73268i 0.0103334i
\(459\) −448.088 + 65.1480i −0.976226 + 0.141935i
\(460\) 0 0
\(461\) −48.7596 + 117.716i −0.105769 + 0.255349i −0.967900 0.251337i \(-0.919130\pi\)
0.862131 + 0.506686i \(0.169130\pi\)
\(462\) −618.280 413.121i −1.33827 0.894202i
\(463\) −586.946 586.946i −1.26770 1.26770i −0.947272 0.320430i \(-0.896173\pi\)
−0.320430 0.947272i \(-0.603827\pi\)
\(464\) 107.981 21.4788i 0.232718 0.0462904i
\(465\) 0 0
\(466\) −548.639 109.131i −1.17734 0.234187i
\(467\) −38.2085 + 15.8265i −0.0818168 + 0.0338896i −0.423217 0.906029i \(-0.639099\pi\)
0.341400 + 0.939918i \(0.389099\pi\)
\(468\) −0.972889 2.34876i −0.00207882 0.00501872i
\(469\) 81.5574 410.017i 0.173896 0.874236i
\(470\) 0 0
\(471\) 117.556 + 590.996i 0.249589 + 1.25477i
\(472\) −399.216 + 399.216i −0.845796 + 0.845796i
\(473\) −41.1892 + 61.6440i −0.0870807 + 0.130325i
\(474\) −149.512 61.9297i −0.315425 0.130653i
\(475\) 0 0
\(476\) −99.4726 + 133.318i −0.208976 + 0.280081i
\(477\) 16.8322 0.0352877
\(478\) −63.5904 + 153.521i −0.133034 + 0.321173i
\(479\) 237.445 + 158.656i 0.495711 + 0.331223i 0.778168 0.628057i \(-0.216149\pi\)
−0.282457 + 0.959280i \(0.591149\pi\)
\(480\) 0 0
\(481\) −219.012 + 43.5642i −0.455326 + 0.0905701i
\(482\) 411.663 275.064i 0.854072 0.570673i
\(483\) −1088.16 216.449i −2.25293 0.448135i
\(484\) 36.2855 15.0299i 0.0749700 0.0310536i
\(485\) 0 0
\(486\) −5.61864 + 28.2468i −0.0115610 + 0.0581210i
\(487\) 275.022 + 411.599i 0.564727 + 0.845173i 0.998438 0.0558790i \(-0.0177961\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(488\) −14.4922 72.8572i −0.0296971 0.149298i
\(489\) 376.265 376.265i 0.769459 0.769459i
\(490\) 0 0
\(491\) −449.400 186.147i −0.915274 0.379119i −0.125201 0.992131i \(-0.539958\pi\)
−0.790073 + 0.613013i \(0.789958\pi\)
\(492\) 25.1126i 0.0510418i
\(493\) −83.5662 + 49.7608i −0.169505 + 0.100935i
\(494\) 700.880 1.41879
\(495\) 0 0
\(496\) −283.718 189.574i −0.572012 0.382206i
\(497\) 556.950 + 556.950i 1.12062 + 1.12062i
\(498\) 743.972 147.985i 1.49392 0.297159i
\(499\) −257.371 + 171.970i −0.515773 + 0.344628i −0.786059 0.618152i \(-0.787882\pi\)
0.270286 + 0.962780i \(0.412882\pi\)
\(500\) 0 0
\(501\) −392.440 + 162.554i −0.783313 + 0.324459i
\(502\) −388.439 937.774i −0.773782 1.86808i
\(503\) −6.22881 + 31.3143i −0.0123833 + 0.0622552i −0.986483 0.163864i \(-0.947604\pi\)
0.974100 + 0.226120i \(0.0726040\pi\)
\(504\) −7.36213 11.0182i −0.0146074 0.0218615i
\(505\) 0 0
\(506\) 843.006 843.006i 1.66602 1.66602i
\(507\) 131.378 196.620i 0.259127 0.387812i
\(508\) −4.91415 2.03551i −0.00967352 0.00400690i
\(509\) 518.506i 1.01868i 0.860567 + 0.509338i \(0.170110\pi\)
−0.860567 + 0.509338i \(0.829890\pi\)
\(510\) 0 0
\(511\) 427.212 0.836032
\(512\) 61.9396 149.535i 0.120976 0.292061i
\(513\) −717.639 479.511i −1.39891 0.934719i
\(514\) −199.441 199.441i −0.388018 0.388018i
\(515\) 0 0
\(516\) 16.9681 11.3377i 0.0328838 0.0219723i
\(517\) −215.022 42.7706i −0.415904 0.0827284i
\(518\) 423.587 175.455i 0.817735 0.338717i
\(519\) −250.514 604.793i −0.482685 1.16531i
\(520\) 0 0
\(521\) 102.308 + 153.115i 0.196369 + 0.293887i 0.916567 0.399882i \(-0.130949\pi\)
−0.720198 + 0.693769i \(0.755949\pi\)
\(522\) 0.595431 + 2.99344i 0.00114067 + 0.00573455i
\(523\) 362.318 362.318i 0.692769 0.692769i −0.270071 0.962840i \(-0.587047\pi\)
0.962840 + 0.270071i \(0.0870472\pi\)
\(524\) 102.366 153.202i 0.195356 0.292370i
\(525\) 0 0
\(526\) 593.587i 1.12849i
\(527\) 292.193 + 74.0864i 0.554447 + 0.140581i
\(528\) 729.841 1.38227
\(529\) 478.278 1154.66i 0.904117 2.18273i
\(530\) 0 0
\(531\) −14.4659 14.4659i −0.0272427 0.0272427i
\(532\) −310.972 + 61.8562i −0.584534 + 0.116271i
\(533\) −58.0437 + 38.7835i −0.108900 + 0.0727646i
\(534\) 192.025 + 38.1961i 0.359597 + 0.0715282i
\(535\) 0 0
\(536\) 120.127 + 290.013i 0.224118 + 0.541070i
\(537\) 15.8069 79.4667i 0.0294356 0.147983i
\(538\) −245.718 367.742i −0.456724 0.683536i
\(539\) −63.1298 317.375i −0.117124 0.588822i
\(540\) 0 0
\(541\) 225.117 336.911i 0.416113 0.622757i −0.562907 0.826520i \(-0.690317\pi\)
0.979020 + 0.203763i \(0.0653173\pi\)
\(542\) 909.476 + 376.717i 1.67800 + 0.695050i
\(543\) 118.272i 0.217812i
\(544\) 15.5322 298.599i 0.0285519 0.548896i
\(545\) 0 0
\(546\) 217.739 525.670i 0.398790 0.962765i
\(547\) −208.273 139.163i −0.380755 0.254412i 0.350434 0.936587i \(-0.386034\pi\)
−0.731189 + 0.682175i \(0.761034\pi\)
\(548\) 111.078 + 111.078i 0.202697 + 0.202697i
\(549\) 2.64003 0.525136i 0.00480881 0.000956531i
\(550\) 0 0
\(551\) −181.828 36.1678i −0.329996 0.0656404i
\(552\) 769.681 318.812i 1.39435 0.577558i
\(553\) −77.8789 188.016i −0.140830 0.339993i
\(554\) −93.9460 + 472.298i −0.169578 + 0.852524i
\(555\) 0 0
\(556\) 49.9316 + 251.023i 0.0898050 + 0.451480i
\(557\) 308.383 308.383i 0.553650 0.553650i −0.373843 0.927492i \(-0.621960\pi\)
0.927492 + 0.373843i \(0.121960\pi\)
\(558\) 5.25536 7.86520i 0.00941820 0.0140953i
\(559\) −52.4105 21.7091i −0.0937576 0.0388357i
\(560\) 0 0
\(561\) −607.679 + 215.457i −1.08321 + 0.384059i
\(562\) 174.214 0.309990
\(563\) 102.073 246.425i 0.181301 0.437700i −0.806934 0.590642i \(-0.798875\pi\)
0.988235 + 0.152942i \(0.0488747\pi\)
\(564\) 50.1762 + 33.5267i 0.0889649 + 0.0594444i
\(565\) 0 0
\(566\) −757.656 + 150.707i −1.33861 + 0.266267i
\(567\) −597.842 + 399.465i −1.05440 + 0.704524i
\(568\) −580.069 115.383i −1.02125 0.203139i
\(569\) 847.496 351.044i 1.48945 0.616949i 0.518251 0.855229i \(-0.326583\pi\)
0.971197 + 0.238280i \(0.0765834\pi\)
\(570\) 0 0
\(571\) 87.7452 441.125i 0.153669 0.772548i −0.824682 0.565597i \(-0.808646\pi\)
0.978351 0.206951i \(-0.0663541\pi\)
\(572\) 74.8397 + 112.006i 0.130839 + 0.195814i
\(573\) 87.3249 + 439.012i 0.152399 + 0.766164i
\(574\) 101.351 101.351i 0.176569 0.176569i
\(575\) 0 0
\(576\) 8.08083 + 3.34719i 0.0140292 + 0.00581109i
\(577\) 181.502i 0.314561i 0.987554 + 0.157281i \(0.0502727\pi\)
−0.987554 + 0.157281i \(0.949727\pi\)
\(578\) 186.404 + 627.492i 0.322498 + 1.08563i
\(579\) 698.296 1.20604
\(580\) 0 0
\(581\) 793.141 + 529.960i 1.36513 + 0.912151i
\(582\) 442.369 + 442.369i 0.760085 + 0.760085i
\(583\) −874.753 + 173.999i −1.50043 + 0.298455i
\(584\) −266.726 + 178.220i −0.456722 + 0.305172i
\(585\) 0 0
\(586\) −155.848 + 64.5546i −0.265953 + 0.110161i
\(587\) −379.719 916.723i −0.646881 1.56171i −0.817222 0.576324i \(-0.804487\pi\)
0.170341 0.985385i \(-0.445513\pi\)
\(588\) −17.3771 + 87.3603i −0.0295528 + 0.148572i
\(589\) 319.222 + 477.750i 0.541973 + 0.811120i
\(590\) 0 0
\(591\) 47.7666 47.7666i 0.0808234 0.0808234i
\(592\) −250.009 + 374.165i −0.422312 + 0.632035i
\(593\) 419.577 + 173.795i 0.707550 + 0.293077i 0.707290 0.706923i \(-0.249917\pi\)
0.000259609 1.00000i \(0.499917\pi\)
\(594\) 752.902i 1.26751i
\(595\) 0 0
\(596\) 168.895 0.283382
\(597\) −306.933 + 741.002i −0.514126 + 1.24121i
\(598\) 758.492 + 506.808i 1.26838 + 0.847505i
\(599\) −550.958 550.958i −0.919797 0.919797i 0.0772177 0.997014i \(-0.475396\pi\)
−0.997014 + 0.0772177i \(0.975396\pi\)
\(600\) 0 0
\(601\) −645.794 + 431.506i −1.07453 + 0.717980i −0.961276 0.275586i \(-0.911128\pi\)
−0.113257 + 0.993566i \(0.536128\pi\)
\(602\) 114.238 + 22.7233i 0.189764 + 0.0377464i
\(603\) −10.5089 + 4.35291i −0.0174276 + 0.00721875i
\(604\) 11.1095 + 26.8207i 0.0183932 + 0.0444052i
\(605\) 0 0
\(606\) 358.943 + 537.196i 0.592315 + 0.886463i
\(607\) 103.953 + 522.608i 0.171257 + 0.860969i 0.966891 + 0.255190i \(0.0821382\pi\)
−0.795633 + 0.605778i \(0.792862\pi\)
\(608\) 403.009 403.009i 0.662843 0.662843i
\(609\) −83.6141 + 125.137i −0.137297 + 0.205480i
\(610\) 0 0
\(611\) 167.752i 0.274554i
\(612\) 4.51980 + 0.235106i 0.00738529 + 0.000384160i
\(613\) 223.657 0.364857 0.182429 0.983219i \(-0.441604\pi\)
0.182429 + 0.983219i \(0.441604\pi\)
\(614\) −326.560 + 788.384i −0.531856 + 1.28401i
\(615\) 0 0
\(616\) 496.500 + 496.500i 0.806007 + 0.806007i
\(617\) 310.061 61.6750i 0.502530 0.0999595i 0.0626855 0.998033i \(-0.480033\pi\)
0.439845 + 0.898074i \(0.355033\pi\)
\(618\) −1145.14 + 765.157i −1.85298 + 1.23812i
\(619\) 148.503 + 29.5391i 0.239908 + 0.0477208i 0.313580 0.949562i \(-0.398472\pi\)
−0.0736715 + 0.997283i \(0.523472\pi\)
\(620\) 0 0
\(621\) −429.893 1037.85i −0.692259 1.67126i
\(622\) 202.542 1018.25i 0.325630 1.63705i
\(623\) 136.786 + 204.715i 0.219561 + 0.328596i
\(624\) 108.949 + 547.723i 0.174598 + 0.877761i
\(625\) 0 0
\(626\) 418.275 625.993i 0.668171 0.999989i
\(627\) −1135.42 470.307i −1.81088 0.750090i
\(628\) 224.129i 0.356893i
\(629\) 97.7045 385.342i 0.155333 0.612626i
\(630\) 0 0
\(631\) 96.3665 232.649i 0.152720 0.368699i −0.828940 0.559337i \(-0.811056\pi\)
0.981660 + 0.190638i \(0.0610556\pi\)
\(632\) 127.058 + 84.8974i 0.201041 + 0.134331i
\(633\) 194.650 + 194.650i 0.307504 + 0.307504i
\(634\) −408.556 + 81.2668i −0.644410 + 0.128181i
\(635\) 0 0
\(636\) 240.784 + 47.8949i 0.378591 + 0.0753064i
\(637\) 228.756 94.7539i 0.359115 0.148750i
\(638\) −61.8879 149.411i −0.0970029 0.234186i
\(639\) 4.18099 21.0192i 0.00654302 0.0328940i
\(640\) 0 0
\(641\) 12.1076 + 60.8689i 0.0188886 + 0.0949592i 0.989080 0.147382i \(-0.0470847\pi\)
−0.970191 + 0.242341i \(0.922085\pi\)
\(642\) −596.159 + 596.159i −0.928597 + 0.928597i
\(643\) −30.5959 + 45.7900i −0.0475831 + 0.0712131i −0.854498 0.519454i \(-0.826135\pi\)
0.806915 + 0.590667i \(0.201135\pi\)
\(644\) −381.262 157.924i −0.592022 0.245223i
\(645\) 0 0
\(646\) −536.729 + 1126.41i −0.830850 + 1.74366i
\(647\) −689.341 −1.06544 −0.532721 0.846291i \(-0.678830\pi\)
−0.532721 + 0.846291i \(0.678830\pi\)
\(648\) 206.612 498.804i 0.318845 0.769760i
\(649\) 901.314 + 602.239i 1.38877 + 0.927949i
\(650\) 0 0
\(651\) 457.490 91.0004i 0.702750 0.139786i
\(652\) 164.567 109.960i 0.252404 0.168651i
\(653\) −857.031 170.474i −1.31245 0.261063i −0.511237 0.859440i \(-0.670813\pi\)
−0.801215 + 0.598377i \(0.795813\pi\)
\(654\) −139.399 + 57.7411i −0.213149 + 0.0882892i
\(655\) 0 0
\(656\) −27.4452 + 137.977i −0.0418372 + 0.210330i
\(657\) −6.45795 9.66500i −0.00982945 0.0147108i
\(658\) 67.1951 + 337.813i 0.102120 + 0.513393i
\(659\) −347.128 + 347.128i −0.526750 + 0.526750i −0.919602 0.392852i \(-0.871488\pi\)
0.392852 + 0.919602i \(0.371488\pi\)
\(660\) 0 0
\(661\) 299.168 + 123.919i 0.452599 + 0.187473i 0.597325 0.801999i \(-0.296230\pi\)
−0.144726 + 0.989472i \(0.546230\pi\)
\(662\) 623.615i 0.942017i
\(663\) −252.407 423.881i −0.380704 0.639338i
\(664\) −716.273 −1.07872
\(665\) 0 0
\(666\) −10.3726 6.93072i −0.0155744 0.0104065i
\(667\) −170.621 170.621i −0.255804 0.255804i
\(668\) −154.960 + 30.8234i −0.231976 + 0.0461429i
\(669\) 94.6638 63.2523i 0.141500 0.0945475i
\(670\) 0 0
\(671\) −131.771 + 54.5815i −0.196381 + 0.0813435i
\(672\) −177.061 427.463i −0.263484 0.636106i
\(673\) −122.596 + 616.330i −0.182163 + 0.915796i 0.776253 + 0.630421i \(0.217118\pi\)
−0.958416 + 0.285374i \(0.907882\pi\)
\(674\) 272.641 + 408.036i 0.404512 + 0.605395i
\(675\) 0 0
\(676\) 62.1950 62.1950i 0.0920044 0.0920044i
\(677\) 184.949 276.796i 0.273189 0.408856i −0.669353 0.742945i \(-0.733428\pi\)
0.942542 + 0.334089i \(0.108428\pi\)
\(678\) 994.281 + 411.845i 1.46649 + 0.607441i
\(679\) 786.721i 1.15865i
\(680\) 0 0
\(681\) −825.725 −1.21252
\(682\) −191.811 + 463.072i −0.281247 + 0.678991i
\(683\) 939.366 + 627.664i 1.37535 + 0.918981i 0.999969 0.00788807i \(-0.00251088\pi\)
0.375384 + 0.926869i \(0.377511\pi\)
\(684\) 6.10021 + 6.10021i 0.00891843 + 0.00891843i
\(685\) 0 0
\(686\) 376.103 251.304i 0.548256 0.366333i
\(687\) −6.22784 1.23879i −0.00906527 0.00180319i
\(688\) −105.619 + 43.7487i −0.153516 + 0.0635883i
\(689\) −261.162 630.501i −0.379045 0.915096i
\(690\) 0 0
\(691\) 302.850 + 453.247i 0.438278 + 0.655929i 0.983194 0.182561i \(-0.0584388\pi\)
−0.544917 + 0.838490i \(0.683439\pi\)
\(692\) −47.5024 238.811i −0.0686451 0.345102i
\(693\) −17.9911 + 17.9911i −0.0259611 + 0.0259611i
\(694\) −812.666 + 1216.24i −1.17099 + 1.75251i
\(695\) 0 0
\(696\) 113.010i 0.162370i
\(697\) −17.8808 122.984i −0.0256539 0.176448i
\(698\) 1166.03 1.67052
\(699\) −287.216 + 693.401i −0.410896 + 0.991990i
\(700\) 0 0
\(701\) 322.860 + 322.860i 0.460571 + 0.460571i 0.898843 0.438271i \(-0.144409\pi\)
−0.438271 + 0.898843i \(0.644409\pi\)
\(702\) 565.030 112.391i 0.804886 0.160102i
\(703\) 630.052 420.987i 0.896234 0.598844i
\(704\) −454.553 90.4162i −0.645672 0.128432i
\(705\) 0 0
\(706\) −414.497 1000.69i −0.587107 1.41740i
\(707\) −158.505 + 796.859i −0.224194 + 1.12710i
\(708\) −165.772 248.095i −0.234141 0.350417i
\(709\) 14.4960 + 72.8762i 0.0204457 + 0.102787i 0.989661 0.143429i \(-0.0458128\pi\)
−0.969215 + 0.246216i \(0.920813\pi\)
\(710\) 0 0
\(711\) −3.07632 + 4.60404i −0.00432675 + 0.00647544i
\(712\) −170.802 70.7487i −0.239891 0.0993661i
\(713\) 747.850i 1.04888i
\(714\) 678.076 + 752.490i 0.949687 + 1.05391i
\(715\) 0 0
\(716\) 11.5329 27.8429i 0.0161074 0.0388868i
\(717\) 185.377 + 123.865i 0.258545 + 0.172754i
\(718\) −779.213 779.213i −1.08525 1.08525i
\(719\) −623.839 + 124.089i −0.867649 + 0.172586i −0.608792 0.793330i \(-0.708346\pi\)
−0.258856 + 0.965916i \(0.583346\pi\)
\(720\) 0 0
\(721\) −1698.66 337.885i −2.35598 0.468633i
\(722\) −1441.90 + 597.253i −1.99708 + 0.827220i
\(723\) −254.209 613.715i −0.351603 0.848846i
\(724\) 8.58233 43.1463i 0.0118540 0.0595943i
\(725\) 0 0
\(726\) −46.6595 234.573i −0.0642692 0.323103i
\(727\) 321.409 321.409i 0.442103 0.442103i −0.450615 0.892718i \(-0.648795\pi\)
0.892718 + 0.450615i \(0.148795\pi\)
\(728\) −298.492 + 446.724i −0.410016 + 0.613633i
\(729\) −654.972 271.298i −0.898453 0.372152i
\(730\) 0 0
\(731\) 75.0250 67.6058i 0.102633 0.0924840i
\(732\) 39.2597 0.0536335
\(733\) 283.876 685.338i 0.387280 0.934977i −0.603234 0.797564i \(-0.706121\pi\)
0.990514 0.137413i \(-0.0438786\pi\)
\(734\) −12.1071 8.08972i −0.0164947 0.0110214i
\(735\) 0 0
\(736\) 727.552 144.719i 0.988522 0.196629i
\(737\) 501.137 334.849i 0.679968 0.454340i
\(738\) −3.82497 0.760834i −0.00518288 0.00103094i
\(739\) −95.2857 + 39.4686i −0.128939 + 0.0534081i −0.446220 0.894923i \(-0.647230\pi\)
0.317281 + 0.948331i \(0.397230\pi\)
\(740\) 0 0
\(741\) 183.458 922.305i 0.247581 1.24468i
\(742\) 778.471 + 1165.06i 1.04915 + 1.57017i
\(743\) 159.447 + 801.593i 0.214599 + 1.07886i 0.926418 + 0.376497i \(0.122872\pi\)
−0.711819 + 0.702363i \(0.752128\pi\)
\(744\) −247.667 + 247.667i −0.332885 + 0.332885i
\(745\) 0 0
\(746\) 1303.56 + 539.952i 1.74740 + 0.723797i
\(747\) 25.9547i 0.0347452i
\(748\) −237.319 + 34.5041i −0.317272 + 0.0461285i
\(749\) −1060.23 −1.41552
\(750\) 0 0
\(751\) −882.764 589.844i −1.17545 0.785411i −0.194737 0.980856i \(-0.562385\pi\)
−0.980715 + 0.195444i \(0.937385\pi\)
\(752\) −239.043 239.043i −0.317876 0.317876i
\(753\) −1335.71 + 265.690i −1.77386 + 0.352842i
\(754\) 102.890 68.7486i 0.136458 0.0911785i
\(755\) 0 0
\(756\) −240.778 + 99.7335i −0.318489 + 0.131923i
\(757\) 222.848 + 538.002i 0.294383 + 0.710702i 0.999998 + 0.00210719i \(0.000670740\pi\)
−0.705615 + 0.708595i \(0.749329\pi\)
\(758\) 234.382 1178.32i 0.309210 1.55451i
\(759\) −888.671 1329.99i −1.17084 1.75229i
\(760\) 0 0
\(761\) 2.47478 2.47478i 0.00325201 0.00325201i −0.705479 0.708731i \(-0.749268\pi\)
0.708731 + 0.705479i \(0.249268\pi\)
\(762\) −17.9953 + 26.9318i −0.0236158 + 0.0353436i
\(763\) −175.300 72.6116i −0.229751 0.0951660i
\(764\) 166.491i 0.217920i
\(765\) 0 0
\(766\) 1231.16 1.60726
\(767\) −317.416 + 766.309i −0.413840 + 0.999099i
\(768\) 508.731 + 339.923i 0.662410 + 0.442608i
\(769\) 832.190 + 832.190i 1.08217 + 1.08217i 0.996307 + 0.0858646i \(0.0273652\pi\)
0.0858646 + 0.996307i \(0.472635\pi\)
\(770\) 0 0
\(771\) −314.654 + 210.245i −0.408111 + 0.272691i
\(772\) 254.743 + 50.6715i 0.329978 + 0.0656366i
\(773\) −781.877 + 323.864i −1.01148 + 0.418970i −0.825996 0.563676i \(-0.809386\pi\)
−0.185488 + 0.982647i \(0.559386\pi\)
\(774\) −1.21280 2.92795i −0.00156692 0.00378288i
\(775\) 0 0
\(776\) −328.197 491.182i −0.422935 0.632966i
\(777\) −120.011 603.334i −0.154454 0.776492i
\(778\) −170.963 + 170.963i −0.219746 + 0.219746i
\(779\) 131.608 196.966i 0.168945 0.252845i
\(780\) 0 0
\(781\) 1135.57i 1.45399i
\(782\) −1395.35 + 830.885i −1.78434 + 1.06251i
\(783\) −152.384 −0.194616
\(784\) 190.950 460.994i 0.243559 0.588003i
\(785\) 0 0
\(786\) −793.395 793.395i −1.00941 1.00941i
\(787\) −420.371 + 83.6170i −0.534144 + 0.106248i −0.454790 0.890599i \(-0.650286\pi\)
−0.0793537 + 0.996847i \(0.525286\pi\)
\(788\) 20.8917 13.9594i 0.0265123 0.0177150i
\(789\) 781.115 + 155.373i 0.990006 + 0.196925i
\(790\) 0 0
\(791\) 517.910 + 1250.35i 0.654754 + 1.58072i
\(792\) 3.72720 18.7379i 0.00470606 0.0236589i
\(793\) −60.6322 90.7425i −0.0764593 0.114429i
\(794\) 224.289 + 1127.58i 0.282480 + 1.42012i
\(795\) 0 0
\(796\) −165.741 + 248.050i −0.208218 + 0.311620i
\(797\) −787.879 326.350i −0.988555 0.409473i −0.170967 0.985277i \(-0.554689\pi\)
−0.817588 + 0.575804i \(0.804689\pi\)
\(798\) 1930.78i 2.41953i
\(799\) 269.600 + 128.464i 0.337422 + 0.160780i
\(800\) 0 0
\(801\) 2.56363 6.18915i 0.00320054 0.00772678i
\(802\) 301.087 + 201.180i 0.375420 + 0.250848i
\(803\) 435.522 + 435.522i 0.542369 + 0.542369i
\(804\) −162.714 + 32.3659i −0.202381 + 0.0402561i
\(805\) 0 0
\(806\) −376.154 74.8217i −0.466693 0.0928309i
\(807\) −548.238 + 227.088i −0.679354 + 0.281397i
\(808\) −233.465 563.635i −0.288942 0.697568i
\(809\) −179.783 + 903.832i −0.222229 + 1.11722i 0.695045 + 0.718966i \(0.255384\pi\)
−0.917275 + 0.398255i \(0.869616\pi\)
\(810\) 0 0
\(811\) −201.219 1011.60i −0.248112 1.24734i −0.881006 0.473105i \(-0.843133\pi\)
0.632894 0.774239i \(-0.281867\pi\)
\(812\) −39.5834 + 39.5834i −0.0487481 + 0.0487481i
\(813\) 733.789 1098.19i 0.902570 1.35079i
\(814\) 610.695 + 252.958i 0.750240 + 0.310760i
\(815\) 0 0
\(816\) −963.694 244.347i −1.18100 0.299445i
\(817\) 192.504 0.235623
\(818\) −82.6358 + 199.500i −0.101022 + 0.243888i
\(819\) −16.1874 10.8161i −0.0197648 0.0132064i
\(820\) 0 0
\(821\) −1386.48 + 275.788i −1.68877 + 0.335918i −0.943633 0.330992i \(-0.892617\pi\)
−0.745138 + 0.666910i \(0.767617\pi\)
\(822\) 795.381 531.457i 0.967617 0.646541i
\(823\) 955.396 + 190.040i 1.16087 + 0.230911i 0.737694 0.675136i \(-0.235915\pi\)
0.423177 + 0.906047i \(0.360915\pi\)
\(824\) 1201.50 497.677i 1.45813 0.603976i
\(825\) 0 0
\(826\) 332.244 1670.31i 0.402233 2.02216i
\(827\) 321.110 + 480.574i 0.388282 + 0.581106i 0.973192 0.229992i \(-0.0738702\pi\)
−0.584910 + 0.811098i \(0.698870\pi\)
\(828\) 2.19056 + 11.0127i 0.00264561 + 0.0133004i
\(829\) 129.943 129.943i 0.156747 0.156747i −0.624377 0.781123i \(-0.714647\pi\)
0.781123 + 0.624377i \(0.214647\pi\)
\(830\) 0 0
\(831\) 596.918 + 247.251i 0.718313 + 0.297535i
\(832\) 354.625i 0.426232i
\(833\) −22.8980 + 440.203i −0.0274886 + 0.528455i
\(834\) 1558.57 1.86879
\(835\) 0 0
\(836\) −380.081 253.962i −0.454642 0.303782i
\(837\) 333.959 + 333.959i 0.398995 + 0.398995i
\(838\) −1554.36 + 309.182i −1.85485 + 0.368952i
\(839\) 125.718 84.0020i 0.149843 0.100122i −0.478389 0.878148i \(-0.658779\pi\)
0.628232 + 0.778026i \(0.283779\pi\)
\(840\) 0 0
\(841\) 746.743 309.311i 0.887922 0.367789i
\(842\) 382.730 + 923.991i 0.454548 + 1.09738i
\(843\) 45.6012 229.253i 0.0540940 0.271949i
\(844\) 56.8848 + 85.1342i 0.0673991 + 0.100870i
\(845\) 0 0
\(846\) 6.62673 6.62673i 0.00783301 0.00783301i
\(847\) 167.095 250.076i 0.197279 0.295249i
\(848\) −1270.60 526.299i −1.49835 0.620636i
\(849\) 1036.47i 1.22081i
\(850\) 0 0
\(851\) 986.259 1.15894
\(852\) 119.617 288.782i 0.140396 0.338946i
\(853\) 533.335 + 356.363i 0.625246 + 0.417776i 0.827428 0.561572i \(-0.189803\pi\)
−0.202182 + 0.979348i \(0.564803\pi\)
\(854\) 158.447 + 158.447i 0.185535 + 0.185535i
\(855\) 0 0
\(856\) 661.942 442.295i 0.773296 0.516700i
\(857\) −388.859 77.3489i −0.453745 0.0902554i −0.0370731 0.999313i \(-0.511803\pi\)
−0.416671 + 0.909057i \(0.636803\pi\)
\(858\) 757.870 313.920i 0.883299 0.365874i
\(859\) −220.120 531.415i −0.256251 0.618644i 0.742434 0.669920i \(-0.233671\pi\)
−0.998685 + 0.0512752i \(0.983671\pi\)
\(860\) 0 0
\(861\) −106.841 159.899i −0.124089 0.185713i
\(862\) −78.9982 397.151i −0.0916453 0.460732i
\(863\) −53.5935 + 53.5935i −0.0621014 + 0.0621014i −0.737475 0.675374i \(-0.763982\pi\)
0.675374 + 0.737475i \(0.263982\pi\)
\(864\) 260.269 389.520i 0.301237 0.450833i
\(865\) 0 0
\(866\) 272.441i 0.314597i
\(867\) 874.524 81.0451i 1.00868 0.0934776i
\(868\) 173.499 0.199883
\(869\) 112.280 271.068i 0.129206 0.311931i
\(870\) 0 0
\(871\) 326.102 + 326.102i 0.374400 + 0.374400i
\(872\) 139.738 27.7957i 0.160250 0.0318758i
\(873\) 17.7983 11.8925i 0.0203876 0.0136225i
\(874\) −3036.09 603.916i −3.47379 0.690979i
\(875\) 0 0
\(876\) −64.8794 156.633i −0.0740633 0.178805i
\(877\) −133.064 + 668.960i −0.151727 + 0.762782i 0.827730 + 0.561127i \(0.189632\pi\)
−0.979457 + 0.201655i \(0.935368\pi\)
\(878\) 86.1689 + 128.961i 0.0981422 + 0.146880i
\(879\) 44.1550 + 221.982i 0.0502332 + 0.252539i
\(880\) 0 0
\(881\) 553.002 827.626i 0.627698 0.939416i −0.372239 0.928137i \(-0.621410\pi\)
0.999936 0.0112790i \(-0.00359030\pi\)
\(882\) 12.7796 + 5.29350i 0.0144894 + 0.00600170i
\(883\) 374.875i 0.424547i −0.977210 0.212274i \(-0.931913\pi\)
0.977210 0.212274i \(-0.0680868\pi\)
\(884\) −61.3208 172.950i −0.0693674 0.195645i
\(885\) 0 0
\(886\) 43.5266 105.082i 0.0491271 0.118603i
\(887\) 233.253 + 155.854i 0.262968 + 0.175710i 0.680064 0.733153i \(-0.261952\pi\)
−0.417096 + 0.908863i \(0.636952\pi\)
\(888\) 326.621 + 326.621i 0.367816 + 0.367816i
\(889\) −39.9498 + 7.94650i −0.0449379 + 0.00893869i
\(890\) 0 0
\(891\) −1016.71 202.236i −1.14109 0.226976i
\(892\) 39.1238 16.2056i 0.0438607 0.0181677i
\(893\) 217.843 + 525.920i 0.243946 + 0.588937i
\(894\) 200.650 1008.74i 0.224441 1.12834i
\(895\) 0 0
\(896\) 260.858 + 1311.42i 0.291136 + 1.46364i
\(897\) 865.458 865.458i 0.964836 0.964836i
\(898\) 394.291 590.098i 0.439077 0.657125i
\(899\) 93.7239 + 38.8217i 0.104254 + 0.0431832i
\(900\) 0 0
\(901\) 1213.29 + 63.1118i 1.34661 + 0.0700464i
\(902\) 206.644 0.229096
\(903\) 59.8043 144.380i 0.0662285 0.159890i
\(904\) −844.960 564.584i −0.934690 0.624540i
\(905\) 0 0
\(906\) 173.386 34.4887i 0.191376 0.0380670i
\(907\) 1164.09 777.821i 1.28345 0.857575i 0.288456 0.957493i \(-0.406858\pi\)
0.994996 + 0.0999181i \(0.0318581\pi\)
\(908\) −301.230 59.9183i −0.331751 0.0659893i
\(909\) 20.4237 8.45979i 0.0224683 0.00930669i
\(910\) 0 0
\(911\) 160.305 805.907i 0.175966 0.884640i −0.787399 0.616444i \(-0.788573\pi\)
0.963364 0.268196i \(-0.0864274\pi\)
\(912\) −1052.84 1575.69i −1.15443 1.72772i
\(913\) 268.300 + 1348.84i 0.293867 + 1.47737i
\(914\) 787.217 787.217i 0.861287 0.861287i
\(915\) 0 0
\(916\) −2.18206 0.903839i −0.00238216 0.000986724i
\(917\) 1410.99i 1.53871i
\(918\) −252.068 + 994.146i −0.274584 + 1.08295i
\(919\) −1120.50 −1.21926 −0.609629 0.792687i \(-0.708681\pi\)
−0.609629 + 0.792687i \(0.708681\pi\)
\(920\) 0 0
\(921\) 951.976 + 636.090i 1.03363 + 0.690651i
\(922\) 204.070 + 204.070i 0.221334 + 0.221334i
\(923\) −852.208 + 169.515i −0.923303 + 0.183656i
\(924\) −308.553 + 206.168i −0.333932 + 0.223126i
\(925\) 0 0
\(926\) −1737.01 + 719.494i −1.87582 + 0.776991i
\(927\) 18.0337 + 43.5372i 0.0194538 + 0.0469656i
\(928\) 19.6312 98.6926i 0.0211543 0.106350i
\(929\) 436.195 + 652.812i 0.469532 + 0.702704i 0.988353 0.152179i \(-0.0486290\pi\)
−0.518821 + 0.854883i \(0.673629\pi\)
\(930\) 0 0
\(931\) −594.126 + 594.126i −0.638159 + 0.638159i
\(932\) −155.094 + 232.115i −0.166410 + 0.249051i
\(933\) −1286.92 533.059i −1.37933 0.571339i
\(934\) 93.6738i 0.100293i
\(935\) 0 0
\(936\) 14.6186 0.0156182
\(937\) 59.2177 142.964i 0.0631993 0.152577i −0.889125 0.457665i \(-0.848686\pi\)
0.952324 + 0.305088i \(0.0986860\pi\)
\(938\) −787.315 526.067i −0.839355 0.560839i
\(939\) −714.274 714.274i −0.760675 0.760675i
\(940\) 0 0
\(941\) −592.097 + 395.627i −0.629221 + 0.420432i −0.828875 0.559434i \(-0.811018\pi\)
0.199653 + 0.979867i \(0.436018\pi\)
\(942\) 1338.62 + 266.269i 1.42104 + 0.282663i
\(943\) 284.853 117.990i 0.302071 0.125122i
\(944\) 639.663 + 1544.28i 0.677609 + 1.63589i
\(945\) 0 0
\(946\) 93.2947 + 139.625i 0.0986202 + 0.147596i
\(947\) −255.927 1286.63i −0.270250 1.35864i −0.842561 0.538601i \(-0.818953\pi\)
0.572311 0.820037i \(-0.306047\pi\)
\(948\) −57.1070 + 57.1070i −0.0602394 + 0.0602394i
\(949\) −261.832 + 391.860i −0.275904 + 0.412919i
\(950\) 0 0
\(951\) 558.900i 0.587697i
\(952\) −489.362 821.814i −0.514035 0.863250i
\(953\) 780.393 0.818880 0.409440 0.912337i \(-0.365724\pi\)
0.409440 + 0.912337i \(0.365724\pi\)
\(954\) 14.5900 35.2234i 0.0152935 0.0369218i
\(955\) 0 0
\(956\) 58.6384 + 58.6384i 0.0613372 + 0.0613372i
\(957\) −212.812 + 42.3310i −0.222374 + 0.0442330i
\(958\) 537.821 359.361i 0.561400 0.375115i
\(959\) 1179.84 + 234.685i 1.23028 + 0.244719i
\(960\) 0 0
\(961\) 247.438 + 597.367i 0.257479 + 0.621610i
\(962\) −98.6743 + 496.069i −0.102572 + 0.515664i
\(963\) 16.0269 + 23.9859i 0.0166427 + 0.0249075i
\(964\) −48.2031 242.334i −0.0500033 0.251383i
\(965\) 0 0
\(966\) −1396.15 + 2089.49i −1.44529 + 2.16304i
\(967\) 471.272 + 195.207i 0.487355 + 0.201869i 0.612810 0.790230i \(-0.290039\pi\)
−0.125455 + 0.992099i \(0.540039\pi\)
\(968\) 225.839i 0.233305i
\(969\) 1341.77 + 1001.14i 1.38470 + 1.03316i
\(970\) 0 0
\(971\) 184.941 446.487i 0.190464 0.459822i −0.799583 0.600555i \(-0.794946\pi\)
0.990047 + 0.140734i \(0.0449462\pi\)
\(972\) 11.9505 + 7.98507i 0.0122948 + 0.00821509i
\(973\) 1385.90 + 1385.90i 1.42436 + 1.42436i
\(974\) 1099.71 218.745i 1.12906 0.224584i
\(975\) 0 0
\(976\) −215.705 42.9065i −0.221010 0.0439616i
\(977\) −1057.21 + 437.911i −1.08210 + 0.448220i −0.851245 0.524768i \(-0.824152\pi\)
−0.230854 + 0.972988i \(0.574152\pi\)
\(978\) −461.236 1113.52i −0.471611 1.13857i
\(979\) −69.2503 + 348.145i −0.0707357 + 0.355612i
\(980\) 0 0
\(981\) 1.00720 + 5.06352i 0.00102670 + 0.00516159i
\(982\) −779.070 + 779.070i −0.793350 + 0.793350i
\(983\) 282.402 422.644i 0.287286 0.429953i −0.659555 0.751656i \(-0.729255\pi\)
0.946841 + 0.321703i \(0.104255\pi\)
\(984\) 133.410 + 55.2603i 0.135579 + 0.0561588i
\(985\) 0 0
\(986\) 31.6959 + 218.004i 0.0321459 + 0.221099i
\(987\) 462.124 0.468211
\(988\) 133.853 323.150i 0.135479 0.327075i
\(989\) 208.327 + 139.200i 0.210644 + 0.140748i
\(990\) 0 0
\(991\) 1123.35 223.448i 1.13355 0.225477i 0.407558 0.913179i \(-0.366381\pi\)
0.725993 + 0.687702i \(0.241381\pi\)
\(992\) −259.313 + 173.267i −0.261404 + 0.174665i
\(993\) −820.630 163.233i −0.826415 0.164384i
\(994\) 1648.24 682.723i 1.65819 0.686844i
\(995\) 0 0
\(996\) 73.8522 371.280i 0.0741488 0.372771i
\(997\) −40.7309 60.9581i −0.0408534 0.0611415i 0.810481 0.585765i \(-0.199206\pi\)
−0.851334 + 0.524624i \(0.824206\pi\)
\(998\) 136.780 + 687.639i 0.137054 + 0.689017i
\(999\) 440.422 440.422i 0.440863 0.440863i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.e.401.10 96
5.2 odd 4 425.3.t.e.299.10 96
5.3 odd 4 425.3.t.h.299.3 96
5.4 even 2 85.3.q.a.61.3 yes 96
17.12 odd 16 inner 425.3.u.e.301.10 96
85.12 even 16 425.3.t.h.199.3 96
85.29 odd 16 85.3.q.a.46.3 96
85.63 even 16 425.3.t.e.199.10 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.3 96 85.29 odd 16
85.3.q.a.61.3 yes 96 5.4 even 2
425.3.t.e.199.10 96 85.63 even 16
425.3.t.e.299.10 96 5.2 odd 4
425.3.t.h.199.3 96 85.12 even 16
425.3.t.h.299.3 96 5.3 odd 4
425.3.u.e.301.10 96 17.12 odd 16 inner
425.3.u.e.401.10 96 1.1 even 1 trivial