Properties

Label 425.3.u.e.401.1
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.1
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.e.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.35804 + 3.27860i) q^{2} +(-2.09388 - 1.39909i) q^{3} +(-6.07650 - 6.07650i) q^{4} +(7.43063 - 4.96499i) q^{6} +(3.01835 + 0.600386i) q^{7} +(15.0602 - 6.23812i) q^{8} +(-1.01725 - 2.45586i) q^{9} +(9.22089 + 13.8000i) q^{11} +(4.22193 + 21.2251i) q^{12} +(-2.30659 + 2.30659i) q^{13} +(-6.06746 + 9.08060i) q^{14} +23.4739i q^{16} +(4.41170 - 16.4176i) q^{17} +9.43323 q^{18} +(-11.1013 + 26.8010i) q^{19} +(-5.48007 - 5.48007i) q^{21} +(-57.7671 + 11.4906i) q^{22} +(-10.8556 + 7.25351i) q^{23} +(-40.2619 - 8.00859i) q^{24} +(-4.42995 - 10.6948i) q^{26} +(-5.72761 + 28.7946i) q^{27} +(-14.6927 - 21.9892i) q^{28} +(-4.03821 - 20.3015i) q^{29} +(7.76376 - 11.6193i) q^{31} +(-16.7209 - 6.92600i) q^{32} -41.7965i q^{33} +(47.8354 + 36.7599i) q^{34} +(-8.74171 + 21.1043i) q^{36} +(-31.0567 - 20.7514i) q^{37} +(-72.7936 - 72.7936i) q^{38} +(8.05687 - 1.60261i) q^{39} +(-70.6653 - 14.0562i) q^{41} +(25.4091 - 10.5248i) q^{42} +(6.10068 + 14.7283i) q^{43} +(27.8252 - 139.887i) q^{44} +(-9.03894 - 45.4418i) q^{46} +(41.1986 - 41.1986i) q^{47} +(32.8421 - 49.1516i) q^{48} +(-36.5201 - 15.1271i) q^{49} +(-32.2072 + 28.2041i) q^{51} +28.0320 q^{52} +(-33.6831 + 81.3182i) q^{53} +(-86.6277 - 57.8828i) q^{54} +(49.2020 - 9.78689i) q^{56} +(60.7419 - 40.5864i) q^{57} +(72.0444 + 14.3305i) q^{58} +(29.0766 - 12.0439i) q^{59} +(-20.7793 + 104.464i) q^{61} +(27.5515 + 41.2337i) q^{62} +(-1.59595 - 8.02337i) q^{63} +(-20.9790 + 20.9790i) q^{64} +(137.034 + 56.7613i) q^{66} +16.8254i q^{67} +(-126.569 + 72.9537i) q^{68} +32.8787 q^{69} +(-71.4772 - 47.7595i) q^{71} +(-30.6399 - 30.6399i) q^{72} +(-11.7471 + 2.33665i) q^{73} +(110.212 - 73.6411i) q^{74} +(230.314 - 95.3990i) q^{76} +(19.5465 + 47.1894i) q^{77} +(-5.68723 + 28.5916i) q^{78} +(-14.9438 - 22.3650i) q^{79} +(35.3625 - 35.3625i) q^{81} +(142.051 - 212.594i) q^{82} +(-97.0588 - 40.2031i) q^{83} +66.5994i q^{84} -56.5732 q^{86} +(-19.9480 + 48.1587i) q^{87} +(224.954 + 150.310i) q^{88} +(-64.1441 - 64.1441i) q^{89} +(-8.34694 + 5.57725i) q^{91} +(110.040 + 21.8884i) q^{92} +(-32.5128 + 13.4673i) q^{93} +(79.1242 + 191.023i) q^{94} +(25.3214 + 37.8962i) q^{96} +(18.6933 + 93.9775i) q^{97} +(99.1916 - 99.1916i) q^{98} +(24.5110 - 36.6833i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 192 q^{12} + 48 q^{13} - 64 q^{14} - 16 q^{17} - 128 q^{18} + 48 q^{19} - 192 q^{22} - 112 q^{23} + 240 q^{24} - 224 q^{26} + 288 q^{27} + 480 q^{28} - 64 q^{31} + 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.35804 + 3.27860i −0.679020 + 1.63930i 0.0867861 + 0.996227i \(0.472340\pi\)
−0.765806 + 0.643072i \(0.777660\pi\)
\(3\) −2.09388 1.39909i −0.697961 0.466363i 0.155286 0.987870i \(-0.450370\pi\)
−0.853247 + 0.521507i \(0.825370\pi\)
\(4\) −6.07650 6.07650i −1.51913 1.51913i
\(5\) 0 0
\(6\) 7.43063 4.96499i 1.23844 0.827498i
\(7\) 3.01835 + 0.600386i 0.431192 + 0.0857695i 0.405915 0.913911i \(-0.366953\pi\)
0.0252777 + 0.999680i \(0.491953\pi\)
\(8\) 15.0602 6.23812i 1.88252 0.779765i
\(9\) −1.01725 2.45586i −0.113028 0.272873i
\(10\) 0 0
\(11\) 9.22089 + 13.8000i 0.838263 + 1.25455i 0.964905 + 0.262600i \(0.0845800\pi\)
−0.126642 + 0.991948i \(0.540420\pi\)
\(12\) 4.22193 + 21.2251i 0.351827 + 1.76876i
\(13\) −2.30659 + 2.30659i −0.177430 + 0.177430i −0.790235 0.612804i \(-0.790041\pi\)
0.612804 + 0.790235i \(0.290041\pi\)
\(14\) −6.06746 + 9.08060i −0.433390 + 0.648614i
\(15\) 0 0
\(16\) 23.4739i 1.46712i
\(17\) 4.41170 16.4176i 0.259512 0.965740i
\(18\) 9.43323 0.524069
\(19\) −11.1013 + 26.8010i −0.584281 + 1.41058i 0.304618 + 0.952475i \(0.401471\pi\)
−0.888899 + 0.458104i \(0.848529\pi\)
\(20\) 0 0
\(21\) −5.48007 5.48007i −0.260956 0.260956i
\(22\) −57.7671 + 11.4906i −2.62578 + 0.522300i
\(23\) −10.8556 + 7.25351i −0.471984 + 0.315370i −0.768715 0.639591i \(-0.779104\pi\)
0.296731 + 0.954961i \(0.404104\pi\)
\(24\) −40.2619 8.00859i −1.67758 0.333691i
\(25\) 0 0
\(26\) −4.42995 10.6948i −0.170383 0.411340i
\(27\) −5.72761 + 28.7946i −0.212134 + 1.06647i
\(28\) −14.6927 21.9892i −0.524741 0.785330i
\(29\) −4.03821 20.3015i −0.139249 0.700051i −0.985824 0.167782i \(-0.946340\pi\)
0.846575 0.532269i \(-0.178660\pi\)
\(30\) 0 0
\(31\) 7.76376 11.6193i 0.250444 0.374816i −0.684852 0.728682i \(-0.740133\pi\)
0.935296 + 0.353866i \(0.115133\pi\)
\(32\) −16.7209 6.92600i −0.522527 0.216438i
\(33\) 41.7965i 1.26656i
\(34\) 47.8354 + 36.7599i 1.40692 + 1.08117i
\(35\) 0 0
\(36\) −8.74171 + 21.1043i −0.242825 + 0.586232i
\(37\) −31.0567 20.7514i −0.839369 0.560848i 0.0599201 0.998203i \(-0.480915\pi\)
−0.899289 + 0.437355i \(0.855915\pi\)
\(38\) −72.7936 72.7936i −1.91562 1.91562i
\(39\) 8.05687 1.60261i 0.206586 0.0410926i
\(40\) 0 0
\(41\) −70.6653 14.0562i −1.72354 0.342834i −0.768624 0.639700i \(-0.779058\pi\)
−0.954919 + 0.296866i \(0.904058\pi\)
\(42\) 25.4091 10.5248i 0.604979 0.250590i
\(43\) 6.10068 + 14.7283i 0.141876 + 0.342519i 0.978806 0.204791i \(-0.0656516\pi\)
−0.836929 + 0.547311i \(0.815652\pi\)
\(44\) 27.8252 139.887i 0.632391 3.17924i
\(45\) 0 0
\(46\) −9.03894 45.4418i −0.196499 0.987866i
\(47\) 41.1986 41.1986i 0.876565 0.876565i −0.116612 0.993178i \(-0.537203\pi\)
0.993178 + 0.116612i \(0.0372035\pi\)
\(48\) 32.8421 49.1516i 0.684210 1.02399i
\(49\) −36.5201 15.1271i −0.745309 0.308717i
\(50\) 0 0
\(51\) −32.2072 + 28.2041i −0.631515 + 0.553022i
\(52\) 28.0320 0.539078
\(53\) −33.6831 + 81.3182i −0.635530 + 1.53431i 0.197045 + 0.980394i \(0.436865\pi\)
−0.832575 + 0.553912i \(0.813135\pi\)
\(54\) −86.6277 57.8828i −1.60422 1.07190i
\(55\) 0 0
\(56\) 49.2020 9.78689i 0.878608 0.174766i
\(57\) 60.7419 40.5864i 1.06565 0.712042i
\(58\) 72.0444 + 14.3305i 1.24214 + 0.247078i
\(59\) 29.0766 12.0439i 0.492824 0.204134i −0.122409 0.992480i \(-0.539062\pi\)
0.615233 + 0.788346i \(0.289062\pi\)
\(60\) 0 0
\(61\) −20.7793 + 104.464i −0.340644 + 1.71253i 0.307956 + 0.951401i \(0.400355\pi\)
−0.648599 + 0.761130i \(0.724645\pi\)
\(62\) 27.5515 + 41.2337i 0.444379 + 0.665060i
\(63\) −1.59595 8.02337i −0.0253325 0.127355i
\(64\) −20.9790 + 20.9790i −0.327798 + 0.327798i
\(65\) 0 0
\(66\) 137.034 + 56.7613i 2.07627 + 0.860020i
\(67\) 16.8254i 0.251125i 0.992086 + 0.125563i \(0.0400736\pi\)
−0.992086 + 0.125563i \(0.959926\pi\)
\(68\) −126.569 + 72.9537i −1.86131 + 1.07285i
\(69\) 32.8787 0.476504
\(70\) 0 0
\(71\) −71.4772 47.7595i −1.00672 0.672670i −0.0611646 0.998128i \(-0.519481\pi\)
−0.945556 + 0.325458i \(0.894481\pi\)
\(72\) −30.6399 30.6399i −0.425554 0.425554i
\(73\) −11.7471 + 2.33665i −0.160920 + 0.0320089i −0.274893 0.961475i \(-0.588642\pi\)
0.113973 + 0.993484i \(0.463642\pi\)
\(74\) 110.212 73.6411i 1.48935 0.995149i
\(75\) 0 0
\(76\) 230.314 95.3990i 3.03044 1.25525i
\(77\) 19.5465 + 47.1894i 0.253850 + 0.612849i
\(78\) −5.68723 + 28.5916i −0.0729132 + 0.366559i
\(79\) −14.9438 22.3650i −0.189162 0.283102i 0.724751 0.689011i \(-0.241955\pi\)
−0.913913 + 0.405909i \(0.866955\pi\)
\(80\) 0 0
\(81\) 35.3625 35.3625i 0.436574 0.436574i
\(82\) 142.051 212.594i 1.73233 2.59261i
\(83\) −97.0588 40.2031i −1.16938 0.484374i −0.288394 0.957512i \(-0.593121\pi\)
−0.880989 + 0.473137i \(0.843121\pi\)
\(84\) 66.5994i 0.792850i
\(85\) 0 0
\(86\) −56.5732 −0.657828
\(87\) −19.9480 + 48.1587i −0.229287 + 0.553549i
\(88\) 224.954 + 150.310i 2.55630 + 1.70806i
\(89\) −64.1441 64.1441i −0.720720 0.720720i 0.248032 0.968752i \(-0.420216\pi\)
−0.968752 + 0.248032i \(0.920216\pi\)
\(90\) 0 0
\(91\) −8.34694 + 5.57725i −0.0917247 + 0.0612885i
\(92\) 110.040 + 21.8884i 1.19609 + 0.237917i
\(93\) −32.5128 + 13.4673i −0.349600 + 0.144809i
\(94\) 79.1242 + 191.023i 0.841747 + 2.03216i
\(95\) 0 0
\(96\) 25.3214 + 37.8962i 0.263765 + 0.394752i
\(97\) 18.6933 + 93.9775i 0.192714 + 0.968840i 0.949162 + 0.314787i \(0.101933\pi\)
−0.756448 + 0.654054i \(0.773067\pi\)
\(98\) 99.1916 99.1916i 1.01216 1.01216i
\(99\) 24.5110 36.6833i 0.247586 0.370538i
\(100\) 0 0
\(101\) 61.9441i 0.613308i 0.951821 + 0.306654i \(0.0992095\pi\)
−0.951821 + 0.306654i \(0.900791\pi\)
\(102\) −48.7313 143.897i −0.477758 1.41075i
\(103\) −113.139 −1.09843 −0.549217 0.835680i \(-0.685074\pi\)
−0.549217 + 0.835680i \(0.685074\pi\)
\(104\) −20.3488 + 49.1264i −0.195662 + 0.472370i
\(105\) 0 0
\(106\) −220.867 220.867i −2.08365 2.08365i
\(107\) −161.058 + 32.0364i −1.50521 + 0.299405i −0.877703 0.479204i \(-0.840925\pi\)
−0.627509 + 0.778610i \(0.715925\pi\)
\(108\) 209.775 140.167i 1.94236 1.29784i
\(109\) 67.4012 + 13.4069i 0.618359 + 0.122999i 0.494323 0.869278i \(-0.335416\pi\)
0.124036 + 0.992278i \(0.460416\pi\)
\(110\) 0 0
\(111\) 35.9960 + 86.9020i 0.324288 + 0.782901i
\(112\) −14.0934 + 70.8524i −0.125834 + 0.632610i
\(113\) −32.1670 48.1413i −0.284664 0.426030i 0.661388 0.750044i \(-0.269968\pi\)
−0.946052 + 0.324014i \(0.894968\pi\)
\(114\) 50.5767 + 254.266i 0.443655 + 2.23040i
\(115\) 0 0
\(116\) −98.8237 + 147.900i −0.851929 + 1.27500i
\(117\) 8.01104 + 3.31828i 0.0684705 + 0.0283614i
\(118\) 111.687i 0.946496i
\(119\) 23.1729 46.9052i 0.194731 0.394161i
\(120\) 0 0
\(121\) −59.1115 + 142.708i −0.488525 + 1.17940i
\(122\) −314.278 209.994i −2.57605 1.72126i
\(123\) 128.299 + 128.299i 1.04308 + 1.04308i
\(124\) −117.781 + 23.4281i −0.949848 + 0.188937i
\(125\) 0 0
\(126\) 28.4728 + 5.66359i 0.225974 + 0.0449491i
\(127\) −197.044 + 81.6183i −1.55153 + 0.642664i −0.983592 0.180410i \(-0.942258\pi\)
−0.567935 + 0.823073i \(0.692258\pi\)
\(128\) −67.9955 164.156i −0.531215 1.28247i
\(129\) 7.83214 39.3748i 0.0607142 0.305231i
\(130\) 0 0
\(131\) −19.3893 97.4764i −0.148010 0.744095i −0.981485 0.191538i \(-0.938652\pi\)
0.833475 0.552557i \(-0.186348\pi\)
\(132\) −253.977 + 253.977i −1.92407 + 1.92407i
\(133\) −49.5986 + 74.2296i −0.372922 + 0.558117i
\(134\) −55.1637 22.8495i −0.411669 0.170519i
\(135\) 0 0
\(136\) −35.9739 274.772i −0.264514 2.02038i
\(137\) 183.661 1.34059 0.670295 0.742095i \(-0.266168\pi\)
0.670295 + 0.742095i \(0.266168\pi\)
\(138\) −44.6506 + 107.796i −0.323555 + 0.781132i
\(139\) 72.5126 + 48.4514i 0.521673 + 0.348571i 0.788362 0.615212i \(-0.210929\pi\)
−0.266688 + 0.963783i \(0.585929\pi\)
\(140\) 0 0
\(141\) −143.905 + 28.6246i −1.02061 + 0.203011i
\(142\) 253.653 169.486i 1.78629 1.19356i
\(143\) −53.0999 10.5622i −0.371328 0.0738617i
\(144\) 57.6485 23.8788i 0.400337 0.165825i
\(145\) 0 0
\(146\) 8.29214 41.6874i 0.0567955 0.285530i
\(147\) 55.3047 + 82.7694i 0.376223 + 0.563057i
\(148\) 62.6200 + 314.812i 0.423108 + 2.12711i
\(149\) −164.741 + 164.741i −1.10564 + 1.10564i −0.111925 + 0.993717i \(0.535702\pi\)
−0.993717 + 0.111925i \(0.964298\pi\)
\(150\) 0 0
\(151\) 68.2613 + 28.2748i 0.452062 + 0.187250i 0.597085 0.802178i \(-0.296326\pi\)
−0.145023 + 0.989428i \(0.546326\pi\)
\(152\) 472.878i 3.11104i
\(153\) −44.8070 + 5.86625i −0.292856 + 0.0383415i
\(154\) −181.260 −1.17701
\(155\) 0 0
\(156\) −58.6958 39.2193i −0.376255 0.251406i
\(157\) −18.7958 18.7958i −0.119719 0.119719i 0.644709 0.764428i \(-0.276978\pi\)
−0.764428 + 0.644709i \(0.776978\pi\)
\(158\) 93.6203 18.6222i 0.592533 0.117862i
\(159\) 184.300 123.145i 1.15912 0.774499i
\(160\) 0 0
\(161\) −37.1210 + 15.3760i −0.230565 + 0.0955032i
\(162\) 67.9158 + 163.963i 0.419233 + 1.01212i
\(163\) 23.4970 118.127i 0.144153 0.724707i −0.839318 0.543641i \(-0.817045\pi\)
0.983471 0.181066i \(-0.0579547\pi\)
\(164\) 343.985 + 514.810i 2.09747 + 3.13909i
\(165\) 0 0
\(166\) 263.619 263.619i 1.58807 1.58807i
\(167\) −95.7021 + 143.228i −0.573067 + 0.857655i −0.998888 0.0471525i \(-0.984985\pi\)
0.425821 + 0.904807i \(0.359985\pi\)
\(168\) −116.716 48.3454i −0.694739 0.287770i
\(169\) 158.359i 0.937037i
\(170\) 0 0
\(171\) 77.1122 0.450949
\(172\) 52.4260 126.568i 0.304802 0.735858i
\(173\) 71.0685 + 47.4864i 0.410800 + 0.274488i 0.743752 0.668456i \(-0.233044\pi\)
−0.332951 + 0.942944i \(0.608044\pi\)
\(174\) −130.803 130.803i −0.751741 0.751741i
\(175\) 0 0
\(176\) −323.941 + 216.450i −1.84057 + 1.22983i
\(177\) −77.7335 15.4622i −0.439172 0.0873568i
\(178\) 297.413 123.192i 1.67086 0.692092i
\(179\) −87.9680 212.374i −0.491441 1.18644i −0.953987 0.299849i \(-0.903064\pi\)
0.462545 0.886596i \(-0.346936\pi\)
\(180\) 0 0
\(181\) −23.2648 34.8182i −0.128535 0.192366i 0.761620 0.648023i \(-0.224404\pi\)
−0.890155 + 0.455658i \(0.849404\pi\)
\(182\) −6.95008 34.9404i −0.0381872 0.191980i
\(183\) 189.664 189.664i 1.03642 1.03642i
\(184\) −118.239 + 176.958i −0.642605 + 0.961726i
\(185\) 0 0
\(186\) 124.886i 0.671428i
\(187\) 267.243 90.5030i 1.42911 0.483973i
\(188\) −500.686 −2.66323
\(189\) −34.5758 + 83.4734i −0.182941 + 0.441658i
\(190\) 0 0
\(191\) 33.9712 + 33.9712i 0.177860 + 0.177860i 0.790422 0.612563i \(-0.209861\pi\)
−0.612563 + 0.790422i \(0.709861\pi\)
\(192\) 73.2792 14.5761i 0.381663 0.0759174i
\(193\) 42.5673 28.4426i 0.220556 0.147371i −0.440384 0.897810i \(-0.645158\pi\)
0.660940 + 0.750439i \(0.270158\pi\)
\(194\) −333.501 66.3374i −1.71908 0.341945i
\(195\) 0 0
\(196\) 129.995 + 313.835i 0.663238 + 1.60120i
\(197\) −14.4570 + 72.6800i −0.0733855 + 0.368934i −0.999974 0.00714165i \(-0.997727\pi\)
0.926589 + 0.376076i \(0.122727\pi\)
\(198\) 86.9828 + 130.179i 0.439307 + 0.657469i
\(199\) 19.2364 + 96.7081i 0.0966655 + 0.485970i 0.998542 + 0.0539768i \(0.0171897\pi\)
−0.901877 + 0.431994i \(0.857810\pi\)
\(200\) 0 0
\(201\) 23.5402 35.2304i 0.117115 0.175276i
\(202\) −203.090 84.1226i −1.00540 0.416448i
\(203\) 63.7014i 0.313800i
\(204\) 367.090 + 24.3249i 1.79946 + 0.119240i
\(205\) 0 0
\(206\) 153.647 370.936i 0.745858 1.80066i
\(207\) 28.8565 + 19.2813i 0.139403 + 0.0931463i
\(208\) −54.1447 54.1447i −0.260311 0.260311i
\(209\) −472.219 + 93.9302i −2.25942 + 0.449427i
\(210\) 0 0
\(211\) 247.268 + 49.1846i 1.17188 + 0.233102i 0.742391 0.669967i \(-0.233692\pi\)
0.429494 + 0.903070i \(0.358692\pi\)
\(212\) 698.806 289.455i 3.29625 1.36535i
\(213\) 82.8451 + 200.006i 0.388944 + 0.938995i
\(214\) 113.688 571.550i 0.531254 2.67079i
\(215\) 0 0
\(216\) 93.3657 + 469.381i 0.432249 + 2.17306i
\(217\) 30.4098 30.4098i 0.140137 0.140137i
\(218\) −135.489 + 202.774i −0.621511 + 0.930157i
\(219\) 27.8663 + 11.5426i 0.127244 + 0.0527060i
\(220\) 0 0
\(221\) 27.6927 + 48.0447i 0.125306 + 0.217397i
\(222\) −333.801 −1.50361
\(223\) 101.688 245.496i 0.455999 1.10088i −0.514004 0.857788i \(-0.671838\pi\)
0.970003 0.243091i \(-0.0781615\pi\)
\(224\) −46.3110 30.9441i −0.206746 0.138143i
\(225\) 0 0
\(226\) 201.520 40.0849i 0.891682 0.177367i
\(227\) 108.945 72.7947i 0.479934 0.320681i −0.291963 0.956430i \(-0.594308\pi\)
0.771896 + 0.635748i \(0.219308\pi\)
\(228\) −615.722 122.475i −2.70053 0.537170i
\(229\) 108.516 44.9489i 0.473870 0.196284i −0.132950 0.991123i \(-0.542445\pi\)
0.606820 + 0.794839i \(0.292445\pi\)
\(230\) 0 0
\(231\) 25.0941 126.156i 0.108632 0.546131i
\(232\) −187.459 280.552i −0.808013 1.20928i
\(233\) 62.0785 + 312.090i 0.266431 + 1.33944i 0.849745 + 0.527194i \(0.176756\pi\)
−0.583314 + 0.812247i \(0.698244\pi\)
\(234\) −21.7586 + 21.7586i −0.0929856 + 0.0929856i
\(235\) 0 0
\(236\) −249.869 103.499i −1.05877 0.438555i
\(237\) 67.7375i 0.285812i
\(238\) 122.314 + 139.674i 0.513922 + 0.586865i
\(239\) 325.592 1.36231 0.681155 0.732139i \(-0.261478\pi\)
0.681155 + 0.732139i \(0.261478\pi\)
\(240\) 0 0
\(241\) 267.722 + 178.886i 1.11088 + 0.742267i 0.968863 0.247598i \(-0.0796411\pi\)
0.142017 + 0.989864i \(0.454641\pi\)
\(242\) −387.606 387.606i −1.60168 1.60168i
\(243\) 135.631 26.9788i 0.558154 0.111024i
\(244\) 761.043 508.513i 3.11903 2.08407i
\(245\) 0 0
\(246\) −594.876 + 246.406i −2.41820 + 1.00165i
\(247\) −36.2127 87.4252i −0.146610 0.353948i
\(248\) 44.4409 223.420i 0.179197 0.900885i
\(249\) 146.982 + 219.974i 0.590290 + 0.883431i
\(250\) 0 0
\(251\) −312.141 + 312.141i −1.24359 + 1.24359i −0.285089 + 0.958501i \(0.592023\pi\)
−0.958501 + 0.285089i \(0.907977\pi\)
\(252\) −39.0563 + 58.4518i −0.154985 + 0.231952i
\(253\) −200.197 82.9244i −0.791294 0.327765i
\(254\) 756.869i 2.97980i
\(255\) 0 0
\(256\) 511.865 1.99947
\(257\) 103.333 249.469i 0.402076 0.970696i −0.585086 0.810971i \(-0.698939\pi\)
0.987162 0.159725i \(-0.0510608\pi\)
\(258\) 118.458 + 79.1510i 0.459139 + 0.306787i
\(259\) −81.2809 81.2809i −0.313826 0.313826i
\(260\) 0 0
\(261\) −45.7496 + 30.5689i −0.175286 + 0.117122i
\(262\) 345.917 + 68.8073i 1.32030 + 0.262623i
\(263\) 224.407 92.9523i 0.853258 0.353431i 0.0871908 0.996192i \(-0.472211\pi\)
0.766067 + 0.642761i \(0.222211\pi\)
\(264\) −260.732 629.462i −0.987620 2.38433i
\(265\) 0 0
\(266\) −176.012 263.421i −0.661700 0.990303i
\(267\) 44.5670 + 224.053i 0.166918 + 0.839152i
\(268\) 102.240 102.240i 0.381491 0.381491i
\(269\) 178.212 266.713i 0.662498 0.991499i −0.336264 0.941768i \(-0.609164\pi\)
0.998763 0.0497311i \(-0.0158364\pi\)
\(270\) 0 0
\(271\) 9.30633i 0.0343407i −0.999853 0.0171703i \(-0.994534\pi\)
0.999853 0.0171703i \(-0.00546576\pi\)
\(272\) 385.385 + 103.560i 1.41685 + 0.380735i
\(273\) 25.2806 0.0926029
\(274\) −249.419 + 602.150i −0.910287 + 2.19763i
\(275\) 0 0
\(276\) −199.788 199.788i −0.723869 0.723869i
\(277\) −264.142 + 52.5411i −0.953582 + 0.189679i −0.647277 0.762254i \(-0.724092\pi\)
−0.306304 + 0.951934i \(0.599092\pi\)
\(278\) −257.328 + 171.941i −0.925639 + 0.618492i
\(279\) −36.4330 7.24697i −0.130584 0.0259748i
\(280\) 0 0
\(281\) −71.3107 172.159i −0.253775 0.612666i 0.744728 0.667368i \(-0.232579\pi\)
−0.998503 + 0.0547017i \(0.982579\pi\)
\(282\) 101.581 510.681i 0.360216 1.81093i
\(283\) 64.7275 + 96.8716i 0.228719 + 0.342302i 0.928023 0.372522i \(-0.121507\pi\)
−0.699304 + 0.714824i \(0.746507\pi\)
\(284\) 144.120 + 724.542i 0.507466 + 2.55121i
\(285\) 0 0
\(286\) 106.741 159.749i 0.373220 0.558564i
\(287\) −204.853 84.8530i −0.713774 0.295655i
\(288\) 48.1095i 0.167047i
\(289\) −250.074 144.859i −0.865307 0.501242i
\(290\) 0 0
\(291\) 92.3413 222.932i 0.317324 0.766088i
\(292\) 85.5802 + 57.1829i 0.293083 + 0.195832i
\(293\) −138.715 138.715i −0.473429 0.473429i 0.429593 0.903022i \(-0.358657\pi\)
−0.903022 + 0.429593i \(0.858657\pi\)
\(294\) −346.474 + 68.9179i −1.17848 + 0.234415i
\(295\) 0 0
\(296\) −597.168 118.784i −2.01746 0.401297i
\(297\) −450.181 + 186.471i −1.51576 + 0.627848i
\(298\) −316.394 763.842i −1.06172 2.56323i
\(299\) 8.30865 41.7704i 0.0277881 0.139700i
\(300\) 0 0
\(301\) 9.57126 + 48.1180i 0.0317982 + 0.159860i
\(302\) −185.403 + 185.403i −0.613918 + 0.613918i
\(303\) 86.6653 129.704i 0.286024 0.428065i
\(304\) −629.124 260.592i −2.06949 0.857209i
\(305\) 0 0
\(306\) 41.6166 154.871i 0.136002 0.506114i
\(307\) 34.2391 0.111528 0.0557639 0.998444i \(-0.482241\pi\)
0.0557639 + 0.998444i \(0.482241\pi\)
\(308\) 167.972 405.521i 0.545364 1.31663i
\(309\) 236.899 + 158.291i 0.766664 + 0.512269i
\(310\) 0 0
\(311\) 113.544 22.5853i 0.365092 0.0726214i −0.00913523 0.999958i \(-0.502908\pi\)
0.374228 + 0.927337i \(0.377908\pi\)
\(312\) 111.340 74.3952i 0.356860 0.238446i
\(313\) 12.1725 + 2.42127i 0.0388899 + 0.00773568i 0.214497 0.976725i \(-0.431189\pi\)
−0.175607 + 0.984460i \(0.556189\pi\)
\(314\) 87.1495 36.0985i 0.277546 0.114963i
\(315\) 0 0
\(316\) −45.0949 + 226.707i −0.142705 + 0.717429i
\(317\) 46.7826 + 70.0152i 0.147579 + 0.220868i 0.897893 0.440214i \(-0.145097\pi\)
−0.750314 + 0.661082i \(0.770097\pi\)
\(318\) 153.457 + 771.481i 0.482570 + 2.42604i
\(319\) 242.925 242.925i 0.761520 0.761520i
\(320\) 0 0
\(321\) 382.058 + 158.254i 1.19021 + 0.493002i
\(322\) 142.586i 0.442814i
\(323\) 391.032 + 300.495i 1.21062 + 0.930325i
\(324\) −429.761 −1.32642
\(325\) 0 0
\(326\) 355.382 + 237.459i 1.09013 + 0.728401i
\(327\) −122.373 122.373i −0.374229 0.374229i
\(328\) −1151.91 + 229.130i −3.51193 + 0.698567i
\(329\) 149.087 99.6165i 0.453151 0.302786i
\(330\) 0 0
\(331\) 59.8241 24.7799i 0.180737 0.0748639i −0.290480 0.956881i \(-0.593815\pi\)
0.471217 + 0.882017i \(0.343815\pi\)
\(332\) 345.484 + 834.072i 1.04061 + 2.51227i
\(333\) −19.3701 + 97.3801i −0.0581685 + 0.292433i
\(334\) −339.621 508.279i −1.01683 1.52179i
\(335\) 0 0
\(336\) 128.639 128.639i 0.382853 0.382853i
\(337\) −33.6282 + 50.3281i −0.0997869 + 0.149342i −0.878003 0.478655i \(-0.841125\pi\)
0.778216 + 0.627996i \(0.216125\pi\)
\(338\) −519.196 215.058i −1.53608 0.636267i
\(339\) 145.807i 0.430109i
\(340\) 0 0
\(341\) 231.935 0.680162
\(342\) −104.721 + 252.820i −0.306203 + 0.739240i
\(343\) −226.531 151.363i −0.660440 0.441292i
\(344\) 183.754 + 183.754i 0.534169 + 0.534169i
\(345\) 0 0
\(346\) −252.203 + 168.516i −0.728910 + 0.487042i
\(347\) 218.128 + 43.3885i 0.628612 + 0.125039i 0.499108 0.866540i \(-0.333661\pi\)
0.129505 + 0.991579i \(0.458661\pi\)
\(348\) 413.851 171.423i 1.18923 0.492594i
\(349\) −26.2500 63.3730i −0.0752148 0.181585i 0.881800 0.471623i \(-0.156332\pi\)
−0.957015 + 0.290039i \(0.906332\pi\)
\(350\) 0 0
\(351\) −53.2063 79.6288i −0.151585 0.226863i
\(352\) −58.6020 294.612i −0.166483 0.836967i
\(353\) −49.3308 + 49.3308i −0.139747 + 0.139747i −0.773520 0.633772i \(-0.781506\pi\)
0.633772 + 0.773520i \(0.281506\pi\)
\(354\) 156.259 233.859i 0.441411 0.660618i
\(355\) 0 0
\(356\) 779.543i 2.18973i
\(357\) −114.146 + 65.7931i −0.319737 + 0.184294i
\(358\) 815.751 2.27864
\(359\) −122.127 + 294.840i −0.340186 + 0.821282i 0.657510 + 0.753445i \(0.271610\pi\)
−0.997696 + 0.0678363i \(0.978390\pi\)
\(360\) 0 0
\(361\) −339.788 339.788i −0.941241 0.941241i
\(362\) 145.749 28.9913i 0.402623 0.0800866i
\(363\) 323.433 216.111i 0.891001 0.595348i
\(364\) 84.6104 + 16.8301i 0.232446 + 0.0462364i
\(365\) 0 0
\(366\) 364.261 + 879.404i 0.995249 + 2.40274i
\(367\) −6.25833 + 31.4628i −0.0170527 + 0.0857296i −0.988374 0.152039i \(-0.951416\pi\)
0.971322 + 0.237769i \(0.0764160\pi\)
\(368\) −170.268 254.824i −0.462685 0.692457i
\(369\) 37.3642 + 187.842i 0.101258 + 0.509058i
\(370\) 0 0
\(371\) −150.490 + 225.224i −0.405633 + 0.607072i
\(372\) 279.398 + 115.730i 0.751070 + 0.311103i
\(373\) 52.8801i 0.141770i 0.997485 + 0.0708849i \(0.0225823\pi\)
−0.997485 + 0.0708849i \(0.977418\pi\)
\(374\) −66.2037 + 999.089i −0.177015 + 2.67136i
\(375\) 0 0
\(376\) 363.455 877.458i 0.966636 2.33367i
\(377\) 56.1417 + 37.5127i 0.148917 + 0.0995032i
\(378\) −226.720 226.720i −0.599790 0.599790i
\(379\) −72.2913 + 14.3796i −0.190742 + 0.0379410i −0.289537 0.957167i \(-0.593501\pi\)
0.0987947 + 0.995108i \(0.468501\pi\)
\(380\) 0 0
\(381\) 526.778 + 104.783i 1.38262 + 0.275020i
\(382\) −157.512 + 65.2436i −0.412335 + 0.170795i
\(383\) −29.7185 71.7467i −0.0775939 0.187328i 0.880322 0.474376i \(-0.157326\pi\)
−0.957916 + 0.287048i \(0.907326\pi\)
\(384\) −87.2936 + 438.855i −0.227327 + 1.14285i
\(385\) 0 0
\(386\) 35.4437 + 178.187i 0.0918229 + 0.461625i
\(387\) 29.9648 29.9648i 0.0774284 0.0774284i
\(388\) 457.465 684.645i 1.17903 1.76455i
\(389\) −584.790 242.228i −1.50332 0.622694i −0.529150 0.848529i \(-0.677489\pi\)
−0.974166 + 0.225835i \(0.927489\pi\)
\(390\) 0 0
\(391\) 71.1931 + 210.224i 0.182080 + 0.537656i
\(392\) −644.364 −1.64379
\(393\) −95.7793 + 231.232i −0.243713 + 0.588376i
\(394\) −218.655 146.101i −0.554963 0.370814i
\(395\) 0 0
\(396\) −371.847 + 73.9650i −0.939008 + 0.186780i
\(397\) −181.151 + 121.041i −0.456299 + 0.304889i −0.762396 0.647111i \(-0.775977\pi\)
0.306097 + 0.952000i \(0.400977\pi\)
\(398\) −343.191 68.2649i −0.862289 0.171520i
\(399\) 207.708 86.0353i 0.520570 0.215627i
\(400\) 0 0
\(401\) 78.9077 396.696i 0.196777 0.989267i −0.748534 0.663097i \(-0.769242\pi\)
0.945311 0.326170i \(-0.105758\pi\)
\(402\) 83.5378 + 125.023i 0.207806 + 0.311003i
\(403\) 8.89313 + 44.7088i 0.0220673 + 0.110940i
\(404\) 376.404 376.404i 0.931692 0.931692i
\(405\) 0 0
\(406\) 208.851 + 86.5090i 0.514412 + 0.213076i
\(407\) 619.929i 1.52317i
\(408\) −309.105 + 625.671i −0.757611 + 1.53351i
\(409\) −756.210 −1.84892 −0.924462 0.381274i \(-0.875485\pi\)
−0.924462 + 0.381274i \(0.875485\pi\)
\(410\) 0 0
\(411\) −384.565 256.958i −0.935680 0.625201i
\(412\) 687.488 + 687.488i 1.66866 + 1.66866i
\(413\) 94.9942 18.8955i 0.230010 0.0457519i
\(414\) −102.404 + 68.4240i −0.247352 + 0.165275i
\(415\) 0 0
\(416\) 54.5437 22.5927i 0.131115 0.0543094i
\(417\) −84.0452 202.903i −0.201547 0.486578i
\(418\) 333.333 1675.78i 0.797447 4.00903i
\(419\) −281.424 421.181i −0.671656 1.00520i −0.998197 0.0600212i \(-0.980883\pi\)
0.326541 0.945183i \(-0.394117\pi\)
\(420\) 0 0
\(421\) −173.266 + 173.266i −0.411558 + 0.411558i −0.882281 0.470723i \(-0.843993\pi\)
0.470723 + 0.882281i \(0.343993\pi\)
\(422\) −497.056 + 743.897i −1.17786 + 1.76279i
\(423\) −143.087 59.2686i −0.338267 0.140115i
\(424\) 1434.78i 3.38392i
\(425\) 0 0
\(426\) −768.246 −1.80339
\(427\) −125.438 + 302.834i −0.293766 + 0.709213i
\(428\) 1173.34 + 783.998i 2.74144 + 1.83177i
\(429\) 96.4075 + 96.4075i 0.224726 + 0.224726i
\(430\) 0 0
\(431\) −461.933 + 308.653i −1.07177 + 0.716133i −0.960675 0.277676i \(-0.910436\pi\)
−0.111095 + 0.993810i \(0.535436\pi\)
\(432\) −675.922 134.449i −1.56464 0.311225i
\(433\) −372.206 + 154.173i −0.859598 + 0.356057i −0.768550 0.639789i \(-0.779022\pi\)
−0.0910478 + 0.995847i \(0.529022\pi\)
\(434\) 58.4038 + 140.999i 0.134571 + 0.324883i
\(435\) 0 0
\(436\) −328.096 491.031i −0.752514 1.12622i
\(437\) −73.8891 371.466i −0.169083 0.850035i
\(438\) −75.6872 + 75.6872i −0.172802 + 0.172802i
\(439\) 65.4706 97.9837i 0.149136 0.223198i −0.749378 0.662142i \(-0.769648\pi\)
0.898514 + 0.438944i \(0.144648\pi\)
\(440\) 0 0
\(441\) 105.076i 0.238268i
\(442\) −195.127 + 25.5465i −0.441464 + 0.0577976i
\(443\) −3.48363 −0.00786373 −0.00393186 0.999992i \(-0.501252\pi\)
−0.00393186 + 0.999992i \(0.501252\pi\)
\(444\) 309.331 746.790i 0.696691 1.68196i
\(445\) 0 0
\(446\) 666.787 + 666.787i 1.49504 + 1.49504i
\(447\) 575.434 114.461i 1.28732 0.256065i
\(448\) −75.9176 + 50.7265i −0.169459 + 0.113229i
\(449\) 484.563 + 96.3856i 1.07921 + 0.214667i 0.702513 0.711671i \(-0.252061\pi\)
0.376693 + 0.926338i \(0.377061\pi\)
\(450\) 0 0
\(451\) −457.621 1104.79i −1.01468 2.44965i
\(452\) −97.0681 + 487.994i −0.214752 + 1.07963i
\(453\) −103.372 154.708i −0.228195 0.341518i
\(454\) 90.7129 + 456.045i 0.199808 + 1.00450i
\(455\) 0 0
\(456\) 661.599 990.153i 1.45087 2.17139i
\(457\) −37.2066 15.4115i −0.0814149 0.0337232i 0.341604 0.939844i \(-0.389030\pi\)
−0.423019 + 0.906121i \(0.639030\pi\)
\(458\) 416.824i 0.910096i
\(459\) 447.470 + 221.067i 0.974880 + 0.481627i
\(460\) 0 0
\(461\) 259.577 626.675i 0.563075 1.35938i −0.344221 0.938889i \(-0.611857\pi\)
0.907296 0.420494i \(-0.138143\pi\)
\(462\) 379.537 + 253.599i 0.821509 + 0.548915i
\(463\) 579.794 + 579.794i 1.25225 + 1.25225i 0.954707 + 0.297547i \(0.0961685\pi\)
0.297547 + 0.954707i \(0.403831\pi\)
\(464\) 476.554 94.7926i 1.02706 0.204294i
\(465\) 0 0
\(466\) −1107.52 220.300i −2.37666 0.472746i
\(467\) −46.9412 + 19.4437i −0.100516 + 0.0416353i −0.432375 0.901694i \(-0.642324\pi\)
0.331859 + 0.943329i \(0.392324\pi\)
\(468\) −28.5156 68.8427i −0.0609307 0.147100i
\(469\) −10.1017 + 50.7849i −0.0215389 + 0.108283i
\(470\) 0 0
\(471\) 13.0593 + 65.6533i 0.0277267 + 0.139391i
\(472\) 362.766 362.766i 0.768573 0.768573i
\(473\) −146.998 + 219.998i −0.310778 + 0.465112i
\(474\) −222.084 91.9903i −0.468532 0.194072i
\(475\) 0 0
\(476\) −425.830 + 144.209i −0.894601 + 0.302961i
\(477\) 233.970 0.490503
\(478\) −442.167 + 1067.49i −0.925035 + 2.23323i
\(479\) 519.007 + 346.789i 1.08352 + 0.723986i 0.963210 0.268750i \(-0.0866105\pi\)
0.120312 + 0.992736i \(0.461610\pi\)
\(480\) 0 0
\(481\) 119.500 23.7700i 0.248441 0.0494180i
\(482\) −950.073 + 634.819i −1.97111 + 1.31705i
\(483\) 99.2395 + 19.7400i 0.205465 + 0.0408695i
\(484\) 1226.36 507.973i 2.53379 1.04953i
\(485\) 0 0
\(486\) −95.7404 + 481.319i −0.196997 + 0.990369i
\(487\) −163.370 244.500i −0.335461 0.502053i 0.624940 0.780672i \(-0.285123\pi\)
−0.960402 + 0.278619i \(0.910123\pi\)
\(488\) 338.722 + 1702.87i 0.694103 + 3.48949i
\(489\) −214.470 + 214.470i −0.438590 + 0.438590i
\(490\) 0 0
\(491\) 126.942 + 52.5810i 0.258537 + 0.107090i 0.508187 0.861246i \(-0.330316\pi\)
−0.249650 + 0.968336i \(0.580316\pi\)
\(492\) 1559.22i 3.16914i
\(493\) −351.116 23.2664i −0.712203 0.0471935i
\(494\) 335.811 0.679778
\(495\) 0 0
\(496\) 272.750 + 182.246i 0.549899 + 0.367431i
\(497\) −187.069 187.069i −0.376396 0.376396i
\(498\) −920.815 + 183.162i −1.84903 + 0.367794i
\(499\) −357.226 + 238.691i −0.715884 + 0.478338i −0.859396 0.511310i \(-0.829160\pi\)
0.143512 + 0.989649i \(0.454160\pi\)
\(500\) 0 0
\(501\) 400.778 166.008i 0.799957 0.331353i
\(502\) −599.485 1447.29i −1.19419 2.88304i
\(503\) −26.6908 + 134.184i −0.0530633 + 0.266767i −0.998205 0.0598942i \(-0.980924\pi\)
0.945141 + 0.326661i \(0.105924\pi\)
\(504\) −74.0860 110.877i −0.146996 0.219995i
\(505\) 0 0
\(506\) 543.752 543.752i 1.07461 1.07461i
\(507\) 221.559 331.586i 0.436999 0.654016i
\(508\) 1693.29 + 701.384i 3.33325 + 1.38068i
\(509\) 549.679i 1.07992i −0.841691 0.539959i \(-0.818440\pi\)
0.841691 0.539959i \(-0.181560\pi\)
\(510\) 0 0
\(511\) −36.8598 −0.0721327
\(512\) −423.152 + 1021.58i −0.826468 + 1.99527i
\(513\) −708.141 473.165i −1.38039 0.922348i
\(514\) 677.577 + 677.577i 1.31824 + 1.31824i
\(515\) 0 0
\(516\) −286.853 + 191.669i −0.555917 + 0.371452i
\(517\) 948.429 + 188.654i 1.83449 + 0.364902i
\(518\) 376.870 156.105i 0.727548 0.301360i
\(519\) −82.3714 198.862i −0.158712 0.383164i
\(520\) 0 0
\(521\) 101.649 + 152.129i 0.195104 + 0.291993i 0.916103 0.400942i \(-0.131317\pi\)
−0.721000 + 0.692935i \(0.756317\pi\)
\(522\) −38.0934 191.508i −0.0729759 0.366874i
\(523\) 137.945 137.945i 0.263757 0.263757i −0.562821 0.826579i \(-0.690284\pi\)
0.826579 + 0.562821i \(0.190284\pi\)
\(524\) −474.497 + 710.135i −0.905529 + 1.35522i
\(525\) 0 0
\(526\) 861.973i 1.63873i
\(527\) −156.509 178.723i −0.296981 0.339133i
\(528\) 981.127 1.85820
\(529\) −137.208 + 331.249i −0.259372 + 0.626180i
\(530\) 0 0
\(531\) −59.1563 59.1563i −0.111405 0.111405i
\(532\) 752.443 149.670i 1.41437 0.281335i
\(533\) 195.418 130.574i 0.366638 0.244980i
\(534\) −795.105 158.156i −1.48896 0.296173i
\(535\) 0 0
\(536\) 104.959 + 253.393i 0.195819 + 0.472748i
\(537\) −112.935 + 567.761i −0.210307 + 1.05728i
\(538\) 632.426 + 946.493i 1.17551 + 1.75928i
\(539\) −127.993 643.465i −0.237464 1.19381i
\(540\) 0 0
\(541\) −253.891 + 379.975i −0.469300 + 0.702358i −0.988318 0.152406i \(-0.951298\pi\)
0.519018 + 0.854764i \(0.326298\pi\)
\(542\) 30.5117 + 12.6384i 0.0562946 + 0.0233180i
\(543\) 105.455i 0.194208i
\(544\) −187.476 + 243.960i −0.344624 + 0.448457i
\(545\) 0 0
\(546\) −34.3321 + 82.8849i −0.0628792 + 0.151804i
\(547\) 593.369 + 396.477i 1.08477 + 0.724820i 0.963475 0.267797i \(-0.0862955\pi\)
0.121294 + 0.992617i \(0.461296\pi\)
\(548\) −1116.02 1116.02i −2.03653 2.03653i
\(549\) 277.687 55.2354i 0.505806 0.100611i
\(550\) 0 0
\(551\) 588.929 + 117.145i 1.06884 + 0.212605i
\(552\) 495.159 205.102i 0.897027 0.371561i
\(553\) −31.6780 76.4775i −0.0572839 0.138296i
\(554\) 186.454 937.369i 0.336560 1.69200i
\(555\) 0 0
\(556\) −146.208 735.038i −0.262964 1.32201i
\(557\) 682.239 682.239i 1.22485 1.22485i 0.258956 0.965889i \(-0.416622\pi\)
0.965889 0.258956i \(-0.0833785\pi\)
\(558\) 73.2374 109.607i 0.131250 0.196429i
\(559\) −48.0440 19.9005i −0.0859464 0.0356002i
\(560\) 0 0
\(561\) −686.198 184.394i −1.22317 0.328688i
\(562\) 661.284 1.17666
\(563\) 279.069 673.732i 0.495682 1.19668i −0.456106 0.889925i \(-0.650756\pi\)
0.951788 0.306756i \(-0.0992436\pi\)
\(564\) 1048.38 + 700.505i 1.85883 + 1.24203i
\(565\) 0 0
\(566\) −405.505 + 80.6600i −0.716441 + 0.142509i
\(567\) 127.968 85.5052i 0.225692 0.150803i
\(568\) −1374.39 273.383i −2.41970 0.481307i
\(569\) −393.659 + 163.059i −0.691844 + 0.286571i −0.700768 0.713389i \(-0.747159\pi\)
0.00892410 + 0.999960i \(0.497159\pi\)
\(570\) 0 0
\(571\) −89.2030 + 448.454i −0.156222 + 0.785383i 0.820629 + 0.571462i \(0.193624\pi\)
−0.976851 + 0.213921i \(0.931376\pi\)
\(572\) 258.480 + 386.843i 0.451889 + 0.676299i
\(573\) −23.6030 118.660i −0.0411920 0.207086i
\(574\) 556.397 556.397i 0.969333 0.969333i
\(575\) 0 0
\(576\) 72.8625 + 30.1806i 0.126497 + 0.0523969i
\(577\) 560.230i 0.970936i −0.874254 0.485468i \(-0.838649\pi\)
0.874254 0.485468i \(-0.161351\pi\)
\(578\) 814.544 623.167i 1.40925 1.07814i
\(579\) −128.925 −0.222668
\(580\) 0 0
\(581\) −268.820 179.620i −0.462685 0.309156i
\(582\) 605.500 + 605.500i 1.04038 + 1.04038i
\(583\) −1432.78 + 284.998i −2.45760 + 0.488848i
\(584\) −162.337 + 108.470i −0.277975 + 0.185737i
\(585\) 0 0
\(586\) 643.170 266.410i 1.09756 0.454624i
\(587\) −417.924 1008.96i −0.711966 1.71884i −0.695029 0.718982i \(-0.744608\pi\)
−0.0169378 0.999857i \(-0.505392\pi\)
\(588\) 166.889 839.008i 0.283825 1.42688i
\(589\) 225.220 + 337.066i 0.382378 + 0.572268i
\(590\) 0 0
\(591\) 131.957 131.957i 0.223277 0.223277i
\(592\) 487.116 729.021i 0.822831 1.23145i
\(593\) 203.455 + 84.2737i 0.343094 + 0.142114i 0.547575 0.836756i \(-0.315551\pi\)
−0.204482 + 0.978870i \(0.565551\pi\)
\(594\) 1729.20i 2.91111i
\(595\) 0 0
\(596\) 2002.09 3.35922
\(597\) 95.0243 229.409i 0.159170 0.384270i
\(598\) 125.665 + 83.9666i 0.210142 + 0.140412i
\(599\) 132.139 + 132.139i 0.220599 + 0.220599i 0.808751 0.588151i \(-0.200144\pi\)
−0.588151 + 0.808751i \(0.700144\pi\)
\(600\) 0 0
\(601\) 898.685 600.482i 1.49532 0.999139i 0.504577 0.863367i \(-0.331649\pi\)
0.990740 0.135772i \(-0.0433514\pi\)
\(602\) −170.758 33.9658i −0.283651 0.0564216i
\(603\) 41.3208 17.1156i 0.0685253 0.0283841i
\(604\) −242.978 586.602i −0.402282 0.971195i
\(605\) 0 0
\(606\) 307.552 + 460.284i 0.507511 + 0.759544i
\(607\) 116.204 + 584.198i 0.191440 + 0.962435i 0.950337 + 0.311224i \(0.100739\pi\)
−0.758897 + 0.651211i \(0.774261\pi\)
\(608\) 371.248 371.248i 0.610605 0.610605i
\(609\) −89.1238 + 133.383i −0.146345 + 0.219020i
\(610\) 0 0
\(611\) 190.057i 0.311058i
\(612\) 307.916 + 236.624i 0.503131 + 0.386640i
\(613\) −971.365 −1.58461 −0.792304 0.610126i \(-0.791119\pi\)
−0.792304 + 0.610126i \(0.791119\pi\)
\(614\) −46.4980 + 112.256i −0.0757296 + 0.182828i
\(615\) 0 0
\(616\) 588.746 + 588.746i 0.955757 + 0.955757i
\(617\) −963.388 + 191.630i −1.56141 + 0.310583i −0.898791 0.438377i \(-0.855554\pi\)
−0.662615 + 0.748960i \(0.730554\pi\)
\(618\) −840.691 + 561.732i −1.36034 + 0.908951i
\(619\) 511.747 + 101.793i 0.826732 + 0.164447i 0.590283 0.807197i \(-0.299016\pi\)
0.236449 + 0.971644i \(0.424016\pi\)
\(620\) 0 0
\(621\) −146.685 354.130i −0.236208 0.570257i
\(622\) −80.1489 + 402.936i −0.128857 + 0.647807i
\(623\) −155.098 232.120i −0.248953 0.372585i
\(624\) 37.6195 + 189.126i 0.0602877 + 0.303087i
\(625\) 0 0
\(626\) −24.4691 + 36.6206i −0.0390881 + 0.0584994i
\(627\) 1120.19 + 463.997i 1.78658 + 0.740027i
\(628\) 228.426i 0.363736i
\(629\) −477.700 + 418.326i −0.759460 + 0.665065i
\(630\) 0 0
\(631\) −4.24296 + 10.2434i −0.00672418 + 0.0162336i −0.927206 0.374552i \(-0.877797\pi\)
0.920482 + 0.390785i \(0.127797\pi\)
\(632\) −364.572 243.599i −0.576855 0.385442i
\(633\) −448.936 448.936i −0.709220 0.709220i
\(634\) −293.084 + 58.2981i −0.462278 + 0.0919528i
\(635\) 0 0
\(636\) −1868.19 371.606i −2.93741 0.584287i
\(637\) 119.129 49.3450i 0.187016 0.0774646i
\(638\) 466.552 + 1126.36i 0.731272 + 1.76545i
\(639\) −44.5805 + 224.121i −0.0697660 + 0.350737i
\(640\) 0 0
\(641\) 1.68748 + 8.48355i 0.00263258 + 0.0132349i 0.982079 0.188468i \(-0.0603523\pi\)
−0.979447 + 0.201703i \(0.935352\pi\)
\(642\) −1037.70 + 1037.70i −1.61635 + 1.61635i
\(643\) −86.6511 + 129.683i −0.134761 + 0.201684i −0.892712 0.450627i \(-0.851200\pi\)
0.757952 + 0.652311i \(0.226200\pi\)
\(644\) 318.998 + 132.133i 0.495339 + 0.205176i
\(645\) 0 0
\(646\) −1516.24 + 873.951i −2.34712 + 1.35287i
\(647\) −856.541 −1.32387 −0.661933 0.749563i \(-0.730263\pi\)
−0.661933 + 0.749563i \(0.730263\pi\)
\(648\) 311.969 753.161i 0.481434 1.16228i
\(649\) 434.318 + 290.202i 0.669212 + 0.447153i
\(650\) 0 0
\(651\) −106.221 + 21.1286i −0.163165 + 0.0324556i
\(652\) −860.580 + 575.021i −1.31991 + 0.881934i
\(653\) 15.0508 + 2.99379i 0.0230487 + 0.00458467i 0.206601 0.978425i \(-0.433760\pi\)
−0.183553 + 0.983010i \(0.558760\pi\)
\(654\) 567.398 235.024i 0.867581 0.359364i
\(655\) 0 0
\(656\) 329.954 1658.79i 0.502978 2.52864i
\(657\) 17.6883 + 26.4723i 0.0269228 + 0.0402928i
\(658\) 124.137 + 624.078i 0.188658 + 0.948447i
\(659\) −343.599 + 343.599i −0.521394 + 0.521394i −0.917992 0.396598i \(-0.870191\pi\)
0.396598 + 0.917992i \(0.370191\pi\)
\(660\) 0 0
\(661\) −52.7976 21.8695i −0.0798754 0.0330855i 0.342388 0.939559i \(-0.388764\pi\)
−0.422263 + 0.906473i \(0.638764\pi\)
\(662\) 229.791i 0.347117i
\(663\) 9.23353 139.344i 0.0139269 0.210173i
\(664\) −1712.51 −2.57908
\(665\) 0 0
\(666\) −292.965 195.753i −0.439887 0.293923i
\(667\) 191.094 + 191.094i 0.286498 + 0.286498i
\(668\) 1451.86 288.793i 2.17345 0.432325i
\(669\) −556.393 + 371.770i −0.831679 + 0.555710i
\(670\) 0 0
\(671\) −1633.22 + 676.500i −2.43400 + 1.00820i
\(672\) 53.6765 + 129.587i 0.0798757 + 0.192837i
\(673\) −151.595 + 762.118i −0.225252 + 1.13242i 0.688215 + 0.725507i \(0.258394\pi\)
−0.913467 + 0.406912i \(0.866606\pi\)
\(674\) −119.337 178.601i −0.177058 0.264986i
\(675\) 0 0
\(676\) 962.271 962.271i 1.42348 1.42348i
\(677\) 260.970 390.569i 0.385480 0.576912i −0.587090 0.809522i \(-0.699727\pi\)
0.972570 + 0.232610i \(0.0747266\pi\)
\(678\) −478.042 198.012i −0.705077 0.292052i
\(679\) 294.880i 0.434286i
\(680\) 0 0
\(681\) −329.964 −0.484529
\(682\) −314.977 + 760.423i −0.461844 + 1.11499i
\(683\) 730.394 + 488.034i 1.06939 + 0.714544i 0.960154 0.279472i \(-0.0901594\pi\)
0.109237 + 0.994016i \(0.465159\pi\)
\(684\) −468.573 468.573i −0.685048 0.685048i
\(685\) 0 0
\(686\) 803.897 537.147i 1.17186 0.783013i
\(687\) −290.108 57.7061i −0.422283 0.0839972i
\(688\) −345.731 + 143.207i −0.502517 + 0.208149i
\(689\) −109.875 265.261i −0.159470 0.384995i
\(690\) 0 0
\(691\) 155.737 + 233.077i 0.225379 + 0.337304i 0.926875 0.375369i \(-0.122484\pi\)
−0.701496 + 0.712673i \(0.747484\pi\)
\(692\) −143.296 720.399i −0.207076 1.04104i
\(693\) 96.0068 96.0068i 0.138538 0.138538i
\(694\) −438.480 + 656.232i −0.631816 + 0.945580i
\(695\) 0 0
\(696\) 849.716i 1.22086i
\(697\) −542.523 + 1098.14i −0.778369 + 1.57552i
\(698\) 243.423 0.348744
\(699\) 306.656 740.333i 0.438707 1.05913i
\(700\) 0 0
\(701\) −387.183 387.183i −0.552330 0.552330i 0.374783 0.927113i \(-0.377717\pi\)
−0.927113 + 0.374783i \(0.877717\pi\)
\(702\) 333.327 66.3029i 0.474825 0.0944485i
\(703\) 900.928 601.981i 1.28155 0.856303i
\(704\) −482.957 96.0661i −0.686019 0.136458i
\(705\) 0 0
\(706\) −94.7427 228.729i −0.134196 0.323979i
\(707\) −37.1904 + 186.969i −0.0526031 + 0.264454i
\(708\) 378.392 + 566.304i 0.534452 + 0.799864i
\(709\) 182.905 + 919.525i 0.257976 + 1.29693i 0.864808 + 0.502102i \(0.167440\pi\)
−0.606832 + 0.794830i \(0.707560\pi\)
\(710\) 0 0
\(711\) −39.7237 + 59.4507i −0.0558702 + 0.0836157i
\(712\) −1366.16 565.881i −1.91876 0.794777i
\(713\) 182.449i 0.255890i
\(714\) −60.6942 463.588i −0.0850059 0.649284i
\(715\) 0 0
\(716\) −755.951 + 1825.03i −1.05580 + 2.54892i
\(717\) −681.752 455.532i −0.950840 0.635331i
\(718\) −800.809 800.809i −1.11533 1.11533i
\(719\) 1315.87 261.743i 1.83014 0.364038i 0.844861 0.534985i \(-0.179683\pi\)
0.985280 + 0.170947i \(0.0546828\pi\)
\(720\) 0 0
\(721\) −341.492 67.9269i −0.473636 0.0942121i
\(722\) 1575.47 652.583i 2.18210 0.903854i
\(723\) −310.301 749.134i −0.429186 1.03615i
\(724\) −70.2044 + 352.941i −0.0969674 + 0.487488i
\(725\) 0 0
\(726\) 269.307 + 1353.90i 0.370946 + 1.86487i
\(727\) 638.490 638.490i 0.878253 0.878253i −0.115101 0.993354i \(-0.536719\pi\)
0.993354 + 0.115101i \(0.0367191\pi\)
\(728\) −90.9147 + 136.063i −0.124883 + 0.186900i
\(729\) −737.573 305.513i −1.01176 0.419084i
\(730\) 0 0
\(731\) 268.718 35.1813i 0.367603 0.0481276i
\(732\) −2304.99 −3.14890
\(733\) −117.668 + 284.077i −0.160530 + 0.387553i −0.983594 0.180395i \(-0.942263\pi\)
0.823064 + 0.567948i \(0.192263\pi\)
\(734\) −94.6547 63.2462i −0.128957 0.0861665i
\(735\) 0 0
\(736\) 231.753 46.0986i 0.314882 0.0626340i
\(737\) −232.191 + 155.145i −0.315049 + 0.210509i
\(738\) −666.602 132.595i −0.903255 0.179669i
\(739\) −963.699 + 399.177i −1.30406 + 0.540159i −0.923145 0.384452i \(-0.874390\pi\)
−0.380914 + 0.924611i \(0.624390\pi\)
\(740\) 0 0
\(741\) −46.4904 + 233.723i −0.0627401 + 0.315416i
\(742\) −534.047 799.258i −0.719740 1.07717i
\(743\) −17.3581 87.2651i −0.0233622 0.117450i 0.967345 0.253465i \(-0.0815703\pi\)
−0.990707 + 0.136016i \(0.956570\pi\)
\(744\) −405.638 + 405.638i −0.545212 + 0.545212i
\(745\) 0 0
\(746\) −173.373 71.8133i −0.232403 0.0962645i
\(747\) 279.259i 0.373841i
\(748\) −2173.84 1073.96i −2.90621 1.43578i
\(749\) −505.362 −0.674716
\(750\) 0 0
\(751\) −716.987 479.076i −0.954710 0.637917i −0.0224663 0.999748i \(-0.507152\pi\)
−0.932244 + 0.361831i \(0.882152\pi\)
\(752\) 967.091 + 967.091i 1.28603 + 1.28603i
\(753\) 1090.30 216.874i 1.44794 0.288014i
\(754\) −199.232 + 133.122i −0.264233 + 0.176555i
\(755\) 0 0
\(756\) 717.327 297.126i 0.948845 0.393024i
\(757\) 132.099 + 318.916i 0.174504 + 0.421290i 0.986797 0.161959i \(-0.0517813\pi\)
−0.812294 + 0.583249i \(0.801781\pi\)
\(758\) 51.0294 256.542i 0.0673211 0.338446i
\(759\) 303.171 + 453.728i 0.399435 + 0.597797i
\(760\) 0 0
\(761\) 412.972 412.972i 0.542670 0.542670i −0.381640 0.924311i \(-0.624641\pi\)
0.924311 + 0.381640i \(0.124641\pi\)
\(762\) −1058.93 + 1584.80i −1.38967 + 2.07978i
\(763\) 195.391 + 80.9335i 0.256082 + 0.106073i
\(764\) 412.852i 0.540382i
\(765\) 0 0
\(766\) 275.587 0.359775
\(767\) −39.2874 + 94.8483i −0.0512222 + 0.123661i
\(768\) −1071.79 716.145i −1.39556 0.932481i
\(769\) 325.724 + 325.724i 0.423568 + 0.423568i 0.886430 0.462862i \(-0.153177\pi\)
−0.462862 + 0.886430i \(0.653177\pi\)
\(770\) 0 0
\(771\) −565.397 + 377.786i −0.733330 + 0.489995i
\(772\) −431.492 85.8291i −0.558927 0.111178i
\(773\) −319.078 + 132.166i −0.412779 + 0.170978i −0.579402 0.815042i \(-0.696714\pi\)
0.166623 + 0.986021i \(0.446714\pi\)
\(774\) 57.5491 + 138.936i 0.0743528 + 0.179504i
\(775\) 0 0
\(776\) 867.767 + 1298.70i 1.11826 + 1.67359i
\(777\) 56.4736 + 283.912i 0.0726816 + 0.365395i
\(778\) 1588.33 1588.33i 2.04156 2.04156i
\(779\) 1161.20 1737.86i 1.49063 2.23088i
\(780\) 0 0
\(781\) 1426.77i 1.82685i
\(782\) −785.922 52.0784i −1.00502 0.0665964i
\(783\) 607.703 0.776121
\(784\) 355.093 857.270i 0.452925 1.09346i
\(785\) 0 0
\(786\) −628.044 628.044i −0.799038 0.799038i
\(787\) 305.401 60.7481i 0.388058 0.0771895i 0.00279427 0.999996i \(-0.499111\pi\)
0.385264 + 0.922807i \(0.374111\pi\)
\(788\) 529.488 353.793i 0.671939 0.448975i
\(789\) −599.930 119.334i −0.760368 0.151247i
\(790\) 0 0
\(791\) −68.1878 164.620i −0.0862046 0.208116i
\(792\) 140.304 705.358i 0.177152 0.890603i
\(793\) −193.028 288.886i −0.243414 0.364295i
\(794\) −150.835 758.299i −0.189969 0.955036i
\(795\) 0 0
\(796\) 470.757 704.537i 0.591403 0.885097i
\(797\) 1030.53 + 426.860i 1.29301 + 0.535583i 0.919882 0.392196i \(-0.128284\pi\)
0.373130 + 0.927779i \(0.378284\pi\)
\(798\) 797.829i 0.999786i
\(799\) −494.625 858.137i −0.619055 1.07401i
\(800\) 0 0
\(801\) −92.2782 + 222.779i −0.115204 + 0.278126i
\(802\) 1193.45 + 797.436i 1.48809 + 0.994309i
\(803\) −140.565 140.565i −0.175050 0.175050i
\(804\) −357.120 + 71.0356i −0.444179 + 0.0883527i
\(805\) 0 0
\(806\) −158.659 31.5593i −0.196848 0.0391555i
\(807\) −746.311 + 309.132i −0.924796 + 0.383063i
\(808\) 386.415 + 932.888i 0.478236 + 1.15456i
\(809\) −124.788 + 627.352i −0.154250 + 0.775467i 0.823765 + 0.566931i \(0.191870\pi\)
−0.978015 + 0.208535i \(0.933130\pi\)
\(810\) 0 0
\(811\) 239.294 + 1203.01i 0.295060 + 1.48337i 0.789281 + 0.614032i \(0.210453\pi\)
−0.494221 + 0.869336i \(0.664547\pi\)
\(812\) −387.081 + 387.081i −0.476701 + 0.476701i
\(813\) −13.0204 + 19.4864i −0.0160152 + 0.0239685i
\(814\) 2032.50 + 841.888i 2.49693 + 1.03426i
\(815\) 0 0
\(816\) −662.061 756.029i −0.811349 0.926507i
\(817\) −462.460 −0.566046
\(818\) 1026.96 2479.31i 1.25546 3.03094i
\(819\) 22.1879 + 14.8255i 0.0270914 + 0.0181019i
\(820\) 0 0
\(821\) 1032.55 205.386i 1.25767 0.250166i 0.479119 0.877750i \(-0.340956\pi\)
0.778549 + 0.627584i \(0.215956\pi\)
\(822\) 1364.72 911.873i 1.66024 1.10934i
\(823\) −700.457 139.330i −0.851102 0.169295i −0.249781 0.968302i \(-0.580359\pi\)
−0.601321 + 0.799008i \(0.705359\pi\)
\(824\) −1703.89 + 705.773i −2.06782 + 0.856520i
\(825\) 0 0
\(826\) −67.0551 + 337.109i −0.0811805 + 0.408122i
\(827\) −214.883 321.595i −0.259834 0.388870i 0.678499 0.734601i \(-0.262631\pi\)
−0.938333 + 0.345732i \(0.887631\pi\)
\(828\) −58.1837 292.509i −0.0702702 0.353272i
\(829\) 453.378 453.378i 0.546897 0.546897i −0.378645 0.925542i \(-0.623610\pi\)
0.925542 + 0.378645i \(0.123610\pi\)
\(830\) 0 0
\(831\) 626.593 + 259.543i 0.754022 + 0.312326i
\(832\) 96.7803i 0.116322i
\(833\) −409.467 + 532.836i −0.491557 + 0.639659i
\(834\) 779.375 0.934502
\(835\) 0 0
\(836\) 3440.21 + 2298.67i 4.11508 + 2.74961i
\(837\) 290.105 + 290.105i 0.346602 + 0.346602i
\(838\) 1763.07 350.696i 2.10390 0.418491i
\(839\) 8.04937 5.37841i 0.00959400 0.00641051i −0.550764 0.834661i \(-0.685664\pi\)
0.560358 + 0.828251i \(0.310664\pi\)
\(840\) 0 0
\(841\) 381.140 157.873i 0.453199 0.187721i
\(842\) −332.767 803.371i −0.395210 0.954122i
\(843\) −91.5497 + 460.252i −0.108600 + 0.545969i
\(844\) −1203.65 1801.39i −1.42613 2.13435i
\(845\) 0 0
\(846\) 388.636 388.636i 0.459380 0.459380i
\(847\) −264.099 + 395.252i −0.311805 + 0.466649i
\(848\) −1908.86 790.674i −2.25101 0.932398i
\(849\) 293.397i 0.345580i
\(850\) 0 0
\(851\) 487.660 0.573044
\(852\) 711.928 1718.75i 0.835596 2.01731i
\(853\) 685.262 + 457.878i 0.803355 + 0.536785i 0.888118 0.459616i \(-0.152013\pi\)
−0.0847622 + 0.996401i \(0.527013\pi\)
\(854\) −822.521 822.521i −0.963140 0.963140i
\(855\) 0 0
\(856\) −2225.71 + 1487.17i −2.60012 + 1.73735i
\(857\) 701.467 + 139.530i 0.818515 + 0.162813i 0.586552 0.809912i \(-0.300485\pi\)
0.231963 + 0.972725i \(0.425485\pi\)
\(858\) −447.007 + 185.156i −0.520987 + 0.215800i
\(859\) 318.269 + 768.370i 0.370511 + 0.894494i 0.993664 + 0.112393i \(0.0358516\pi\)
−0.623152 + 0.782100i \(0.714148\pi\)
\(860\) 0 0
\(861\) 310.222 + 464.280i 0.360304 + 0.539233i
\(862\) −384.628 1933.65i −0.446204 2.24322i
\(863\) −938.729 + 938.729i −1.08775 + 1.08775i −0.0919915 + 0.995760i \(0.529323\pi\)
−0.995760 + 0.0919915i \(0.970677\pi\)
\(864\) 295.202 441.802i 0.341669 0.511344i
\(865\) 0 0
\(866\) 1429.69i 1.65091i
\(867\) 320.955 + 653.193i 0.370190 + 0.753395i
\(868\) −369.570 −0.425772
\(869\) 170.843 412.451i 0.196597 0.474627i
\(870\) 0 0
\(871\) −38.8093 38.8093i −0.0445572 0.0445572i
\(872\) 1098.71 218.546i 1.25998 0.250626i
\(873\) 211.780 141.507i 0.242588 0.162092i
\(874\) 1318.23 + 262.212i 1.50827 + 0.300014i
\(875\) 0 0
\(876\) −99.1911 239.469i −0.113232 0.273366i
\(877\) 123.536 621.056i 0.140862 0.708160i −0.844210 0.536013i \(-0.819930\pi\)
0.985071 0.172147i \(-0.0550703\pi\)
\(878\) 232.338 + 347.718i 0.264621 + 0.396034i
\(879\) 96.3784 + 484.527i 0.109645 + 0.551225i
\(880\) 0 0
\(881\) −906.749 + 1357.05i −1.02923 + 1.54035i −0.201285 + 0.979533i \(0.564512\pi\)
−0.827942 + 0.560814i \(0.810488\pi\)
\(882\) −344.503 142.698i −0.390593 0.161789i
\(883\) 601.659i 0.681381i 0.940176 + 0.340690i \(0.110661\pi\)
−0.940176 + 0.340690i \(0.889339\pi\)
\(884\) 123.669 460.218i 0.139897 0.520609i
\(885\) 0 0
\(886\) 4.73091 11.4214i 0.00533963 0.0128910i
\(887\) −878.830 587.215i −0.990789 0.662024i −0.0492004 0.998789i \(-0.515667\pi\)
−0.941589 + 0.336765i \(0.890667\pi\)
\(888\) 1084.21 + 1084.21i 1.22096 + 1.22096i
\(889\) −643.749 + 128.050i −0.724128 + 0.144038i
\(890\) 0 0
\(891\) 814.078 + 161.930i 0.913668 + 0.181740i
\(892\) −2109.66 + 873.851i −2.36509 + 0.979654i
\(893\) 646.803 + 1561.52i 0.724304 + 1.74862i
\(894\) −406.191 + 2042.06i −0.454352 + 2.28418i
\(895\) 0 0
\(896\) −106.677 536.302i −0.119059 0.598552i
\(897\) −75.8379 + 75.8379i −0.0845461 + 0.0845461i
\(898\) −974.066 + 1457.79i −1.08471 + 1.62338i
\(899\) −267.240 110.695i −0.297264 0.123131i
\(900\) 0 0
\(901\) 1186.45 + 911.747i 1.31681 + 1.01193i
\(902\) 4243.64 4.70470
\(903\) 47.2802 114.145i 0.0523590 0.126406i
\(904\) −784.752 524.354i −0.868088 0.580038i
\(905\) 0 0
\(906\) 647.608 128.817i 0.714799 0.142182i
\(907\) 814.198 544.030i 0.897683 0.599812i −0.0188279 0.999823i \(-0.505993\pi\)
0.916511 + 0.400010i \(0.130993\pi\)
\(908\) −1104.34 219.667i −1.21623 0.241924i
\(909\) 152.126 63.0126i 0.167355 0.0693208i
\(910\) 0 0
\(911\) 149.631 752.244i 0.164249 0.825735i −0.807527 0.589830i \(-0.799195\pi\)
0.971776 0.235905i \(-0.0758053\pi\)
\(912\) 952.721 + 1425.85i 1.04465 + 1.56343i
\(913\) −340.165 1710.12i −0.372579 1.87308i
\(914\) 101.056 101.056i 0.110565 0.110565i
\(915\) 0 0
\(916\) −932.532 386.267i −1.01805 0.421689i
\(917\) 305.859i 0.333543i
\(918\) −1332.47 + 1166.86i −1.45149 + 1.27108i
\(919\) 729.897 0.794230 0.397115 0.917769i \(-0.370011\pi\)
0.397115 + 0.917769i \(0.370011\pi\)
\(920\) 0 0
\(921\) −71.6926 47.9035i −0.0778422 0.0520125i
\(922\) 1702.10 + 1702.10i 1.84609 + 1.84609i
\(923\) 275.031 54.7070i 0.297975 0.0592708i
\(924\) −919.074 + 614.105i −0.994669 + 0.664616i
\(925\) 0 0
\(926\) −2688.29 + 1113.53i −2.90312 + 1.20251i
\(927\) 115.090 + 277.852i 0.124153 + 0.299733i
\(928\) −73.0857 + 367.426i −0.0787561 + 0.395934i
\(929\) −18.6465 27.9064i −0.0200716 0.0300392i 0.821298 0.570499i \(-0.193250\pi\)
−0.841370 + 0.540460i \(0.818250\pi\)
\(930\) 0 0
\(931\) 810.845 810.845i 0.870940 0.870940i
\(932\) 1519.19 2273.63i 1.63004 2.43952i
\(933\) −269.346 111.567i −0.288688 0.119579i
\(934\) 180.306i 0.193048i
\(935\) 0 0
\(936\) 141.347 0.151012
\(937\) 239.475 578.143i 0.255576 0.617015i −0.743060 0.669225i \(-0.766626\pi\)
0.998636 + 0.0522094i \(0.0166263\pi\)
\(938\) −152.785 102.087i −0.162883 0.108835i
\(939\) −22.1003 22.1003i −0.0235360 0.0235360i
\(940\) 0 0
\(941\) 1480.41 989.179i 1.57323 1.05120i 0.606608 0.795001i \(-0.292530\pi\)
0.966624 0.256199i \(-0.0824702\pi\)
\(942\) −232.986 46.3438i −0.247331 0.0491972i
\(943\) 869.073 359.982i 0.921605 0.381741i
\(944\) 282.718 + 682.541i 0.299489 + 0.723031i
\(945\) 0 0
\(946\) −521.656 780.713i −0.551433 0.825278i
\(947\) −121.759 612.125i −0.128574 0.646383i −0.990293 0.138998i \(-0.955612\pi\)
0.861719 0.507386i \(-0.169388\pi\)
\(948\) 411.607 411.607i 0.434185 0.434185i
\(949\) 21.7062 32.4856i 0.0228727 0.0342314i
\(950\) 0 0
\(951\) 212.057i 0.222983i
\(952\) 56.3878 850.955i 0.0592308 0.893861i
\(953\) 1343.90 1.41018 0.705090 0.709118i \(-0.250906\pi\)
0.705090 + 0.709118i \(0.250906\pi\)
\(954\) −317.741 + 767.094i −0.333061 + 0.804082i
\(955\) 0 0
\(956\) −1978.46 1978.46i −2.06952 2.06952i
\(957\) −848.530 + 168.783i −0.886657 + 0.176367i
\(958\) −1841.82 + 1230.66i −1.92256 + 1.28462i
\(959\) 554.352 + 110.267i 0.578052 + 0.114982i
\(960\) 0 0
\(961\) 293.027 + 707.429i 0.304919 + 0.736139i
\(962\) −84.3534 + 424.073i −0.0876855 + 0.440825i
\(963\) 242.513 + 362.946i 0.251830 + 0.376891i
\(964\) −539.812 2713.82i −0.559971 2.81516i
\(965\) 0 0
\(966\) −199.490 + 298.559i −0.206512 + 0.309067i
\(967\) −151.504 62.7548i −0.156674 0.0648964i 0.302968 0.953001i \(-0.402022\pi\)
−0.459642 + 0.888104i \(0.652022\pi\)
\(968\) 2517.94i 2.60118i
\(969\) −398.356 1176.29i −0.411100 1.21392i
\(970\) 0 0
\(971\) 300.034 724.345i 0.308994 0.745978i −0.690744 0.723099i \(-0.742717\pi\)
0.999738 0.0228789i \(-0.00728321\pi\)
\(972\) −988.102 660.228i −1.01657 0.679247i
\(973\) 189.779 + 189.779i 0.195045 + 0.195045i
\(974\) 1023.48 203.583i 1.05080 0.209017i
\(975\) 0 0
\(976\) −2452.19 487.770i −2.51249 0.499764i
\(977\) −1391.58 + 576.412i −1.42434 + 0.589982i −0.955948 0.293537i \(-0.905168\pi\)
−0.468395 + 0.883519i \(0.655168\pi\)
\(978\) −411.903 994.422i −0.421169 1.01679i
\(979\) 293.725 1476.66i 0.300026 1.50833i
\(980\) 0 0
\(981\) −35.6383 179.166i −0.0363285 0.182636i
\(982\) −344.784 + 344.784i −0.351104 + 0.351104i
\(983\) 481.292 720.305i 0.489616 0.732762i −0.501588 0.865107i \(-0.667251\pi\)
0.991204 + 0.132345i \(0.0422506\pi\)
\(984\) 2732.55 + 1131.86i 2.77698 + 1.15026i
\(985\) 0 0
\(986\) 553.111 1119.57i 0.560964 1.13547i
\(987\) −451.542 −0.457490
\(988\) −311.193 + 751.287i −0.314973 + 0.760412i
\(989\) −173.059 115.634i −0.174984 0.116920i
\(990\) 0 0
\(991\) −134.143 + 26.6827i −0.135361 + 0.0269250i −0.262306 0.964985i \(-0.584483\pi\)
0.126945 + 0.991910i \(0.459483\pi\)
\(992\) −210.292 + 140.513i −0.211988 + 0.141646i
\(993\) −159.934 31.8129i −0.161061 0.0320371i
\(994\) 867.370 359.276i 0.872606 0.361445i
\(995\) 0 0
\(996\) 443.537 2229.81i 0.445319 2.23877i
\(997\) −142.134 212.719i −0.142562 0.213359i 0.753317 0.657658i \(-0.228453\pi\)
−0.895879 + 0.444299i \(0.853453\pi\)
\(998\) −297.444 1495.35i −0.298040 1.49835i
\(999\) 775.409 775.409i 0.776186 0.776186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.e.401.1 96
5.2 odd 4 425.3.t.e.299.1 96
5.3 odd 4 425.3.t.h.299.12 96
5.4 even 2 85.3.q.a.61.12 yes 96
17.12 odd 16 inner 425.3.u.e.301.1 96
85.12 even 16 425.3.t.h.199.12 96
85.29 odd 16 85.3.q.a.46.12 96
85.63 even 16 425.3.t.e.199.1 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.12 96 85.29 odd 16
85.3.q.a.61.12 yes 96 5.4 even 2
425.3.t.e.199.1 96 85.63 even 16
425.3.t.e.299.1 96 5.2 odd 4
425.3.t.h.199.12 96 85.12 even 16
425.3.t.h.299.12 96 5.3 odd 4
425.3.u.e.301.1 96 17.12 odd 16 inner
425.3.u.e.401.1 96 1.1 even 1 trivial