Properties

Label 425.3.u.d.401.8
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.8
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.d.301.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.467086 - 1.12765i) q^{2} +(0.162239 + 0.108405i) q^{3} +(1.77501 + 1.77501i) q^{4} +(0.198022 - 0.132314i) q^{6} +(-0.551755 - 0.109751i) q^{7} +(7.34125 - 3.04085i) q^{8} +(-3.42958 - 8.27974i) q^{9} +(-10.3431 - 15.4795i) q^{11} +(0.0955567 + 0.480396i) q^{12} +(1.47521 - 1.47521i) q^{13} +(-0.381477 + 0.570921i) q^{14} +0.342319i q^{16} +(6.51358 + 15.7027i) q^{17} -10.9385 q^{18} +(10.3872 - 25.0770i) q^{19} +(-0.0776188 - 0.0776188i) q^{21} +(-22.2866 + 4.43307i) q^{22} +(37.3309 - 24.9437i) q^{23} +(1.52068 + 0.302482i) q^{24} +(-0.974463 - 2.35256i) q^{26} +(0.683751 - 3.43745i) q^{27} +(-0.784563 - 1.17418i) q^{28} +(7.35634 + 36.9828i) q^{29} +(22.5110 - 33.6901i) q^{31} +(29.7510 + 12.3233i) q^{32} -3.63263i q^{33} +(20.7494 - 0.0105167i) q^{34} +(8.60909 - 20.7842i) q^{36} +(25.4910 + 17.0326i) q^{37} +(-23.4262 - 23.4262i) q^{38} +(0.399256 - 0.0794170i) q^{39} +(-4.83333 - 0.961410i) q^{41} +(-0.123781 + 0.0512718i) q^{42} +(-18.3947 - 44.4087i) q^{43} +(9.11725 - 45.8355i) q^{44} +(-10.6909 - 53.7469i) q^{46} +(-57.3767 + 57.3767i) q^{47} +(-0.0371090 + 0.0555375i) q^{48} +(-44.9777 - 18.6304i) q^{49} +(-0.645485 + 3.25369i) q^{51} +5.23702 q^{52} +(-5.95470 + 14.3759i) q^{53} +(-3.55685 - 2.37661i) q^{54} +(-4.38431 + 0.872094i) q^{56} +(4.40368 - 2.94245i) q^{57} +(45.1396 + 8.97882i) q^{58} +(-63.0273 + 26.1068i) q^{59} +(8.00992 - 40.2686i) q^{61} +(-27.4759 - 41.1206i) q^{62} +(0.983580 + 4.94479i) q^{63} +(26.8243 - 26.8243i) q^{64} +(-4.09632 - 1.69675i) q^{66} +58.1450i q^{67} +(-16.3107 + 39.4341i) q^{68} +8.76055 q^{69} +(76.9389 + 51.4089i) q^{71} +(-50.3548 - 50.3548i) q^{72} +(-66.8722 + 13.3017i) q^{73} +(31.1132 - 20.7892i) q^{74} +(62.9495 - 26.0745i) q^{76} +(4.00797 + 9.67608i) q^{77} +(0.0969328 - 0.487314i) q^{78} +(5.53158 + 8.27860i) q^{79} +(-56.5498 + 56.5498i) q^{81} +(-3.34171 + 5.00123i) q^{82} +(64.0331 + 26.5234i) q^{83} -0.275549i q^{84} -58.6692 q^{86} +(-2.81563 + 6.79752i) q^{87} +(-123.002 - 82.1874i) q^{88} +(-74.1047 - 74.1047i) q^{89} +(-0.975860 + 0.652049i) q^{91} +(110.538 + 21.9874i) q^{92} +(7.30434 - 3.02556i) q^{93} +(37.9007 + 91.5005i) q^{94} +(3.49088 + 5.22447i) q^{96} +(-30.1730 - 151.690i) q^{97} +(-42.0169 + 42.0169i) q^{98} +(-92.6941 + 138.726i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 96 q^{12} + 24 q^{13} + 32 q^{14} - 8 q^{17} - 64 q^{18} - 24 q^{19} - 96 q^{22} - 56 q^{23} - 336 q^{24} - 224 q^{26} + 144 q^{27} - 480 q^{28} - 64 q^{31} + 40 q^{32} + 64 q^{34} + 192 q^{36} - 128 q^{37}+ \cdots - 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.467086 1.12765i 0.233543 0.563823i −0.763046 0.646344i \(-0.776297\pi\)
0.996589 + 0.0825211i \(0.0262972\pi\)
\(3\) 0.162239 + 0.108405i 0.0540797 + 0.0361349i 0.582316 0.812962i \(-0.302147\pi\)
−0.528237 + 0.849097i \(0.677147\pi\)
\(4\) 1.77501 + 1.77501i 0.443753 + 0.443753i
\(5\) 0 0
\(6\) 0.198022 0.132314i 0.0330036 0.0220523i
\(7\) −0.551755 0.109751i −0.0788222 0.0156787i 0.155522 0.987832i \(-0.450294\pi\)
−0.234344 + 0.972154i \(0.575294\pi\)
\(8\) 7.34125 3.04085i 0.917656 0.380106i
\(9\) −3.42958 8.27974i −0.381065 0.919971i
\(10\) 0 0
\(11\) −10.3431 15.4795i −0.940282 1.40723i −0.913161 0.407599i \(-0.866366\pi\)
−0.0271204 0.999632i \(-0.508634\pi\)
\(12\) 0.0955567 + 0.480396i 0.00796306 + 0.0400330i
\(13\) 1.47521 1.47521i 0.113478 0.113478i −0.648088 0.761565i \(-0.724431\pi\)
0.761565 + 0.648088i \(0.224431\pi\)
\(14\) −0.381477 + 0.570921i −0.0272484 + 0.0407801i
\(15\) 0 0
\(16\) 0.342319i 0.0213949i
\(17\) 6.51358 + 15.7027i 0.383152 + 0.923685i
\(18\) −10.9385 −0.607696
\(19\) 10.3872 25.0770i 0.546697 1.31984i −0.373225 0.927741i \(-0.621748\pi\)
0.919922 0.392102i \(-0.128252\pi\)
\(20\) 0 0
\(21\) −0.0776188 0.0776188i −0.00369613 0.00369613i
\(22\) −22.2866 + 4.43307i −1.01303 + 0.201503i
\(23\) 37.3309 24.9437i 1.62308 1.08451i 0.690634 0.723204i \(-0.257331\pi\)
0.932448 0.361305i \(-0.117669\pi\)
\(24\) 1.52068 + 0.302482i 0.0633617 + 0.0126034i
\(25\) 0 0
\(26\) −0.974463 2.35256i −0.0374793 0.0904831i
\(27\) 0.683751 3.43745i 0.0253241 0.127313i
\(28\) −0.784563 1.17418i −0.0280201 0.0419351i
\(29\) 7.35634 + 36.9828i 0.253667 + 1.27527i 0.872059 + 0.489400i \(0.162784\pi\)
−0.618392 + 0.785870i \(0.712216\pi\)
\(30\) 0 0
\(31\) 22.5110 33.6901i 0.726162 1.08678i −0.266260 0.963901i \(-0.585788\pi\)
0.992422 0.122877i \(-0.0392120\pi\)
\(32\) 29.7510 + 12.3233i 0.929719 + 0.385102i
\(33\) 3.63263i 0.110080i
\(34\) 20.7494 0.0105167i 0.610277 0.000309315i
\(35\) 0 0
\(36\) 8.60909 20.7842i 0.239141 0.577339i
\(37\) 25.4910 + 17.0326i 0.688946 + 0.460339i 0.850121 0.526587i \(-0.176528\pi\)
−0.161175 + 0.986926i \(0.551528\pi\)
\(38\) −23.4262 23.4262i −0.616480 0.616480i
\(39\) 0.399256 0.0794170i 0.0102373 0.00203633i
\(40\) 0 0
\(41\) −4.83333 0.961410i −0.117886 0.0234490i 0.135795 0.990737i \(-0.456641\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(42\) −0.123781 + 0.0512718i −0.00294717 + 0.00122076i
\(43\) −18.3947 44.4087i −0.427783 1.03276i −0.979989 0.199052i \(-0.936214\pi\)
0.552206 0.833708i \(-0.313786\pi\)
\(44\) 9.11725 45.8355i 0.207210 1.04172i
\(45\) 0 0
\(46\) −10.6909 53.7469i −0.232411 1.16841i
\(47\) −57.3767 + 57.3767i −1.22078 + 1.22078i −0.253427 + 0.967355i \(0.581558\pi\)
−0.967355 + 0.253427i \(0.918442\pi\)
\(48\) −0.0371090 + 0.0555375i −0.000773104 + 0.00115703i
\(49\) −44.9777 18.6304i −0.917912 0.380212i
\(50\) 0 0
\(51\) −0.645485 + 3.25369i −0.0126566 + 0.0637978i
\(52\) 5.23702 0.100712
\(53\) −5.95470 + 14.3759i −0.112353 + 0.271244i −0.970047 0.242916i \(-0.921896\pi\)
0.857695 + 0.514160i \(0.171896\pi\)
\(54\) −3.55685 2.37661i −0.0658676 0.0440113i
\(55\) 0 0
\(56\) −4.38431 + 0.872094i −0.0782913 + 0.0155731i
\(57\) 4.40368 2.94245i 0.0772576 0.0516219i
\(58\) 45.1396 + 8.97882i 0.778268 + 0.154807i
\(59\) −63.0273 + 26.1068i −1.06826 + 0.442487i −0.846376 0.532586i \(-0.821220\pi\)
−0.221883 + 0.975073i \(0.571220\pi\)
\(60\) 0 0
\(61\) 8.00992 40.2686i 0.131310 0.660141i −0.857921 0.513781i \(-0.828244\pi\)
0.989231 0.146360i \(-0.0467557\pi\)
\(62\) −27.4759 41.1206i −0.443160 0.663236i
\(63\) 0.983580 + 4.94479i 0.0156124 + 0.0784888i
\(64\) 26.8243 26.8243i 0.419130 0.419130i
\(65\) 0 0
\(66\) −4.09632 1.69675i −0.0620654 0.0257083i
\(67\) 58.1450i 0.867835i 0.900952 + 0.433918i \(0.142869\pi\)
−0.900952 + 0.433918i \(0.857131\pi\)
\(68\) −16.3107 + 39.4341i −0.239863 + 0.579913i
\(69\) 8.76055 0.126964
\(70\) 0 0
\(71\) 76.9389 + 51.4089i 1.08365 + 0.724070i 0.963237 0.268655i \(-0.0865790\pi\)
0.120410 + 0.992724i \(0.461579\pi\)
\(72\) −50.3548 50.3548i −0.699373 0.699373i
\(73\) −66.8722 + 13.3017i −0.916058 + 0.182215i −0.630539 0.776158i \(-0.717166\pi\)
−0.285519 + 0.958373i \(0.592166\pi\)
\(74\) 31.1132 20.7892i 0.420448 0.280935i
\(75\) 0 0
\(76\) 62.9495 26.0745i 0.828283 0.343086i
\(77\) 4.00797 + 9.67608i 0.0520515 + 0.125663i
\(78\) 0.0969328 0.487314i 0.00124273 0.00624761i
\(79\) 5.53158 + 8.27860i 0.0700201 + 0.104792i 0.864827 0.502070i \(-0.167428\pi\)
−0.794807 + 0.606862i \(0.792428\pi\)
\(80\) 0 0
\(81\) −56.5498 + 56.5498i −0.698146 + 0.698146i
\(82\) −3.34171 + 5.00123i −0.0407526 + 0.0609906i
\(83\) 64.0331 + 26.5234i 0.771483 + 0.319559i 0.733473 0.679719i \(-0.237898\pi\)
0.0380102 + 0.999277i \(0.487898\pi\)
\(84\) 0.275549i 0.00328034i
\(85\) 0 0
\(86\) −58.6692 −0.682200
\(87\) −2.81563 + 6.79752i −0.0323635 + 0.0781325i
\(88\) −123.002 82.1874i −1.39775 0.933948i
\(89\) −74.1047 74.1047i −0.832637 0.832637i 0.155240 0.987877i \(-0.450385\pi\)
−0.987877 + 0.155240i \(0.950385\pi\)
\(90\) 0 0
\(91\) −0.975860 + 0.652049i −0.0107237 + 0.00716537i
\(92\) 110.538 + 21.9874i 1.20150 + 0.238994i
\(93\) 7.30434 3.02556i 0.0785413 0.0325329i
\(94\) 37.9007 + 91.5005i 0.403199 + 0.973409i
\(95\) 0 0
\(96\) 3.49088 + 5.22447i 0.0363633 + 0.0544215i
\(97\) −30.1730 151.690i −0.311062 1.56382i −0.747612 0.664136i \(-0.768800\pi\)
0.436550 0.899680i \(-0.356200\pi\)
\(98\) −42.0169 + 42.0169i −0.428744 + 0.428744i
\(99\) −92.6941 + 138.726i −0.936304 + 1.40128i
\(100\) 0 0
\(101\) 83.0452i 0.822230i −0.911583 0.411115i \(-0.865139\pi\)
0.911583 0.411115i \(-0.134861\pi\)
\(102\) 3.36751 + 2.24763i 0.0330148 + 0.0220356i
\(103\) 95.8462 0.930546 0.465273 0.885167i \(-0.345956\pi\)
0.465273 + 0.885167i \(0.345956\pi\)
\(104\) 6.34399 15.3158i 0.0609999 0.147267i
\(105\) 0 0
\(106\) 13.4296 + 13.4296i 0.126694 + 0.126694i
\(107\) 71.7653 14.2750i 0.670704 0.133411i 0.152020 0.988377i \(-0.451422\pi\)
0.518684 + 0.854966i \(0.326422\pi\)
\(108\) 7.31518 4.88785i 0.0677331 0.0452578i
\(109\) 45.3495 + 9.02057i 0.416050 + 0.0827576i 0.398677 0.917092i \(-0.369470\pi\)
0.0173736 + 0.999849i \(0.494470\pi\)
\(110\) 0 0
\(111\) 2.28923 + 5.52669i 0.0206237 + 0.0497900i
\(112\) 0.0375698 0.188876i 0.000335445 0.00168639i
\(113\) 28.8541 + 43.1832i 0.255346 + 0.382152i 0.936890 0.349625i \(-0.113691\pi\)
−0.681544 + 0.731777i \(0.738691\pi\)
\(114\) −1.26114 6.34017i −0.0110626 0.0556155i
\(115\) 0 0
\(116\) −52.5874 + 78.7025i −0.453339 + 0.678470i
\(117\) −17.2737 7.15500i −0.147638 0.0611538i
\(118\) 83.2666i 0.705649i
\(119\) −1.87052 9.37889i −0.0157187 0.0788142i
\(120\) 0 0
\(121\) −86.3318 + 208.423i −0.713486 + 1.72251i
\(122\) −41.6674 27.8413i −0.341536 0.228207i
\(123\) −0.679934 0.679934i −0.00552792 0.00552792i
\(124\) 99.7577 19.8430i 0.804498 0.160025i
\(125\) 0 0
\(126\) 6.03539 + 1.20051i 0.0478999 + 0.00952789i
\(127\) −79.4211 + 32.8973i −0.625363 + 0.259034i −0.672781 0.739841i \(-0.734901\pi\)
0.0474184 + 0.998875i \(0.484901\pi\)
\(128\) 31.5740 + 76.2264i 0.246672 + 0.595519i
\(129\) 1.82977 9.19890i 0.0141843 0.0713093i
\(130\) 0 0
\(131\) 36.4935 + 183.465i 0.278576 + 1.40050i 0.826014 + 0.563650i \(0.190603\pi\)
−0.547438 + 0.836846i \(0.684397\pi\)
\(132\) 6.44796 6.44796i 0.0488482 0.0488482i
\(133\) −8.48344 + 12.6964i −0.0637853 + 0.0954614i
\(134\) 65.5669 + 27.1587i 0.489305 + 0.202677i
\(135\) 0 0
\(136\) 95.5671 + 95.4703i 0.702700 + 0.701988i
\(137\) −5.25909 −0.0383875 −0.0191938 0.999816i \(-0.506110\pi\)
−0.0191938 + 0.999816i \(0.506110\pi\)
\(138\) 4.09193 9.87879i 0.0296517 0.0715854i
\(139\) 56.0316 + 37.4391i 0.403105 + 0.269346i 0.740553 0.671998i \(-0.234564\pi\)
−0.337448 + 0.941344i \(0.609564\pi\)
\(140\) 0 0
\(141\) −15.5287 + 3.08884i −0.110132 + 0.0219067i
\(142\) 93.9082 62.7474i 0.661325 0.441883i
\(143\) −38.0938 7.57732i −0.266390 0.0529883i
\(144\) 2.83431 1.17401i 0.0196827 0.00815285i
\(145\) 0 0
\(146\) −16.2355 + 81.6212i −0.111202 + 0.559050i
\(147\) −5.27752 7.89837i −0.0359015 0.0537304i
\(148\) 15.0139 + 75.4798i 0.101445 + 0.509999i
\(149\) −90.5416 + 90.5416i −0.607662 + 0.607662i −0.942334 0.334673i \(-0.891374\pi\)
0.334673 + 0.942334i \(0.391374\pi\)
\(150\) 0 0
\(151\) −128.407 53.1878i −0.850375 0.352237i −0.0854391 0.996343i \(-0.527229\pi\)
−0.764936 + 0.644107i \(0.777229\pi\)
\(152\) 215.683i 1.41896i
\(153\) 107.675 107.784i 0.703759 0.704472i
\(154\) 12.7833 0.0830082
\(155\) 0 0
\(156\) 0.849650 + 0.567718i 0.00544648 + 0.00363922i
\(157\) 102.658 + 102.658i 0.653870 + 0.653870i 0.953923 0.300052i \(-0.0970042\pi\)
−0.300052 + 0.953923i \(0.597004\pi\)
\(158\) 11.9191 2.37085i 0.0754371 0.0150054i
\(159\) −2.52450 + 1.68682i −0.0158774 + 0.0106089i
\(160\) 0 0
\(161\) −23.3351 + 9.66572i −0.144939 + 0.0600355i
\(162\) 37.3545 + 90.1817i 0.230583 + 0.556677i
\(163\) −13.3770 + 67.2507i −0.0820674 + 0.412581i 0.917811 + 0.397017i \(0.129954\pi\)
−0.999879 + 0.0155642i \(0.995046\pi\)
\(164\) −6.87271 10.2857i −0.0419068 0.0627179i
\(165\) 0 0
\(166\) 59.8180 59.8180i 0.360349 0.360349i
\(167\) −22.9837 + 34.3975i −0.137627 + 0.205973i −0.893880 0.448305i \(-0.852028\pi\)
0.756253 + 0.654279i \(0.227028\pi\)
\(168\) −0.805846 0.333792i −0.00479670 0.00198686i
\(169\) 164.648i 0.974246i
\(170\) 0 0
\(171\) −243.255 −1.42254
\(172\) 46.1752 111.477i 0.268460 0.648121i
\(173\) 64.2046 + 42.9002i 0.371125 + 0.247978i 0.727121 0.686510i \(-0.240858\pi\)
−0.355995 + 0.934488i \(0.615858\pi\)
\(174\) 6.35006 + 6.35006i 0.0364946 + 0.0364946i
\(175\) 0 0
\(176\) 5.29894 3.54064i 0.0301076 0.0201173i
\(177\) −13.0556 2.59692i −0.0737604 0.0146719i
\(178\) −118.177 + 48.9506i −0.663916 + 0.275003i
\(179\) −30.0207 72.4764i −0.167714 0.404896i 0.817569 0.575831i \(-0.195321\pi\)
−0.985282 + 0.170935i \(0.945321\pi\)
\(180\) 0 0
\(181\) 13.7710 + 20.6098i 0.0760829 + 0.113866i 0.867560 0.497333i \(-0.165687\pi\)
−0.791477 + 0.611199i \(0.790687\pi\)
\(182\) 0.279469 + 1.40499i 0.00153555 + 0.00771971i
\(183\) 5.66483 5.66483i 0.0309554 0.0309554i
\(184\) 198.205 296.635i 1.07720 1.61215i
\(185\) 0 0
\(186\) 9.64990i 0.0518812i
\(187\) 175.699 263.241i 0.939568 1.40771i
\(188\) −203.689 −1.08345
\(189\) −0.754526 + 1.82159i −0.00399220 + 0.00963803i
\(190\) 0 0
\(191\) 163.987 + 163.987i 0.858573 + 0.858573i 0.991170 0.132597i \(-0.0423315\pi\)
−0.132597 + 0.991170i \(0.542332\pi\)
\(192\) 7.25985 1.44407i 0.0378117 0.00752121i
\(193\) 220.942 147.629i 1.14478 0.764917i 0.169421 0.985544i \(-0.445810\pi\)
0.975358 + 0.220627i \(0.0708104\pi\)
\(194\) −185.146 36.8279i −0.954361 0.189834i
\(195\) 0 0
\(196\) −46.7668 112.905i −0.238606 0.576046i
\(197\) −42.6042 + 214.186i −0.216265 + 1.08724i 0.708212 + 0.706000i \(0.249502\pi\)
−0.924477 + 0.381238i \(0.875498\pi\)
\(198\) 113.138 + 169.323i 0.571405 + 0.855168i
\(199\) 29.1291 + 146.442i 0.146377 + 0.735888i 0.982340 + 0.187103i \(0.0599097\pi\)
−0.835963 + 0.548786i \(0.815090\pi\)
\(200\) 0 0
\(201\) −6.30319 + 9.43339i −0.0313592 + 0.0469323i
\(202\) −93.6456 38.7893i −0.463592 0.192026i
\(203\) 21.2128i 0.104497i
\(204\) −6.92108 + 4.62959i −0.0339268 + 0.0226941i
\(205\) 0 0
\(206\) 44.7684 108.081i 0.217323 0.524663i
\(207\) −334.557 223.544i −1.61622 1.07992i
\(208\) 0.504991 + 0.504991i 0.00242784 + 0.00242784i
\(209\) −495.617 + 98.5843i −2.37137 + 0.471695i
\(210\) 0 0
\(211\) 176.804 + 35.1685i 0.837935 + 0.166676i 0.595362 0.803458i \(-0.297009\pi\)
0.242573 + 0.970133i \(0.422009\pi\)
\(212\) −36.0871 + 14.9478i −0.170222 + 0.0705083i
\(213\) 6.90953 + 16.6811i 0.0324391 + 0.0783150i
\(214\) 17.4234 87.5935i 0.0814179 0.409315i
\(215\) 0 0
\(216\) −5.43316 27.3143i −0.0251535 0.126455i
\(217\) −16.1181 + 16.1181i −0.0742770 + 0.0742770i
\(218\) 31.3541 46.9248i 0.143826 0.215251i
\(219\) −12.2913 5.09121i −0.0561245 0.0232475i
\(220\) 0 0
\(221\) 32.7736 + 13.5558i 0.148297 + 0.0613385i
\(222\) 7.30142 0.0328893
\(223\) −106.229 + 256.461i −0.476365 + 1.15005i 0.484936 + 0.874549i \(0.338843\pi\)
−0.961302 + 0.275498i \(0.911157\pi\)
\(224\) −15.0628 10.0646i −0.0672446 0.0449314i
\(225\) 0 0
\(226\) 62.1727 12.3669i 0.275100 0.0547209i
\(227\) −224.585 + 150.063i −0.989359 + 0.661069i −0.941228 0.337772i \(-0.890327\pi\)
−0.0481314 + 0.998841i \(0.515327\pi\)
\(228\) 13.0395 + 2.59371i 0.0571907 + 0.0113759i
\(229\) 306.590 126.994i 1.33882 0.554558i 0.405662 0.914023i \(-0.367041\pi\)
0.933159 + 0.359465i \(0.117041\pi\)
\(230\) 0 0
\(231\) −0.398684 + 2.00432i −0.00172591 + 0.00867672i
\(232\) 166.464 + 249.131i 0.717516 + 1.07384i
\(233\) −8.66799 43.5769i −0.0372017 0.187025i 0.957716 0.287714i \(-0.0928953\pi\)
−0.994918 + 0.100689i \(0.967895\pi\)
\(234\) −16.1366 + 16.1366i −0.0689598 + 0.0689598i
\(235\) 0 0
\(236\) −158.214 65.5344i −0.670398 0.277688i
\(237\) 1.94276i 0.00819731i
\(238\) −11.4498 2.27147i −0.0481083 0.00954398i
\(239\) 186.338 0.779656 0.389828 0.920888i \(-0.372534\pi\)
0.389828 + 0.920888i \(0.372534\pi\)
\(240\) 0 0
\(241\) −234.931 156.976i −0.974817 0.651352i −0.0373044 0.999304i \(-0.511877\pi\)
−0.937512 + 0.347952i \(0.886877\pi\)
\(242\) 194.703 + 194.703i 0.804559 + 0.804559i
\(243\) −46.2419 + 9.19808i −0.190296 + 0.0378522i
\(244\) 85.6950 57.2595i 0.351209 0.234670i
\(245\) 0 0
\(246\) −1.08431 + 0.449137i −0.00440778 + 0.00182576i
\(247\) −21.6705 52.3172i −0.0877347 0.211810i
\(248\) 62.8126 315.780i 0.253277 1.27331i
\(249\) 7.51342 + 11.2446i 0.0301744 + 0.0451591i
\(250\) 0 0
\(251\) 45.8555 45.8555i 0.182691 0.182691i −0.609836 0.792528i \(-0.708765\pi\)
0.792528 + 0.609836i \(0.208765\pi\)
\(252\) −7.03120 + 10.5229i −0.0279016 + 0.0417577i
\(253\) −772.234 319.870i −3.05231 1.26431i
\(254\) 104.925i 0.413090i
\(255\) 0 0
\(256\) 252.446 0.986116
\(257\) −144.119 + 347.933i −0.560773 + 1.35383i 0.348376 + 0.937355i \(0.386733\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(258\) −9.51843 6.36001i −0.0368932 0.0246512i
\(259\) −12.1955 12.1955i −0.0470867 0.0470867i
\(260\) 0 0
\(261\) 280.979 187.744i 1.07655 0.719326i
\(262\) 223.929 + 44.5423i 0.854691 + 0.170009i
\(263\) 323.253 133.896i 1.22910 0.509109i 0.328806 0.944397i \(-0.393354\pi\)
0.900291 + 0.435289i \(0.143354\pi\)
\(264\) −11.0463 26.6680i −0.0418419 0.101015i
\(265\) 0 0
\(266\) 10.3545 + 15.4966i 0.0389267 + 0.0582579i
\(267\) −3.98938 20.0560i −0.0149415 0.0751160i
\(268\) −103.208 + 103.208i −0.385105 + 0.385105i
\(269\) 64.9248 97.1669i 0.241356 0.361215i −0.690939 0.722913i \(-0.742803\pi\)
0.932295 + 0.361698i \(0.117803\pi\)
\(270\) 0 0
\(271\) 363.072i 1.33975i −0.742474 0.669875i \(-0.766348\pi\)
0.742474 0.669875i \(-0.233652\pi\)
\(272\) −5.37531 + 2.22972i −0.0197622 + 0.00819750i
\(273\) −0.229008 −0.000838856
\(274\) −2.45645 + 5.93039i −0.00896514 + 0.0216438i
\(275\) 0 0
\(276\) 15.5501 + 15.5501i 0.0563408 + 0.0563408i
\(277\) 189.983 37.7900i 0.685860 0.136426i 0.160154 0.987092i \(-0.448801\pi\)
0.525707 + 0.850666i \(0.323801\pi\)
\(278\) 68.3896 45.6965i 0.246006 0.164376i
\(279\) −356.149 70.8424i −1.27652 0.253915i
\(280\) 0 0
\(281\) −144.495 348.841i −0.514217 1.24143i −0.941409 0.337268i \(-0.890497\pi\)
0.427192 0.904161i \(-0.359503\pi\)
\(282\) −3.77010 + 18.9536i −0.0133692 + 0.0672113i
\(283\) −134.983 202.016i −0.476971 0.713837i 0.512481 0.858698i \(-0.328726\pi\)
−0.989452 + 0.144861i \(0.953726\pi\)
\(284\) 45.3160 + 227.819i 0.159563 + 0.802180i
\(285\) 0 0
\(286\) −26.3376 + 39.4170i −0.0920895 + 0.137822i
\(287\) 2.56130 + 1.06093i 0.00892440 + 0.00369661i
\(288\) 288.594i 1.00206i
\(289\) −204.147 + 204.561i −0.706390 + 0.707823i
\(290\) 0 0
\(291\) 11.5487 27.8810i 0.0396862 0.0958109i
\(292\) −142.310 95.0883i −0.487362 0.325645i
\(293\) 129.066 + 129.066i 0.440498 + 0.440498i 0.892179 0.451681i \(-0.149176\pi\)
−0.451681 + 0.892179i \(0.649176\pi\)
\(294\) −11.3716 + 2.26196i −0.0386790 + 0.00769373i
\(295\) 0 0
\(296\) 238.929 + 47.5260i 0.807193 + 0.160561i
\(297\) −60.2822 + 24.9697i −0.202970 + 0.0840731i
\(298\) 59.8081 + 144.390i 0.200698 + 0.484529i
\(299\) 18.2737 91.8680i 0.0611160 0.307251i
\(300\) 0 0
\(301\) 5.27547 + 26.5216i 0.0175265 + 0.0881115i
\(302\) −119.954 + 119.954i −0.397198 + 0.397198i
\(303\) 9.00250 13.4732i 0.0297112 0.0444660i
\(304\) 8.58433 + 3.55575i 0.0282379 + 0.0116965i
\(305\) 0 0
\(306\) −71.2489 171.764i −0.232840 0.561320i
\(307\) −131.445 −0.428159 −0.214080 0.976816i \(-0.568675\pi\)
−0.214080 + 0.976816i \(0.568675\pi\)
\(308\) −10.0610 + 24.2894i −0.0326655 + 0.0788615i
\(309\) 15.5500 + 10.3902i 0.0503237 + 0.0336252i
\(310\) 0 0
\(311\) 16.4888 3.27982i 0.0530185 0.0105460i −0.168510 0.985700i \(-0.553895\pi\)
0.221528 + 0.975154i \(0.428895\pi\)
\(312\) 2.68954 1.79710i 0.00862033 0.00575992i
\(313\) 58.4595 + 11.6283i 0.186771 + 0.0371512i 0.287590 0.957754i \(-0.407146\pi\)
−0.100818 + 0.994905i \(0.532146\pi\)
\(314\) 163.711 67.8115i 0.521374 0.215960i
\(315\) 0 0
\(316\) −4.87599 + 24.5132i −0.0154303 + 0.0775736i
\(317\) −88.3105 132.166i −0.278582 0.416927i 0.665622 0.746289i \(-0.268166\pi\)
−0.944204 + 0.329362i \(0.893166\pi\)
\(318\) 0.722974 + 3.63463i 0.00227350 + 0.0114297i
\(319\) 496.390 496.390i 1.55608 1.55608i
\(320\) 0 0
\(321\) 13.1906 + 5.46373i 0.0410923 + 0.0170210i
\(322\) 30.8285i 0.0957406i
\(323\) 461.434 0.233875i 1.42859 0.000724070i
\(324\) −200.753 −0.619608
\(325\) 0 0
\(326\) 69.5867 + 46.4964i 0.213456 + 0.142627i
\(327\) 6.37959 + 6.37959i 0.0195094 + 0.0195094i
\(328\) −38.4062 + 7.63947i −0.117092 + 0.0232911i
\(329\) 37.9551 25.3608i 0.115365 0.0770844i
\(330\) 0 0
\(331\) 367.691 152.303i 1.11085 0.460129i 0.249620 0.968344i \(-0.419694\pi\)
0.861230 + 0.508215i \(0.169694\pi\)
\(332\) 66.5802 + 160.739i 0.200543 + 0.484153i
\(333\) 53.6016 269.473i 0.160966 0.809230i
\(334\) 28.0529 + 41.9841i 0.0839906 + 0.125701i
\(335\) 0 0
\(336\) 0.0265704 0.0265704i 7.90785e−5 7.90785e-5i
\(337\) −19.2955 + 28.8778i −0.0572568 + 0.0856908i −0.858993 0.511987i \(-0.828910\pi\)
0.801737 + 0.597678i \(0.203910\pi\)
\(338\) 185.664 + 76.9046i 0.549302 + 0.227528i
\(339\) 10.1339i 0.0298936i
\(340\) 0 0
\(341\) −754.341 −2.21214
\(342\) −113.621 + 274.305i −0.332225 + 0.802063i
\(343\) 45.6920 + 30.5304i 0.133213 + 0.0890100i
\(344\) −270.080 270.080i −0.785116 0.785116i
\(345\) 0 0
\(346\) 78.3653 52.3620i 0.226489 0.151335i
\(347\) 433.233 + 86.1754i 1.24851 + 0.248344i 0.774726 0.632297i \(-0.217888\pi\)
0.473784 + 0.880641i \(0.342888\pi\)
\(348\) −17.0635 + 7.06792i −0.0490329 + 0.0203101i
\(349\) −30.5308 73.7080i −0.0874809 0.211198i 0.874084 0.485774i \(-0.161462\pi\)
−0.961565 + 0.274577i \(0.911462\pi\)
\(350\) 0 0
\(351\) −4.06228 6.07963i −0.0115734 0.0173209i
\(352\) −116.959 587.993i −0.332270 1.67043i
\(353\) −159.723 + 159.723i −0.452474 + 0.452474i −0.896175 0.443701i \(-0.853665\pi\)
0.443701 + 0.896175i \(0.353665\pi\)
\(354\) −9.02649 + 13.5091i −0.0254986 + 0.0381613i
\(355\) 0 0
\(356\) 263.073i 0.738970i
\(357\) 0.713245 1.72440i 0.00199788 0.00483024i
\(358\) −95.7500 −0.267458
\(359\) −60.3749 + 145.758i −0.168175 + 0.406011i −0.985388 0.170325i \(-0.945518\pi\)
0.817213 + 0.576336i \(0.195518\pi\)
\(360\) 0 0
\(361\) −265.696 265.696i −0.736001 0.736001i
\(362\) 29.6728 5.90228i 0.0819690 0.0163046i
\(363\) −36.6005 + 24.4557i −0.100828 + 0.0673709i
\(364\) −2.88956 0.574768i −0.00793834 0.00157903i
\(365\) 0 0
\(366\) −3.74196 9.03389i −0.0102239 0.0246827i
\(367\) −135.457 + 680.986i −0.369092 + 1.85555i 0.133534 + 0.991044i \(0.457368\pi\)
−0.502625 + 0.864504i \(0.667632\pi\)
\(368\) 8.53870 + 12.7791i 0.0232030 + 0.0347257i
\(369\) 8.61608 + 43.3160i 0.0233498 + 0.117387i
\(370\) 0 0
\(371\) 4.86331 7.27846i 0.0131086 0.0196185i
\(372\) 18.3357 + 7.59489i 0.0492895 + 0.0204164i
\(373\) 79.2790i 0.212544i 0.994337 + 0.106272i \(0.0338915\pi\)
−0.994337 + 0.106272i \(0.966109\pi\)
\(374\) −214.776 321.083i −0.574268 0.858510i
\(375\) 0 0
\(376\) −246.743 + 595.691i −0.656232 + 1.58428i
\(377\) 65.4095 + 43.7052i 0.173500 + 0.115929i
\(378\) 1.70168 + 1.70168i 0.00450179 + 0.00450179i
\(379\) 414.708 82.4905i 1.09422 0.217653i 0.385191 0.922837i \(-0.374136\pi\)
0.709024 + 0.705184i \(0.249136\pi\)
\(380\) 0 0
\(381\) −16.4514 3.27239i −0.0431796 0.00858896i
\(382\) 261.516 108.323i 0.684597 0.283569i
\(383\) −160.880 388.399i −0.420052 1.01410i −0.982332 0.187148i \(-0.940075\pi\)
0.562280 0.826947i \(-0.309925\pi\)
\(384\) −3.14076 + 15.7897i −0.00817907 + 0.0411190i
\(385\) 0 0
\(386\) −63.2740 318.100i −0.163922 0.824093i
\(387\) −304.606 + 304.606i −0.787097 + 0.787097i
\(388\) 215.694 322.809i 0.555913 0.831983i
\(389\) −8.41530 3.48573i −0.0216332 0.00896075i 0.371841 0.928297i \(-0.378727\pi\)
−0.393474 + 0.919336i \(0.628727\pi\)
\(390\) 0 0
\(391\) 634.840 + 423.721i 1.62363 + 1.08369i
\(392\) −386.845 −0.986849
\(393\) −13.9678 + 33.7213i −0.0355415 + 0.0858047i
\(394\) 221.626 + 148.086i 0.562503 + 0.375852i
\(395\) 0 0
\(396\) −410.774 + 81.7081i −1.03731 + 0.206334i
\(397\) 567.381 379.112i 1.42917 0.954942i 0.430545 0.902569i \(-0.358322\pi\)
0.998628 0.0523730i \(-0.0166785\pi\)
\(398\) 178.740 + 35.5536i 0.449096 + 0.0893308i
\(399\) −2.75269 + 1.14020i −0.00689898 + 0.00285765i
\(400\) 0 0
\(401\) 7.31111 36.7554i 0.0182322 0.0916594i −0.970598 0.240707i \(-0.922621\pi\)
0.988830 + 0.149048i \(0.0476207\pi\)
\(402\) 7.69339 + 11.5140i 0.0191378 + 0.0286417i
\(403\) −16.4915 82.9084i −0.0409218 0.205728i
\(404\) 147.406 147.406i 0.364867 0.364867i
\(405\) 0 0
\(406\) −23.9206 9.90822i −0.0589176 0.0244045i
\(407\) 570.758i 1.40235i
\(408\) 5.15530 + 25.8490i 0.0126355 + 0.0633553i
\(409\) 287.263 0.702355 0.351177 0.936309i \(-0.385781\pi\)
0.351177 + 0.936309i \(0.385781\pi\)
\(410\) 0 0
\(411\) −0.853231 0.570111i −0.00207599 0.00138713i
\(412\) 170.128 + 170.128i 0.412933 + 0.412933i
\(413\) 37.6409 7.48724i 0.0911402 0.0181289i
\(414\) −408.345 + 272.847i −0.986340 + 0.659051i
\(415\) 0 0
\(416\) 62.0683 25.7095i 0.149203 0.0618018i
\(417\) 5.03194 + 12.1482i 0.0120670 + 0.0291323i
\(418\) −120.328 + 604.928i −0.287865 + 1.44720i
\(419\) 222.252 + 332.624i 0.530435 + 0.793853i 0.995828 0.0912517i \(-0.0290868\pi\)
−0.465392 + 0.885104i \(0.654087\pi\)
\(420\) 0 0
\(421\) −361.680 + 361.680i −0.859098 + 0.859098i −0.991232 0.132134i \(-0.957817\pi\)
0.132134 + 0.991232i \(0.457817\pi\)
\(422\) 122.240 182.946i 0.289669 0.433521i
\(423\) 671.842 + 278.286i 1.58828 + 0.657887i
\(424\) 123.645i 0.291614i
\(425\) 0 0
\(426\) 22.0377 0.0517317
\(427\) −8.83904 + 21.3393i −0.0207003 + 0.0499750i
\(428\) 152.723 + 102.046i 0.356828 + 0.238425i
\(429\) −5.35888 5.35888i −0.0124916 0.0124916i
\(430\) 0 0
\(431\) 477.274 318.904i 1.10736 0.739917i 0.139208 0.990263i \(-0.455544\pi\)
0.968156 + 0.250346i \(0.0805443\pi\)
\(432\) 1.17670 + 0.234061i 0.00272385 + 0.000541807i
\(433\) −178.670 + 74.0075i −0.412633 + 0.170918i −0.579336 0.815089i \(-0.696688\pi\)
0.166703 + 0.986007i \(0.446688\pi\)
\(434\) 10.6470 + 25.7040i 0.0245322 + 0.0592259i
\(435\) 0 0
\(436\) 64.4842 + 96.5075i 0.147900 + 0.221347i
\(437\) −237.749 1195.24i −0.544047 2.73511i
\(438\) −11.4822 + 11.4822i −0.0262150 + 0.0262150i
\(439\) −123.464 + 184.777i −0.281239 + 0.420904i −0.945015 0.327028i \(-0.893953\pi\)
0.663776 + 0.747932i \(0.268953\pi\)
\(440\) 0 0
\(441\) 436.298i 0.989338i
\(442\) 30.5942 30.6252i 0.0692177 0.0692879i
\(443\) −252.971 −0.571040 −0.285520 0.958373i \(-0.592166\pi\)
−0.285520 + 0.958373i \(0.592166\pi\)
\(444\) −5.74653 + 13.8734i −0.0129426 + 0.0312463i
\(445\) 0 0
\(446\) 239.578 + 239.578i 0.537171 + 0.537171i
\(447\) −24.5045 + 4.87425i −0.0548200 + 0.0109044i
\(448\) −17.7445 + 11.8565i −0.0396082 + 0.0264654i
\(449\) −302.898 60.2501i −0.674605 0.134187i −0.154112 0.988053i \(-0.549252\pi\)
−0.520493 + 0.853866i \(0.674252\pi\)
\(450\) 0 0
\(451\) 35.1095 + 84.7617i 0.0778480 + 0.187942i
\(452\) −25.4343 + 127.867i −0.0562707 + 0.282892i
\(453\) −15.0668 22.5490i −0.0332600 0.0497771i
\(454\) 64.3171 + 323.344i 0.141668 + 0.712211i
\(455\) 0 0
\(456\) 23.3810 34.9922i 0.0512742 0.0767372i
\(457\) 677.671 + 280.700i 1.48287 + 0.614224i 0.969751 0.244095i \(-0.0784909\pi\)
0.513117 + 0.858319i \(0.328491\pi\)
\(458\) 405.042i 0.884371i
\(459\) 58.4307 11.6534i 0.127300 0.0253886i
\(460\) 0 0
\(461\) −294.134 + 710.101i −0.638034 + 1.54035i 0.191261 + 0.981539i \(0.438742\pi\)
−0.829295 + 0.558811i \(0.811258\pi\)
\(462\) 2.07394 + 1.38577i 0.00448906 + 0.00299949i
\(463\) 138.291 + 138.291i 0.298685 + 0.298685i 0.840499 0.541814i \(-0.182262\pi\)
−0.541814 + 0.840499i \(0.682262\pi\)
\(464\) −12.6599 + 2.51821i −0.0272843 + 0.00542718i
\(465\) 0 0
\(466\) −53.1880 10.5798i −0.114137 0.0227033i
\(467\) −311.389 + 128.982i −0.666786 + 0.276192i −0.690291 0.723532i \(-0.742517\pi\)
0.0235049 + 0.999724i \(0.492517\pi\)
\(468\) −17.9608 43.3612i −0.0383778 0.0926521i
\(469\) 6.38147 32.0818i 0.0136065 0.0684047i
\(470\) 0 0
\(471\) 5.52651 + 27.7837i 0.0117336 + 0.0589887i
\(472\) −383.312 + 383.312i −0.812103 + 0.812103i
\(473\) −497.168 + 744.065i −1.05110 + 1.57308i
\(474\) 2.19075 + 0.907438i 0.00462183 + 0.00191443i
\(475\) 0 0
\(476\) 13.3275 19.9678i 0.0279989 0.0419493i
\(477\) 139.451 0.292350
\(478\) 87.0358 210.123i 0.182083 0.439588i
\(479\) −9.02462 6.03006i −0.0188405 0.0125888i 0.546114 0.837711i \(-0.316106\pi\)
−0.564955 + 0.825122i \(0.691106\pi\)
\(480\) 0 0
\(481\) 62.7311 12.4780i 0.130418 0.0259418i
\(482\) −286.746 + 191.598i −0.594909 + 0.397505i
\(483\) −4.83368 0.961478i −0.0100076 0.00199064i
\(484\) −523.194 + 216.714i −1.08098 + 0.447756i
\(485\) 0 0
\(486\) −11.2268 + 56.4408i −0.0231003 + 0.116133i
\(487\) −434.266 649.925i −0.891716 1.33455i −0.941930 0.335809i \(-0.890990\pi\)
0.0502142 0.998738i \(-0.484010\pi\)
\(488\) −63.6478 319.979i −0.130426 0.655694i
\(489\) −9.46056 + 9.46056i −0.0193468 + 0.0193468i
\(490\) 0 0
\(491\) −240.667 99.6876i −0.490157 0.203030i 0.123895 0.992295i \(-0.460461\pi\)
−0.614052 + 0.789266i \(0.710461\pi\)
\(492\) 2.41378i 0.00490606i
\(493\) −532.812 + 356.405i −1.08076 + 0.722930i
\(494\) −69.1172 −0.139913
\(495\) 0 0
\(496\) 11.5328 + 7.70594i 0.0232515 + 0.0155362i
\(497\) −36.8093 36.8093i −0.0740629 0.0740629i
\(498\) 16.1894 3.22026i 0.0325088 0.00646639i
\(499\) 132.821 88.7480i 0.266174 0.177852i −0.415320 0.909675i \(-0.636330\pi\)
0.681494 + 0.731824i \(0.261330\pi\)
\(500\) 0 0
\(501\) −7.45771 + 3.08909i −0.0148857 + 0.00616584i
\(502\) −30.2903 73.1273i −0.0603392 0.145672i
\(503\) −80.4687 + 404.543i −0.159977 + 0.804261i 0.814567 + 0.580069i \(0.196974\pi\)
−0.974545 + 0.224192i \(0.928026\pi\)
\(504\) 22.2571 + 33.3100i 0.0441608 + 0.0660913i
\(505\) 0 0
\(506\) −721.400 + 721.400i −1.42569 + 1.42569i
\(507\) −17.8486 + 26.7123i −0.0352043 + 0.0526869i
\(508\) −199.367 82.5803i −0.392454 0.162560i
\(509\) 53.6570i 0.105416i 0.998610 + 0.0527082i \(0.0167853\pi\)
−0.998610 + 0.0527082i \(0.983215\pi\)
\(510\) 0 0
\(511\) 38.3570 0.0750626
\(512\) −8.38224 + 20.2365i −0.0163716 + 0.0395245i
\(513\) −79.0986 52.8520i −0.154188 0.103025i
\(514\) 325.030 + 325.030i 0.632354 + 0.632354i
\(515\) 0 0
\(516\) 19.5760 13.0803i 0.0379380 0.0253494i
\(517\) 1481.62 + 294.712i 2.86580 + 0.570043i
\(518\) −19.4485 + 8.05583i −0.0375454 + 0.0155518i
\(519\) 5.76592 + 13.9202i 0.0111097 + 0.0268211i
\(520\) 0 0
\(521\) −30.0726 45.0069i −0.0577210 0.0863856i 0.801486 0.598013i \(-0.204043\pi\)
−0.859207 + 0.511627i \(0.829043\pi\)
\(522\) −80.4675 404.537i −0.154152 0.774976i
\(523\) −291.251 + 291.251i −0.556886 + 0.556886i −0.928419 0.371534i \(-0.878832\pi\)
0.371534 + 0.928419i \(0.378832\pi\)
\(524\) −260.876 + 390.429i −0.497855 + 0.745093i
\(525\) 0 0
\(526\) 427.055i 0.811892i
\(527\) 675.652 + 134.039i 1.28207 + 0.254344i
\(528\) 1.24352 0.00235515
\(529\) 568.967 1373.61i 1.07555 2.59661i
\(530\) 0 0
\(531\) 432.314 + 432.314i 0.814151 + 0.814151i
\(532\) −37.5944 + 7.47799i −0.0706662 + 0.0140564i
\(533\) −8.54845 + 5.71189i −0.0160384 + 0.0107165i
\(534\) −24.4794 4.86926i −0.0458416 0.00911847i
\(535\) 0 0
\(536\) 176.810 + 426.857i 0.329869 + 0.796375i
\(537\) 2.98625 15.0129i 0.00556099 0.0279570i
\(538\) −79.2443 118.598i −0.147294 0.220441i
\(539\) 176.819 + 888.930i 0.328050 + 1.64922i
\(540\) 0 0
\(541\) 70.3844 105.338i 0.130101 0.194709i −0.760700 0.649103i \(-0.775144\pi\)
0.890801 + 0.454394i \(0.150144\pi\)
\(542\) −409.417 169.586i −0.755382 0.312889i
\(543\) 4.83656i 0.00890710i
\(544\) 0.277465 + 547.438i 0.000510047 + 1.00632i
\(545\) 0 0
\(546\) −0.106966 + 0.258240i −0.000195909 + 0.000472966i
\(547\) −598.290 399.764i −1.09377 0.730831i −0.128398 0.991723i \(-0.540983\pi\)
−0.965368 + 0.260892i \(0.915983\pi\)
\(548\) −9.33495 9.33495i −0.0170346 0.0170346i
\(549\) −360.884 + 71.7844i −0.657348 + 0.130755i
\(550\) 0 0
\(551\) 1003.83 + 199.674i 1.82183 + 0.362385i
\(552\) 64.3134 26.6395i 0.116510 0.0482599i
\(553\) −2.14350 5.17486i −0.00387613 0.00935779i
\(554\) 46.1248 231.885i 0.0832578 0.418565i
\(555\) 0 0
\(556\) 33.0019 + 165.912i 0.0593559 + 0.298402i
\(557\) −641.617 + 641.617i −1.15192 + 1.15192i −0.165747 + 0.986168i \(0.553004\pi\)
−0.986168 + 0.165747i \(0.946996\pi\)
\(558\) −246.237 + 368.520i −0.441286 + 0.660430i
\(559\) −92.6480 38.3761i −0.165739 0.0686513i
\(560\) 0 0
\(561\) 57.0419 23.6614i 0.101679 0.0421772i
\(562\) −460.861 −0.820037
\(563\) −272.958 + 658.979i −0.484827 + 1.17048i 0.472463 + 0.881350i \(0.343365\pi\)
−0.957291 + 0.289127i \(0.906635\pi\)
\(564\) −33.0463 22.0808i −0.0585927 0.0391504i
\(565\) 0 0
\(566\) −290.851 + 57.8538i −0.513871 + 0.102215i
\(567\) 37.4080 24.9953i 0.0659754 0.0440833i
\(568\) 721.154 + 143.447i 1.26964 + 0.252547i
\(569\) −197.018 + 81.6076i −0.346253 + 0.143423i −0.549031 0.835802i \(-0.685003\pi\)
0.202778 + 0.979225i \(0.435003\pi\)
\(570\) 0 0
\(571\) −52.5107 + 263.989i −0.0919627 + 0.462328i 0.907173 + 0.420758i \(0.138236\pi\)
−0.999136 + 0.0415696i \(0.986764\pi\)
\(572\) −54.1671 81.0667i −0.0946976 0.141725i
\(573\) 8.82817 + 44.3822i 0.0154069 + 0.0774559i
\(574\) 2.39270 2.39270i 0.00416846 0.00416846i
\(575\) 0 0
\(576\) −314.095 130.102i −0.545304 0.225872i
\(577\) 675.601i 1.17088i −0.810714 0.585442i \(-0.800921\pi\)
0.810714 0.585442i \(-0.199079\pi\)
\(578\) 135.318 + 325.753i 0.234114 + 0.563586i
\(579\) 51.8492 0.0895495
\(580\) 0 0
\(581\) −32.4196 21.6621i −0.0557997 0.0372842i
\(582\) −26.0456 26.0456i −0.0447519 0.0447519i
\(583\) 284.123 56.5155i 0.487346 0.0969391i
\(584\) −450.477 + 300.999i −0.771365 + 0.515410i
\(585\) 0 0
\(586\) 205.826 85.2558i 0.351238 0.145488i
\(587\) −280.760 677.813i −0.478296 1.15471i −0.960408 0.278598i \(-0.910130\pi\)
0.482112 0.876110i \(-0.339870\pi\)
\(588\) 4.65204 23.3874i 0.00791163 0.0397744i
\(589\) −611.020 914.457i −1.03739 1.55256i
\(590\) 0 0
\(591\) −30.1308 + 30.1308i −0.0509828 + 0.0509828i
\(592\) −5.83056 + 8.72605i −0.00984892 + 0.0147400i
\(593\) −321.567 133.197i −0.542271 0.224616i 0.0946971 0.995506i \(-0.469812\pi\)
−0.636968 + 0.770890i \(0.719812\pi\)
\(594\) 79.6400i 0.134074i
\(595\) 0 0
\(596\) −321.425 −0.539303
\(597\) −11.1491 + 26.9163i −0.0186752 + 0.0450860i
\(598\) −95.0591 63.5165i −0.158962 0.106215i
\(599\) −150.551 150.551i −0.251337 0.251337i 0.570182 0.821519i \(-0.306873\pi\)
−0.821519 + 0.570182i \(0.806873\pi\)
\(600\) 0 0
\(601\) 83.8792 56.0463i 0.139566 0.0932550i −0.483827 0.875164i \(-0.660754\pi\)
0.623393 + 0.781909i \(0.285754\pi\)
\(602\) 32.3710 + 6.43900i 0.0537725 + 0.0106960i
\(603\) 481.425 199.413i 0.798384 0.330701i
\(604\) −133.514 322.332i −0.221050 0.533662i
\(605\) 0 0
\(606\) −10.9880 16.4448i −0.0181321 0.0271366i
\(607\) 9.10189 + 45.7583i 0.0149949 + 0.0753843i 0.987558 0.157254i \(-0.0502642\pi\)
−0.972563 + 0.232638i \(0.925264\pi\)
\(608\) 618.062 618.062i 1.01655 1.01655i
\(609\) 2.29957 3.44155i 0.00377598 0.00565115i
\(610\) 0 0
\(611\) 169.285i 0.277063i
\(612\) 382.443 0.193839i 0.624907 0.000316730i
\(613\) −772.553 −1.26028 −0.630141 0.776481i \(-0.717003\pi\)
−0.630141 + 0.776481i \(0.717003\pi\)
\(614\) −61.3961 + 148.223i −0.0999936 + 0.241406i
\(615\) 0 0
\(616\) 58.8470 + 58.8470i 0.0955308 + 0.0955308i
\(617\) 802.584 159.644i 1.30078 0.258742i 0.504367 0.863490i \(-0.331726\pi\)
0.796417 + 0.604747i \(0.206726\pi\)
\(618\) 18.9796 12.6818i 0.0307114 0.0205207i
\(619\) −89.8695 17.8761i −0.145185 0.0288791i 0.121963 0.992535i \(-0.461081\pi\)
−0.267148 + 0.963656i \(0.586081\pi\)
\(620\) 0 0
\(621\) −60.2176 145.378i −0.0969688 0.234103i
\(622\) 4.00320 20.1254i 0.00643601 0.0323560i
\(623\) 32.7546 + 49.0207i 0.0525756 + 0.0786850i
\(624\) 0.0271859 + 0.136673i 4.35672e−5 + 0.000219027i
\(625\) 0 0
\(626\) 40.4182 60.4901i 0.0645659 0.0966296i
\(627\) −91.0955 37.7330i −0.145288 0.0601802i
\(628\) 364.437i 0.580314i
\(629\) −101.419 + 511.219i −0.161238 + 0.812749i
\(630\) 0 0
\(631\) 231.418 558.693i 0.366748 0.885409i −0.627530 0.778592i \(-0.715934\pi\)
0.994279 0.106817i \(-0.0340659\pi\)
\(632\) 65.7827 + 43.9546i 0.104087 + 0.0695484i
\(633\) 24.8721 + 24.8721i 0.0392925 + 0.0392925i
\(634\) −190.285 + 37.8500i −0.300134 + 0.0597004i
\(635\) 0 0
\(636\) −7.47515 1.48690i −0.0117534 0.00233789i
\(637\) −93.8352 + 38.8678i −0.147308 + 0.0610170i
\(638\) −327.895 791.608i −0.513942 1.24077i
\(639\) 161.784 813.345i 0.253184 1.27284i
\(640\) 0 0
\(641\) −207.228 1041.80i −0.323288 1.62528i −0.710785 0.703410i \(-0.751660\pi\)
0.387496 0.921871i \(-0.373340\pi\)
\(642\) 12.3223 12.3223i 0.0191936 0.0191936i
\(643\) 455.720 682.033i 0.708740 1.06070i −0.285996 0.958231i \(-0.592324\pi\)
0.994736 0.102473i \(-0.0326757\pi\)
\(644\) −58.5769 24.2633i −0.0909579 0.0376760i
\(645\) 0 0
\(646\) 215.266 520.443i 0.333228 0.805639i
\(647\) −351.542 −0.543342 −0.271671 0.962390i \(-0.587576\pi\)
−0.271671 + 0.962390i \(0.587576\pi\)
\(648\) −243.187 + 587.105i −0.375289 + 0.906027i
\(649\) 1056.02 + 705.609i 1.62715 + 1.08722i
\(650\) 0 0
\(651\) −4.36227 + 0.867708i −0.00670087 + 0.00133289i
\(652\) −143.115 + 95.6264i −0.219502 + 0.146666i
\(653\) 523.249 + 104.081i 0.801300 + 0.159389i 0.578721 0.815526i \(-0.303552\pi\)
0.222580 + 0.974914i \(0.428552\pi\)
\(654\) 10.1737 4.21410i 0.0155562 0.00644357i
\(655\) 0 0
\(656\) 0.329109 1.65454i 0.000501690 0.00252217i
\(657\) 339.479 + 508.066i 0.516710 + 0.773311i
\(658\) −10.8697 54.6455i −0.0165193 0.0830479i
\(659\) 541.088 541.088i 0.821075 0.821075i −0.165187 0.986262i \(-0.552823\pi\)
0.986262 + 0.165187i \(0.0528229\pi\)
\(660\) 0 0
\(661\) −297.311 123.150i −0.449790 0.186309i 0.146277 0.989244i \(-0.453271\pi\)
−0.596067 + 0.802935i \(0.703271\pi\)
\(662\) 485.764i 0.733782i
\(663\) 3.84764 + 5.75209i 0.00580338 + 0.00867585i
\(664\) 550.737 0.829423
\(665\) 0 0
\(666\) −278.834 186.311i −0.418670 0.279746i
\(667\) 1197.11 + 1197.11i 1.79476 + 1.79476i
\(668\) −101.852 + 20.2597i −0.152474 + 0.0303289i
\(669\) −45.0361 + 30.0922i −0.0673186 + 0.0449808i
\(670\) 0 0
\(671\) −706.187 + 292.512i −1.05244 + 0.435935i
\(672\) −1.35272 3.26576i −0.00201298 0.00485976i
\(673\) −112.955 + 567.862i −0.167838 + 0.843778i 0.801490 + 0.598008i \(0.204041\pi\)
−0.969328 + 0.245770i \(0.920959\pi\)
\(674\) 23.5513 + 35.2469i 0.0349425 + 0.0522952i
\(675\) 0 0
\(676\) −292.251 + 292.251i −0.432324 + 0.432324i
\(677\) −710.298 + 1063.04i −1.04918 + 1.57022i −0.250827 + 0.968032i \(0.580702\pi\)
−0.798358 + 0.602183i \(0.794298\pi\)
\(678\) 11.4275 + 4.73342i 0.0168547 + 0.00698144i
\(679\) 87.0074i 0.128140i
\(680\) 0 0
\(681\) −52.7039 −0.0773919
\(682\) −352.342 + 850.630i −0.516631 + 1.24726i
\(683\) −479.115 320.134i −0.701485 0.468718i 0.152978 0.988230i \(-0.451114\pi\)
−0.854463 + 0.519512i \(0.826114\pi\)
\(684\) −431.781 431.781i −0.631258 0.631258i
\(685\) 0 0
\(686\) 55.7696 37.2641i 0.0812968 0.0543208i
\(687\) 63.5076 + 12.6325i 0.0924419 + 0.0183878i
\(688\) 15.2019 6.29684i 0.0220958 0.00915239i
\(689\) 12.4230 + 29.9919i 0.0180305 + 0.0435296i
\(690\) 0 0
\(691\) 424.826 + 635.797i 0.614799 + 0.920111i 0.999996 0.00272293i \(-0.000866737\pi\)
−0.385198 + 0.922834i \(0.625867\pi\)
\(692\) 37.8157 + 190.112i 0.0546470 + 0.274729i
\(693\) 66.3698 66.3698i 0.0957718 0.0957718i
\(694\) 299.532 448.282i 0.431603 0.645939i
\(695\) 0 0
\(696\) 58.4642i 0.0840003i
\(697\) −16.3856 82.1584i −0.0235088 0.117874i
\(698\) −97.3770 −0.139509
\(699\) 3.31766 8.00953i 0.00474629 0.0114586i
\(700\) 0 0
\(701\) −146.918 146.918i −0.209583 0.209583i 0.594507 0.804090i \(-0.297347\pi\)
−0.804090 + 0.594507i \(0.797347\pi\)
\(702\) −8.75310 + 1.74110i −0.0124688 + 0.00248020i
\(703\) 691.907 462.317i 0.984220 0.657635i
\(704\) −692.675 137.782i −0.983914 0.195713i
\(705\) 0 0
\(706\) 105.507 + 254.716i 0.149443 + 0.360787i
\(707\) −9.11429 + 45.8207i −0.0128915 + 0.0648100i
\(708\) −18.5643 27.7834i −0.0262207 0.0392421i
\(709\) 84.7644 + 426.139i 0.119555 + 0.601043i 0.993387 + 0.114815i \(0.0366275\pi\)
−0.873832 + 0.486228i \(0.838373\pi\)
\(710\) 0 0
\(711\) 49.5737 74.1922i 0.0697239 0.104349i
\(712\) −769.362 318.680i −1.08056 0.447585i
\(713\) 1819.19i 2.55146i
\(714\) −1.61136 1.60973i −0.00225681 0.00225452i
\(715\) 0 0
\(716\) 75.3594 181.934i 0.105251 0.254097i
\(717\) 30.2313 + 20.1999i 0.0421636 + 0.0281728i
\(718\) 136.163 + 136.163i 0.189642 + 0.189642i
\(719\) 623.179 123.958i 0.866730 0.172403i 0.258352 0.966051i \(-0.416820\pi\)
0.608378 + 0.793647i \(0.291820\pi\)
\(720\) 0 0
\(721\) −52.8837 10.5192i −0.0733477 0.0145898i
\(722\) −423.714 + 175.508i −0.586862 + 0.243086i
\(723\) −21.0981 50.9352i −0.0291813 0.0704498i
\(724\) −12.1389 + 61.0263i −0.0167664 + 0.0842905i
\(725\) 0 0
\(726\) 10.4817 + 52.6953i 0.0144377 + 0.0725830i
\(727\) 158.734 158.734i 0.218341 0.218341i −0.589458 0.807799i \(-0.700659\pi\)
0.807799 + 0.589458i \(0.200659\pi\)
\(728\) −5.18125 + 7.75429i −0.00711710 + 0.0106515i
\(729\) 656.473 + 271.920i 0.900512 + 0.373004i
\(730\) 0 0
\(731\) 577.519 578.105i 0.790040 0.790841i
\(732\) 20.1103 0.0274731
\(733\) 223.658 539.959i 0.305127 0.736643i −0.694722 0.719278i \(-0.744473\pi\)
0.999849 0.0173642i \(-0.00552747\pi\)
\(734\) 704.641 + 470.826i 0.960002 + 0.641453i
\(735\) 0 0
\(736\) 1418.02 282.062i 1.92666 0.383236i
\(737\) 900.057 601.399i 1.22124 0.816010i
\(738\) 52.8695 + 10.5164i 0.0716389 + 0.0142499i
\(739\) 394.314 163.330i 0.533577 0.221015i −0.0995919 0.995028i \(-0.531754\pi\)
0.633169 + 0.774013i \(0.281754\pi\)
\(740\) 0 0
\(741\) 2.15563 10.8371i 0.00290908 0.0146249i
\(742\) −5.93593 8.88375i −0.00799991 0.0119727i
\(743\) 124.034 + 623.559i 0.166936 + 0.839244i 0.969954 + 0.243289i \(0.0782264\pi\)
−0.803018 + 0.595955i \(0.796774\pi\)
\(744\) 44.4227 44.4227i 0.0597080 0.0597080i
\(745\) 0 0
\(746\) 89.3986 + 37.0301i 0.119837 + 0.0496382i
\(747\) 621.142i 0.831515i
\(748\) 779.125 155.388i 1.04161 0.207738i
\(749\) −41.1636 −0.0549580
\(750\) 0 0
\(751\) −537.116 358.890i −0.715202 0.477883i 0.143962 0.989583i \(-0.454016\pi\)
−0.859164 + 0.511701i \(0.829016\pi\)
\(752\) −19.6411 19.6411i −0.0261185 0.0261185i
\(753\) 12.4105 2.46861i 0.0164814 0.00327836i
\(754\) 79.8359 53.3446i 0.105883 0.0707488i
\(755\) 0 0
\(756\) −4.57263 + 1.89405i −0.00604846 + 0.00250535i
\(757\) 398.561 + 962.210i 0.526500 + 1.27108i 0.933802 + 0.357790i \(0.116470\pi\)
−0.407302 + 0.913293i \(0.633530\pi\)
\(758\) 100.684 506.173i 0.132829 0.667775i
\(759\) −90.6112 135.609i −0.119382 0.178668i
\(760\) 0 0
\(761\) 501.407 501.407i 0.658880 0.658880i −0.296235 0.955115i \(-0.595731\pi\)
0.955115 + 0.296235i \(0.0957313\pi\)
\(762\) −11.3743 + 17.0229i −0.0149270 + 0.0223398i
\(763\) −24.0318 9.95430i −0.0314965 0.0130463i
\(764\) 582.160i 0.761989i
\(765\) 0 0
\(766\) −513.121 −0.669870
\(767\) −54.4655 + 131.491i −0.0710110 + 0.171436i
\(768\) 40.9566 + 27.3663i 0.0533289 + 0.0356332i
\(769\) −733.316 733.316i −0.953597 0.953597i 0.0453730 0.998970i \(-0.485552\pi\)
−0.998970 + 0.0453730i \(0.985552\pi\)
\(770\) 0 0
\(771\) −61.0993 + 40.8253i −0.0792469 + 0.0529511i
\(772\) 654.218 + 130.132i 0.847433 + 0.168565i
\(773\) −97.4479 + 40.3642i −0.126065 + 0.0522177i −0.444824 0.895618i \(-0.646734\pi\)
0.318759 + 0.947836i \(0.396734\pi\)
\(774\) 201.211 + 485.765i 0.259962 + 0.627604i
\(775\) 0 0
\(776\) −682.774 1021.84i −0.879863 1.31681i
\(777\) −0.656536 3.30063i −0.000844962 0.00424791i
\(778\) −7.86134 + 7.86134i −0.0101045 + 0.0101045i
\(779\) −74.3143 + 111.219i −0.0953970 + 0.142772i
\(780\) 0 0
\(781\) 1722.71i 2.20577i
\(782\) 774.332 517.960i 0.990195 0.662353i
\(783\) 132.156 0.168782
\(784\) 6.37753 15.3967i 0.00813460 0.0196387i
\(785\) 0 0
\(786\) 31.5015 + 31.5015i 0.0400782 + 0.0400782i
\(787\) −21.3677 + 4.25029i −0.0271508 + 0.00540063i −0.208647 0.977991i \(-0.566906\pi\)
0.181496 + 0.983392i \(0.441906\pi\)
\(788\) −455.806 + 304.560i −0.578434 + 0.386497i
\(789\) 66.9591 + 13.3190i 0.0848658 + 0.0168809i
\(790\) 0 0
\(791\) −11.1810 26.9933i −0.0141353 0.0341256i
\(792\) −258.645 + 1300.29i −0.326571 + 1.64179i
\(793\) −47.5883 71.2209i −0.0600104 0.0898120i
\(794\) −162.488 816.883i −0.204645 1.02882i
\(795\) 0 0
\(796\) −208.231 + 311.640i −0.261597 + 0.391508i
\(797\) −1241.09 514.075i −1.55720 0.645012i −0.572598 0.819836i \(-0.694064\pi\)
−0.984600 + 0.174824i \(0.944064\pi\)
\(798\) 3.63663i 0.00455719i
\(799\) −1274.69 527.239i −1.59536 0.659874i
\(800\) 0 0
\(801\) −359.420 + 867.716i −0.448714 + 1.08329i
\(802\) −38.0322 25.4123i −0.0474217 0.0316861i
\(803\) 897.571 + 897.571i 1.11777 + 1.11777i
\(804\) −27.9326 + 5.55614i −0.0347421 + 0.00691063i
\(805\) 0 0
\(806\) −101.194 20.1288i −0.125551 0.0249737i
\(807\) 21.0667 8.72611i 0.0261050 0.0108130i
\(808\) −252.528 609.656i −0.312534 0.754525i
\(809\) 183.354 921.783i 0.226643 1.13941i −0.685037 0.728508i \(-0.740214\pi\)
0.911680 0.410902i \(-0.134786\pi\)
\(810\) 0 0
\(811\) −135.432 680.861i −0.166993 0.839533i −0.969914 0.243447i \(-0.921722\pi\)
0.802921 0.596086i \(-0.203278\pi\)
\(812\) 37.6530 37.6530i 0.0463707 0.0463707i
\(813\) 39.3587 58.9045i 0.0484117 0.0724533i
\(814\) −643.613 266.593i −0.790680 0.327510i
\(815\) 0 0
\(816\) −1.11380 0.220961i −0.00136495 0.000270786i
\(817\) −1304.71 −1.59695
\(818\) 134.177 323.931i 0.164030 0.396004i
\(819\) 8.74558 + 5.84361i 0.0106784 + 0.00713506i
\(820\) 0 0
\(821\) 37.4333 7.44594i 0.0455947 0.00906936i −0.172240 0.985055i \(-0.555101\pi\)
0.217835 + 0.975986i \(0.430101\pi\)
\(822\) −1.04141 + 0.695851i −0.00126693 + 0.000846534i
\(823\) −428.003 85.1351i −0.520052 0.103445i −0.0719169 0.997411i \(-0.522912\pi\)
−0.448135 + 0.893966i \(0.647912\pi\)
\(824\) 703.631 291.454i 0.853921 0.353706i
\(825\) 0 0
\(826\) 9.13859 45.9428i 0.0110637 0.0556208i
\(827\) 423.131 + 633.260i 0.511645 + 0.765731i 0.993898 0.110301i \(-0.0351814\pi\)
−0.482253 + 0.876032i \(0.660181\pi\)
\(828\) −197.050 990.635i −0.237982 1.19642i
\(829\) −625.296 + 625.296i −0.754278 + 0.754278i −0.975275 0.220997i \(-0.929069\pi\)
0.220997 + 0.975275i \(0.429069\pi\)
\(830\) 0 0
\(831\) 34.9193 + 14.4641i 0.0420209 + 0.0174056i
\(832\) 79.1430i 0.0951238i
\(833\) −0.419473 827.620i −0.000503570 0.993541i
\(834\) 16.0492 0.0192436
\(835\) 0 0
\(836\) −1054.71 704.737i −1.26162 0.842987i
\(837\) −100.416 100.416i −0.119971 0.119971i
\(838\) 478.893 95.2578i 0.571472 0.113673i
\(839\) 222.326 148.554i 0.264990 0.177060i −0.415976 0.909375i \(-0.636560\pi\)
0.680966 + 0.732315i \(0.261560\pi\)
\(840\) 0 0
\(841\) −536.631 + 222.280i −0.638087 + 0.264304i
\(842\) 238.911 + 576.783i 0.283743 + 0.685015i
\(843\) 14.3733 72.2597i 0.0170502 0.0857173i
\(844\) 251.405 + 376.254i 0.297873 + 0.445799i
\(845\) 0 0
\(846\) 627.617 627.617i 0.741863 0.741863i
\(847\) 70.5087 105.524i 0.0832452 0.124585i
\(848\) −4.92115 2.03841i −0.00580324 0.00240378i
\(849\) 47.4077i 0.0558394i
\(850\) 0 0
\(851\) 1376.46 1.61746
\(852\) −17.3446 + 41.8736i −0.0203575 + 0.0491474i
\(853\) −86.3136 57.6729i −0.101188 0.0676119i 0.503947 0.863735i \(-0.331881\pi\)
−0.605135 + 0.796123i \(0.706881\pi\)
\(854\) 19.9346 + 19.9346i 0.0233426 + 0.0233426i
\(855\) 0 0
\(856\) 483.439 323.024i 0.564765 0.377364i
\(857\) 628.513 + 125.019i 0.733387 + 0.145880i 0.547636 0.836717i \(-0.315528\pi\)
0.185752 + 0.982597i \(0.440528\pi\)
\(858\) −8.54598 + 3.53986i −0.00996035 + 0.00412571i
\(859\) −32.2425 77.8402i −0.0375349 0.0906173i 0.904000 0.427532i \(-0.140617\pi\)
−0.941535 + 0.336914i \(0.890617\pi\)
\(860\) 0 0
\(861\) 0.300534 + 0.449781i 0.000349052 + 0.000522394i
\(862\) −136.683 687.152i −0.158565 0.797160i
\(863\) −681.756 + 681.756i −0.789984 + 0.789984i −0.981491 0.191507i \(-0.938663\pi\)
0.191507 + 0.981491i \(0.438663\pi\)
\(864\) 62.7029 93.8415i 0.0725728 0.108613i
\(865\) 0 0
\(866\) 236.044i 0.272568i
\(867\) −55.2959 + 11.0573i −0.0637785 + 0.0127536i
\(868\) −57.2196 −0.0659212
\(869\) 70.9352 171.253i 0.0816286 0.197069i
\(870\) 0 0
\(871\) 85.7759 + 85.7759i 0.0984798 + 0.0984798i
\(872\) 360.352 71.6785i 0.413248 0.0822001i
\(873\) −1152.47 + 770.059i −1.32013 + 0.882083i
\(874\) −1458.86 290.185i −1.66918 0.332020i
\(875\) 0 0
\(876\) −12.7802 30.8541i −0.0145893 0.0352216i
\(877\) 2.51060 12.6217i 0.00286272 0.0143919i −0.979328 0.202281i \(-0.935165\pi\)
0.982190 + 0.187889i \(0.0601646\pi\)
\(878\) 150.695 + 225.530i 0.171634 + 0.256868i
\(879\) 6.94819 + 34.9309i 0.00790466 + 0.0397394i
\(880\) 0 0
\(881\) −440.855 + 659.786i −0.500403 + 0.748906i −0.992581 0.121589i \(-0.961201\pi\)
0.492178 + 0.870495i \(0.336201\pi\)
\(882\) 491.990 + 203.789i 0.557811 + 0.231053i
\(883\) 338.313i 0.383140i −0.981479 0.191570i \(-0.938642\pi\)
0.981479 0.191570i \(-0.0613580\pi\)
\(884\) 34.1118 + 82.2352i 0.0385880 + 0.0930262i
\(885\) 0 0
\(886\) −118.159 + 285.261i −0.133362 + 0.321965i
\(887\) −1243.11 830.619i −1.40148 0.936436i −0.999787 0.0206596i \(-0.993423\pi\)
−0.401689 0.915776i \(-0.631577\pi\)
\(888\) 33.6116 + 33.6116i 0.0378509 + 0.0378509i
\(889\) 47.4315 9.43472i 0.0533538 0.0106127i
\(890\) 0 0
\(891\) 1460.26 + 290.465i 1.63891 + 0.325999i
\(892\) −643.779 + 266.662i −0.721726 + 0.298948i
\(893\) 842.851 + 2034.82i 0.943842 + 2.27864i
\(894\) −5.94929 + 29.9091i −0.00665469 + 0.0334554i
\(895\) 0 0
\(896\) −9.05521 45.5236i −0.0101063 0.0508076i
\(897\) 12.9236 12.9236i 0.0144076 0.0144076i
\(898\) −209.420 + 313.419i −0.233207 + 0.349019i
\(899\) 1411.55 + 584.685i 1.57014 + 0.650373i
\(900\) 0 0
\(901\) −264.526 + 0.134073i −0.293592 + 0.000148805i
\(902\) 111.980 0.124147
\(903\) −2.01918 + 4.87472i −0.00223608 + 0.00539836i
\(904\) 343.139 + 229.278i 0.379578 + 0.253626i
\(905\) 0 0
\(906\) −32.4648 + 6.45765i −0.0358331 + 0.00712764i
\(907\) −505.610 + 337.838i −0.557453 + 0.372478i −0.802151 0.597121i \(-0.796311\pi\)
0.244698 + 0.969599i \(0.421311\pi\)
\(908\) −665.003 132.277i −0.732382 0.145680i
\(909\) −687.593 + 284.810i −0.756428 + 0.313323i
\(910\) 0 0
\(911\) −35.8895 + 180.429i −0.0393957 + 0.198056i −0.995471 0.0950656i \(-0.969694\pi\)
0.956075 + 0.293121i \(0.0946939\pi\)
\(912\) 1.00725 + 1.50746i 0.00110445 + 0.00165292i
\(913\) −251.731 1265.54i −0.275718 1.38613i
\(914\) 633.061 633.061i 0.692627 0.692627i
\(915\) 0 0
\(916\) 769.616 + 318.786i 0.840192 + 0.348019i
\(917\) 105.233i 0.114758i
\(918\) 14.1513 71.3323i 0.0154153 0.0777040i
\(919\) 99.8948 0.108699 0.0543497 0.998522i \(-0.482691\pi\)
0.0543497 + 0.998522i \(0.482691\pi\)
\(920\) 0 0
\(921\) −21.3255 14.2492i −0.0231547 0.0154715i
\(922\) 663.357 + 663.357i 0.719476 + 0.719476i
\(923\) 189.340 37.6620i 0.205135 0.0408039i
\(924\) −4.26537 + 2.85003i −0.00461620 + 0.00308444i
\(925\) 0 0
\(926\) 220.537 91.3494i 0.238161 0.0986495i
\(927\) −328.712 793.582i −0.354598 0.856075i
\(928\) −236.891 + 1190.93i −0.255270 + 1.28333i
\(929\) 200.330 + 299.815i 0.215641 + 0.322729i 0.923482 0.383643i \(-0.125331\pi\)
−0.707841 + 0.706372i \(0.750331\pi\)
\(930\) 0 0
\(931\) −934.388 + 934.388i −1.00364 + 1.00364i
\(932\) 61.9637 92.7353i 0.0664847 0.0995014i
\(933\) 3.03067 + 1.25535i 0.00324831 + 0.00134549i
\(934\) 411.382i 0.440452i
\(935\) 0 0
\(936\) −148.568 −0.158726
\(937\) −495.480 + 1196.19i −0.528794 + 1.27662i 0.403520 + 0.914971i \(0.367786\pi\)
−0.932314 + 0.361650i \(0.882214\pi\)
\(938\) −33.1962 22.1810i −0.0353904 0.0236471i
\(939\) 8.22385 + 8.22385i 0.00875809 + 0.00875809i
\(940\) 0 0
\(941\) −439.777 + 293.850i −0.467351 + 0.312274i −0.766854 0.641821i \(-0.778179\pi\)
0.299503 + 0.954095i \(0.403179\pi\)
\(942\) 33.9115 + 6.74541i 0.0359995 + 0.00716074i
\(943\) −204.414 + 84.6709i −0.216770 + 0.0897889i
\(944\) −8.93683 21.5754i −0.00946698 0.0228553i
\(945\) 0 0
\(946\) 606.821 + 908.172i 0.641460 + 0.960012i
\(947\) −57.3169 288.151i −0.0605247 0.304278i 0.938651 0.344868i \(-0.112076\pi\)
−0.999176 + 0.0405898i \(0.987076\pi\)
\(948\) −3.44843 + 3.44843i −0.00363758 + 0.00363758i
\(949\) −79.0277 + 118.273i −0.0832747 + 0.124629i
\(950\) 0 0
\(951\) 31.0158i 0.0326138i
\(952\) −42.2517 63.1649i −0.0443821 0.0663496i
\(953\) 315.219 0.330765 0.165383 0.986229i \(-0.447114\pi\)
0.165383 + 0.986229i \(0.447114\pi\)
\(954\) 65.1356 157.251i 0.0682763 0.164834i
\(955\) 0 0
\(956\) 330.752 + 330.752i 0.345975 + 0.345975i
\(957\) 134.345 26.7228i 0.140381 0.0279236i
\(958\) −11.0150 + 7.36001i −0.0114980 + 0.00768269i
\(959\) 2.90173 + 0.577191i 0.00302579 + 0.000601867i
\(960\) 0 0
\(961\) −260.520 628.950i −0.271092 0.654474i
\(962\) 15.2301 76.5668i 0.0158317 0.0795912i
\(963\) −364.318 545.241i −0.378316 0.566190i
\(964\) −138.371 695.639i −0.143539 0.721617i
\(965\) 0 0
\(966\) −3.34195 + 5.00158i −0.00345958 + 0.00517762i
\(967\) −288.329 119.430i −0.298169 0.123506i 0.228584 0.973524i \(-0.426591\pi\)
−0.526753 + 0.850019i \(0.676591\pi\)
\(968\) 1792.61i 1.85187i
\(969\) 74.8880 + 49.9837i 0.0772838 + 0.0515827i
\(970\) 0 0
\(971\) 344.439 831.550i 0.354726 0.856385i −0.641297 0.767293i \(-0.721603\pi\)
0.996023 0.0890923i \(-0.0283966\pi\)
\(972\) −98.4066 65.7532i −0.101241 0.0676473i
\(973\) −26.8068 26.8068i −0.0275506 0.0275506i
\(974\) −935.724 + 186.127i −0.960702 + 0.191096i
\(975\) 0 0
\(976\) 13.7847 + 2.74195i 0.0141237 + 0.00280937i
\(977\) 1198.58 496.470i 1.22680 0.508158i 0.327235 0.944943i \(-0.393883\pi\)
0.899566 + 0.436785i \(0.143883\pi\)
\(978\) 6.24926 + 15.0871i 0.00638984 + 0.0154264i
\(979\) −380.635 + 1913.58i −0.388799 + 1.95463i
\(980\) 0 0
\(981\) −80.8417 406.419i −0.0824075 0.414290i
\(982\) −224.825 + 224.825i −0.228946 + 0.228946i
\(983\) 365.673 547.268i 0.371997 0.556732i −0.597490 0.801876i \(-0.703835\pi\)
0.969487 + 0.245144i \(0.0788352\pi\)
\(984\) −7.05914 2.92399i −0.00717393 0.00297154i
\(985\) 0 0
\(986\) 153.029 + 767.295i 0.155202 + 0.778190i
\(987\) 8.90702 0.00902434
\(988\) 54.3982 131.329i 0.0550589 0.132924i
\(989\) −1794.41 1198.98i −1.81436 1.21232i
\(990\) 0 0
\(991\) −564.247 + 112.236i −0.569371 + 0.113255i −0.471377 0.881932i \(-0.656243\pi\)
−0.0979944 + 0.995187i \(0.531243\pi\)
\(992\) 1084.90 724.906i 1.09365 0.730752i
\(993\) 76.1643 + 15.1500i 0.0767012 + 0.0152568i
\(994\) −58.7009 + 24.3147i −0.0590553 + 0.0244615i
\(995\) 0 0
\(996\) −6.62294 + 33.2957i −0.00664953 + 0.0334295i
\(997\) −284.665 426.031i −0.285521 0.427313i 0.660789 0.750571i \(-0.270222\pi\)
−0.946311 + 0.323259i \(0.895222\pi\)
\(998\) −38.0376 191.228i −0.0381138 0.191611i
\(999\) 75.9780 75.9780i 0.0760541 0.0760541i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.d.401.8 yes 96
5.2 odd 4 425.3.t.f.299.8 96
5.3 odd 4 425.3.t.g.299.5 96
5.4 even 2 425.3.u.c.401.5 yes 96
17.12 odd 16 inner 425.3.u.d.301.8 yes 96
85.12 even 16 425.3.t.g.199.5 96
85.29 odd 16 425.3.u.c.301.5 96
85.63 even 16 425.3.t.f.199.8 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.199.8 96 85.63 even 16
425.3.t.f.299.8 96 5.2 odd 4
425.3.t.g.199.5 96 85.12 even 16
425.3.t.g.299.5 96 5.3 odd 4
425.3.u.c.301.5 96 85.29 odd 16
425.3.u.c.401.5 yes 96 5.4 even 2
425.3.u.d.301.8 yes 96 17.12 odd 16 inner
425.3.u.d.401.8 yes 96 1.1 even 1 trivial