Properties

Label 425.3.t.b.249.1
Level $425$
Weight $3$
Character 425.249
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,8,0,0,8,-8,-8,0,40,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 249.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 425.249
Dual form 425.3.t.b.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0897902 - 0.216773i) q^{2} +(-1.37529 + 0.273561i) q^{3} +(2.78950 + 2.78950i) q^{4} +(-0.0641865 + 0.322688i) q^{6} +(3.98841 + 5.96908i) q^{7} +(1.72225 - 0.713379i) q^{8} +(-6.49834 + 2.69170i) q^{9} +(12.8888 + 2.56374i) q^{11} +(-4.59946 - 3.07326i) q^{12} +(-5.20259 - 5.20259i) q^{13} +(1.65205 - 0.328614i) q^{14} +15.3424i q^{16} +(-16.9919 - 0.525274i) q^{17} +1.65035i q^{18} +(22.2860 + 9.23114i) q^{19} +(-7.11811 - 7.11811i) q^{21} +(1.71303 - 2.56374i) q^{22} +(-31.4606 - 6.25790i) q^{23} +(-2.17343 + 1.45224i) q^{24} +(-1.59492 + 0.660638i) q^{26} +(18.6939 - 12.4909i) q^{27} +(-5.52507 + 27.7764i) q^{28} +(-21.4682 + 32.1294i) q^{29} +(10.5189 - 2.09235i) q^{31} +(10.2148 + 4.23111i) q^{32} -18.4271 q^{33} +(-1.63957 + 3.63621i) q^{34} +(-25.6356 - 10.6186i) q^{36} +(11.9474 - 2.37648i) q^{37} +(4.00212 - 4.00212i) q^{38} +(8.57827 + 5.73181i) q^{39} +(-30.0989 + 20.1114i) q^{41} +(-2.18215 + 0.903876i) q^{42} +(12.1240 + 29.2698i) q^{43} +(28.8017 + 43.1047i) q^{44} +(-4.18140 + 6.25790i) q^{46} +(28.8242 + 28.8242i) q^{47} +(-4.19709 - 21.1002i) q^{48} +(-0.970996 + 2.34419i) q^{49} +(23.5124 - 3.92592i) q^{51} -29.0252i q^{52} +(-22.2872 + 53.8061i) q^{53} +(-1.02915 - 5.17389i) q^{54} +(11.1272 + 7.43499i) q^{56} +(-33.1748 - 6.59888i) q^{57} +(5.03714 + 7.53862i) q^{58} +(1.99047 + 4.80542i) q^{59} +(25.4584 + 38.1012i) q^{61} +(0.490934 - 2.46809i) q^{62} +(-41.9850 - 28.0535i) q^{63} +(-41.5605 + 41.5605i) q^{64} +(-1.65457 + 3.99449i) q^{66} -59.2116 q^{67} +(-45.9336 - 48.8641i) q^{68} +44.9792 q^{69} +(-7.79189 - 39.1725i) q^{71} +(-9.27155 + 9.27155i) q^{72} +(6.57431 - 9.83914i) q^{73} +(0.557600 - 2.80324i) q^{74} +(36.4164 + 87.9169i) q^{76} +(36.1026 + 87.1593i) q^{77} +(2.01275 - 1.34487i) q^{78} +(114.454 + 22.7663i) q^{79} +(22.4701 - 22.4701i) q^{81} +(1.65702 + 8.33042i) q^{82} +(94.6362 + 39.1996i) q^{83} -39.7119i q^{84} +7.43351 q^{86} +(20.7355 - 50.0599i) q^{87} +(24.0266 - 4.77918i) q^{88} +(-103.152 - 103.152i) q^{89} +(10.3046 - 51.8047i) q^{91} +(-70.3029 - 105.216i) q^{92} +(-13.8942 + 5.75515i) q^{93} +(8.83643 - 3.66017i) q^{94} +(-15.2057 - 3.02461i) q^{96} +(110.088 + 73.5583i) q^{97} +(0.420971 + 0.420971i) q^{98} +(-90.6564 + 18.0327i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} + 8 q^{4} + 8 q^{7} - 8 q^{8} - 8 q^{9} + 40 q^{11} - 32 q^{12} - 16 q^{14} - 64 q^{17} + 32 q^{19} - 64 q^{21} + 8 q^{22} - 32 q^{23} - 24 q^{24} + 112 q^{27} - 8 q^{28} - 24 q^{29}+ \cdots - 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0897902 0.216773i 0.0448951 0.108386i −0.899841 0.436218i \(-0.856318\pi\)
0.944736 + 0.327831i \(0.106318\pi\)
\(3\) −1.37529 + 0.273561i −0.458428 + 0.0911871i −0.418902 0.908031i \(-0.637585\pi\)
−0.0395264 + 0.999219i \(0.512585\pi\)
\(4\) 2.78950 + 2.78950i 0.697375 + 0.697375i
\(5\) 0 0
\(6\) −0.0641865 + 0.322688i −0.0106978 + 0.0537813i
\(7\) 3.98841 + 5.96908i 0.569773 + 0.852726i 0.998719 0.0506046i \(-0.0161148\pi\)
−0.428946 + 0.903330i \(0.641115\pi\)
\(8\) 1.72225 0.713379i 0.215281 0.0891723i
\(9\) −6.49834 + 2.69170i −0.722038 + 0.299078i
\(10\) 0 0
\(11\) 12.8888 + 2.56374i 1.17171 + 0.233067i 0.742315 0.670052i \(-0.233728\pi\)
0.429392 + 0.903118i \(0.358728\pi\)
\(12\) −4.59946 3.07326i −0.383288 0.256105i
\(13\) −5.20259 5.20259i −0.400199 0.400199i 0.478104 0.878303i \(-0.341324\pi\)
−0.878303 + 0.478104i \(0.841324\pi\)
\(14\) 1.65205 0.328614i 0.118004 0.0234724i
\(15\) 0 0
\(16\) 15.3424i 0.958900i
\(17\) −16.9919 0.525274i −0.999523 0.0308985i
\(18\) 1.65035i 0.0916862i
\(19\) 22.2860 + 9.23114i 1.17295 + 0.485850i 0.882165 0.470940i \(-0.156085\pi\)
0.290780 + 0.956790i \(0.406085\pi\)
\(20\) 0 0
\(21\) −7.11811 7.11811i −0.338958 0.338958i
\(22\) 1.71303 2.56374i 0.0778651 0.116533i
\(23\) −31.4606 6.25790i −1.36785 0.272083i −0.544094 0.839024i \(-0.683127\pi\)
−0.823758 + 0.566941i \(0.808127\pi\)
\(24\) −2.17343 + 1.45224i −0.0905596 + 0.0605100i
\(25\) 0 0
\(26\) −1.59492 + 0.660638i −0.0613431 + 0.0254091i
\(27\) 18.6939 12.4909i 0.692368 0.462625i
\(28\) −5.52507 + 27.7764i −0.197324 + 0.992015i
\(29\) −21.4682 + 32.1294i −0.740282 + 1.10791i 0.249920 + 0.968266i \(0.419596\pi\)
−0.990202 + 0.139644i \(0.955404\pi\)
\(30\) 0 0
\(31\) 10.5189 2.09235i 0.339321 0.0674951i −0.0224889 0.999747i \(-0.507159\pi\)
0.361810 + 0.932252i \(0.382159\pi\)
\(32\) 10.2148 + 4.23111i 0.319213 + 0.132222i
\(33\) −18.4271 −0.558396
\(34\) −1.63957 + 3.63621i −0.0482226 + 0.106947i
\(35\) 0 0
\(36\) −25.6356 10.6186i −0.712100 0.294962i
\(37\) 11.9474 2.37648i 0.322901 0.0642291i −0.0309782 0.999520i \(-0.509862\pi\)
0.353880 + 0.935291i \(0.384862\pi\)
\(38\) 4.00212 4.00212i 0.105319 0.105319i
\(39\) 8.57827 + 5.73181i 0.219956 + 0.146970i
\(40\) 0 0
\(41\) −30.0989 + 20.1114i −0.734119 + 0.490522i −0.865562 0.500801i \(-0.833039\pi\)
0.131444 + 0.991324i \(0.458039\pi\)
\(42\) −2.18215 + 0.903876i −0.0519559 + 0.0215209i
\(43\) 12.1240 + 29.2698i 0.281952 + 0.680693i 0.999881 0.0154234i \(-0.00490963\pi\)
−0.717929 + 0.696117i \(0.754910\pi\)
\(44\) 28.8017 + 43.1047i 0.654583 + 0.979653i
\(45\) 0 0
\(46\) −4.18140 + 6.25790i −0.0908999 + 0.136041i
\(47\) 28.8242 + 28.8242i 0.613281 + 0.613281i 0.943800 0.330518i \(-0.107224\pi\)
−0.330518 + 0.943800i \(0.607224\pi\)
\(48\) −4.19709 21.1002i −0.0874393 0.439587i
\(49\) −0.970996 + 2.34419i −0.0198162 + 0.0478406i
\(50\) 0 0
\(51\) 23.5124 3.92592i 0.461027 0.0769788i
\(52\) 29.0252i 0.558177i
\(53\) −22.2872 + 53.8061i −0.420514 + 1.01521i 0.561682 + 0.827353i \(0.310154\pi\)
−0.982196 + 0.187857i \(0.939846\pi\)
\(54\) −1.02915 5.17389i −0.0190584 0.0958128i
\(55\) 0 0
\(56\) 11.1272 + 7.43499i 0.198701 + 0.132768i
\(57\) −33.1748 6.59888i −0.582015 0.115770i
\(58\) 5.03714 + 7.53862i 0.0868473 + 0.129976i
\(59\) 1.99047 + 4.80542i 0.0337368 + 0.0814478i 0.939850 0.341588i \(-0.110965\pi\)
−0.906113 + 0.423035i \(0.860965\pi\)
\(60\) 0 0
\(61\) 25.4584 + 38.1012i 0.417351 + 0.624611i 0.979265 0.202586i \(-0.0649345\pi\)
−0.561913 + 0.827196i \(0.689934\pi\)
\(62\) 0.490934 2.46809i 0.00791829 0.0398079i
\(63\) −41.9850 28.0535i −0.666429 0.445294i
\(64\) −41.5605 + 41.5605i −0.649382 + 0.649382i
\(65\) 0 0
\(66\) −1.65457 + 3.99449i −0.0250693 + 0.0605225i
\(67\) −59.2116 −0.883755 −0.441877 0.897075i \(-0.645687\pi\)
−0.441877 + 0.897075i \(0.645687\pi\)
\(68\) −45.9336 48.8641i −0.675494 0.718590i
\(69\) 44.9792 0.651873
\(70\) 0 0
\(71\) −7.79189 39.1725i −0.109745 0.551725i −0.996063 0.0886482i \(-0.971745\pi\)
0.886318 0.463077i \(-0.153255\pi\)
\(72\) −9.27155 + 9.27155i −0.128772 + 0.128772i
\(73\) 6.57431 9.83914i 0.0900590 0.134783i −0.783705 0.621134i \(-0.786672\pi\)
0.873764 + 0.486351i \(0.161672\pi\)
\(74\) 0.557600 2.80324i 0.00753514 0.0378817i
\(75\) 0 0
\(76\) 36.4164 + 87.9169i 0.479163 + 1.15680i
\(77\) 36.1026 + 87.1593i 0.468865 + 1.13194i
\(78\) 2.01275 1.34487i 0.0258044 0.0172420i
\(79\) 114.454 + 22.7663i 1.44879 + 0.288181i 0.855915 0.517116i \(-0.172994\pi\)
0.592871 + 0.805298i \(0.297994\pi\)
\(80\) 0 0
\(81\) 22.4701 22.4701i 0.277408 0.277408i
\(82\) 1.65702 + 8.33042i 0.0202076 + 0.101591i
\(83\) 94.6362 + 39.1996i 1.14019 + 0.472284i 0.871234 0.490867i \(-0.163320\pi\)
0.268960 + 0.963151i \(0.413320\pi\)
\(84\) 39.7119i 0.472761i
\(85\) 0 0
\(86\) 7.43351 0.0864362
\(87\) 20.7355 50.0599i 0.238339 0.575402i
\(88\) 24.0266 4.77918i 0.273029 0.0543089i
\(89\) −103.152 103.152i −1.15901 1.15901i −0.984688 0.174326i \(-0.944225\pi\)
−0.174326 0.984688i \(-0.555775\pi\)
\(90\) 0 0
\(91\) 10.3046 51.8047i 0.113237 0.569282i
\(92\) −70.3029 105.216i −0.764162 1.14365i
\(93\) −13.8942 + 5.75515i −0.149400 + 0.0618833i
\(94\) 8.83643 3.66017i 0.0940046 0.0389380i
\(95\) 0 0
\(96\) −15.2057 3.02461i −0.158393 0.0315064i
\(97\) 110.088 + 73.5583i 1.13492 + 0.758333i 0.973530 0.228557i \(-0.0734009\pi\)
0.161394 + 0.986890i \(0.448401\pi\)
\(98\) 0.420971 + 0.420971i 0.00429562 + 0.00429562i
\(99\) −90.6564 + 18.0327i −0.915722 + 0.182148i
\(100\) 0 0
\(101\) 124.860i 1.23624i −0.786085 0.618119i \(-0.787895\pi\)
0.786085 0.618119i \(-0.212105\pi\)
\(102\) 1.26015 5.44935i 0.0123544 0.0534250i
\(103\) 87.0352i 0.845002i −0.906362 0.422501i \(-0.861152\pi\)
0.906362 0.422501i \(-0.138848\pi\)
\(104\) −12.6716 5.24873i −0.121842 0.0504686i
\(105\) 0 0
\(106\) 9.66253 + 9.66253i 0.0911560 + 0.0911560i
\(107\) 28.5619 42.7459i 0.266933 0.399494i −0.673653 0.739047i \(-0.735276\pi\)
0.940587 + 0.339553i \(0.110276\pi\)
\(108\) 86.9900 + 17.3034i 0.805463 + 0.160217i
\(109\) 25.0665 16.7489i 0.229968 0.153660i −0.435248 0.900310i \(-0.643339\pi\)
0.665216 + 0.746651i \(0.268339\pi\)
\(110\) 0 0
\(111\) −15.7809 + 6.53667i −0.142170 + 0.0588889i
\(112\) −91.5800 + 61.1918i −0.817679 + 0.546355i
\(113\) 19.8625 99.8557i 0.175775 0.883678i −0.787737 0.616012i \(-0.788747\pi\)
0.963512 0.267667i \(-0.0862526\pi\)
\(114\) −4.40923 + 6.59888i −0.0386775 + 0.0578850i
\(115\) 0 0
\(116\) −149.510 + 29.7395i −1.28888 + 0.256375i
\(117\) 47.8120 + 19.8044i 0.408649 + 0.169268i
\(118\) 1.22041 0.0103425
\(119\) −64.6352 103.521i −0.543153 0.869924i
\(120\) 0 0
\(121\) 47.7582 + 19.7821i 0.394696 + 0.163488i
\(122\) 10.5452 2.09758i 0.0864363 0.0171933i
\(123\) 35.8928 35.8928i 0.291812 0.291812i
\(124\) 35.1792 + 23.5060i 0.283703 + 0.189564i
\(125\) 0 0
\(126\) −9.85108 + 6.58228i −0.0781832 + 0.0522403i
\(127\) −17.2261 + 7.13530i −0.135639 + 0.0561835i −0.449470 0.893295i \(-0.648387\pi\)
0.313832 + 0.949479i \(0.398387\pi\)
\(128\) 22.2019 + 53.6001i 0.173452 + 0.418751i
\(129\) −24.6810 36.9377i −0.191325 0.286339i
\(130\) 0 0
\(131\) 31.3353 46.8966i 0.239201 0.357989i −0.692374 0.721539i \(-0.743435\pi\)
0.931575 + 0.363549i \(0.118435\pi\)
\(132\) −51.4023 51.4023i −0.389411 0.389411i
\(133\) 33.7841 + 169.844i 0.254016 + 1.27702i
\(134\) −5.31662 + 12.8355i −0.0396763 + 0.0957870i
\(135\) 0 0
\(136\) −29.6390 + 11.2170i −0.217934 + 0.0824779i
\(137\) 167.615i 1.22347i −0.791065 0.611733i \(-0.790473\pi\)
0.791065 0.611733i \(-0.209527\pi\)
\(138\) 4.03869 9.75027i 0.0292659 0.0706541i
\(139\) −18.7153 94.0884i −0.134643 0.676895i −0.987861 0.155341i \(-0.950353\pi\)
0.853218 0.521554i \(-0.174647\pi\)
\(140\) 0 0
\(141\) −47.5267 31.7563i −0.337069 0.225222i
\(142\) −9.19117 1.82824i −0.0647265 0.0128749i
\(143\) −53.7169 80.3930i −0.375642 0.562189i
\(144\) −41.2972 99.7001i −0.286786 0.692362i
\(145\) 0 0
\(146\) −1.54255 2.30859i −0.0105654 0.0158123i
\(147\) 0.694116 3.48956i 0.00472188 0.0237385i
\(148\) 39.9563 + 26.6979i 0.269975 + 0.180392i
\(149\) 99.1314 99.1314i 0.665311 0.665311i −0.291316 0.956627i \(-0.594093\pi\)
0.956627 + 0.291316i \(0.0940930\pi\)
\(150\) 0 0
\(151\) 34.9619 84.4056i 0.231536 0.558977i −0.764822 0.644241i \(-0.777173\pi\)
0.996358 + 0.0852638i \(0.0271733\pi\)
\(152\) 44.9672 0.295837
\(153\) 111.833 42.3237i 0.730934 0.276625i
\(154\) 22.1354 0.143737
\(155\) 0 0
\(156\) 7.94018 + 39.9180i 0.0508986 + 0.255884i
\(157\) −70.4744 + 70.4744i −0.448882 + 0.448882i −0.894983 0.446101i \(-0.852812\pi\)
0.446101 + 0.894983i \(0.352812\pi\)
\(158\) 15.2120 22.7663i 0.0962784 0.144091i
\(159\) 15.9320 80.0957i 0.100201 0.503747i
\(160\) 0 0
\(161\) −88.1239 212.750i −0.547353 1.32143i
\(162\) −2.85331 6.88849i −0.0176130 0.0425216i
\(163\) −46.9226 + 31.3527i −0.287869 + 0.192348i −0.691117 0.722743i \(-0.742881\pi\)
0.403248 + 0.915091i \(0.367881\pi\)
\(164\) −140.062 27.8600i −0.854034 0.169878i
\(165\) 0 0
\(166\) 16.9948 16.9948i 0.102378 0.102378i
\(167\) 49.7011 + 249.864i 0.297611 + 1.49619i 0.783070 + 0.621933i \(0.213653\pi\)
−0.485459 + 0.874260i \(0.661347\pi\)
\(168\) −17.3371 7.18125i −0.103197 0.0427455i
\(169\) 114.866i 0.679682i
\(170\) 0 0
\(171\) −169.669 −0.992218
\(172\) −47.8284 + 115.468i −0.278072 + 0.671325i
\(173\) 258.425 51.4039i 1.49379 0.297133i 0.620448 0.784247i \(-0.286951\pi\)
0.873338 + 0.487115i \(0.161951\pi\)
\(174\) −8.98979 8.98979i −0.0516654 0.0516654i
\(175\) 0 0
\(176\) −39.3338 + 197.745i −0.223488 + 1.12355i
\(177\) −4.05204 6.06431i −0.0228929 0.0342616i
\(178\) −31.6227 + 13.0985i −0.177655 + 0.0735873i
\(179\) −86.3029 + 35.7478i −0.482139 + 0.199708i −0.610496 0.792020i \(-0.709030\pi\)
0.128357 + 0.991728i \(0.459030\pi\)
\(180\) 0 0
\(181\) 337.126 + 67.0585i 1.86257 + 0.370489i 0.992481 0.122400i \(-0.0390590\pi\)
0.870092 + 0.492889i \(0.164059\pi\)
\(182\) −10.3046 6.88531i −0.0566187 0.0378314i
\(183\) −45.4356 45.4356i −0.248282 0.248282i
\(184\) −58.6472 + 11.6657i −0.318735 + 0.0634003i
\(185\) 0 0
\(186\) 3.52863i 0.0189711i
\(187\) −217.658 50.3328i −1.16395 0.269159i
\(188\) 160.810i 0.855373i
\(189\) 149.118 + 61.7668i 0.788985 + 0.326808i
\(190\) 0 0
\(191\) 26.0458 + 26.0458i 0.136365 + 0.136365i 0.771995 0.635629i \(-0.219259\pi\)
−0.635629 + 0.771995i \(0.719259\pi\)
\(192\) 45.7882 68.5269i 0.238480 0.356911i
\(193\) 23.0442 + 4.58379i 0.119400 + 0.0237502i 0.254429 0.967092i \(-0.418113\pi\)
−0.135028 + 0.990842i \(0.543113\pi\)
\(194\) 25.8302 17.2592i 0.133145 0.0889650i
\(195\) 0 0
\(196\) −9.24771 + 3.83053i −0.0471822 + 0.0195435i
\(197\) 91.2382 60.9634i 0.463138 0.309459i −0.302020 0.953302i \(-0.597661\pi\)
0.765158 + 0.643843i \(0.222661\pi\)
\(198\) −4.23107 + 21.2710i −0.0213690 + 0.107429i
\(199\) −88.0694 + 131.805i −0.442560 + 0.662337i −0.983952 0.178433i \(-0.942897\pi\)
0.541393 + 0.840770i \(0.317897\pi\)
\(200\) 0 0
\(201\) 81.4328 16.1980i 0.405138 0.0805870i
\(202\) −27.0663 11.2112i −0.133991 0.0555010i
\(203\) −277.407 −1.36654
\(204\) 76.5391 + 54.6364i 0.375192 + 0.267826i
\(205\) 0 0
\(206\) −18.8669 7.81491i −0.0915867 0.0379364i
\(207\) 221.286 44.0166i 1.06902 0.212640i
\(208\) 79.8202 79.8202i 0.383751 0.383751i
\(209\) 263.572 + 176.113i 1.26111 + 0.842648i
\(210\) 0 0
\(211\) −87.4788 + 58.4515i −0.414592 + 0.277021i −0.745323 0.666704i \(-0.767705\pi\)
0.330731 + 0.943725i \(0.392705\pi\)
\(212\) −212.262 + 87.9220i −1.00124 + 0.414726i
\(213\) 21.4322 + 51.7418i 0.100620 + 0.242919i
\(214\) −6.70156 10.0296i −0.0313157 0.0468673i
\(215\) 0 0
\(216\) 23.2849 34.8482i 0.107800 0.161334i
\(217\) 54.4433 + 54.4433i 0.250891 + 0.250891i
\(218\) −1.37998 6.93762i −0.00633017 0.0318239i
\(219\) −6.34994 + 15.3301i −0.0289952 + 0.0700005i
\(220\) 0 0
\(221\) 85.6690 + 91.1345i 0.387642 + 0.412373i
\(222\) 4.00780i 0.0180531i
\(223\) 49.8581 120.368i 0.223579 0.539768i −0.771792 0.635875i \(-0.780639\pi\)
0.995371 + 0.0961075i \(0.0306393\pi\)
\(224\) 15.4850 + 77.8484i 0.0691295 + 0.347538i
\(225\) 0 0
\(226\) −19.8625 13.2717i −0.0878873 0.0587244i
\(227\) 332.574 + 66.1531i 1.46509 + 0.291424i 0.862267 0.506455i \(-0.169044\pi\)
0.602819 + 0.797878i \(0.294044\pi\)
\(228\) −74.1336 110.949i −0.325147 0.486617i
\(229\) −11.8762 28.6716i −0.0518610 0.125204i 0.895826 0.444406i \(-0.146585\pi\)
−0.947687 + 0.319202i \(0.896585\pi\)
\(230\) 0 0
\(231\) −73.4948 109.993i −0.318159 0.476159i
\(232\) −14.0531 + 70.6497i −0.0605737 + 0.304525i
\(233\) 206.318 + 137.858i 0.885487 + 0.591663i 0.913001 0.407958i \(-0.133759\pi\)
−0.0275138 + 0.999621i \(0.508759\pi\)
\(234\) 8.58610 8.58610i 0.0366927 0.0366927i
\(235\) 0 0
\(236\) −7.85230 + 18.9571i −0.0332725 + 0.0803268i
\(237\) −163.635 −0.690443
\(238\) −28.2441 + 4.71599i −0.118673 + 0.0198151i
\(239\) −183.058 −0.765931 −0.382966 0.923763i \(-0.625097\pi\)
−0.382966 + 0.923763i \(0.625097\pi\)
\(240\) 0 0
\(241\) 64.1856 + 322.683i 0.266330 + 1.33893i 0.849931 + 0.526893i \(0.176643\pi\)
−0.583601 + 0.812041i \(0.698357\pi\)
\(242\) 8.57644 8.57644i 0.0354398 0.0354398i
\(243\) −137.174 + 205.295i −0.564501 + 0.844836i
\(244\) −35.2671 + 177.300i −0.144537 + 0.726638i
\(245\) 0 0
\(246\) −4.55776 11.0034i −0.0185275 0.0447293i
\(247\) −67.9188 163.970i −0.274975 0.663848i
\(248\) 16.6236 11.1075i 0.0670306 0.0447884i
\(249\) −140.875 28.0218i −0.565764 0.112537i
\(250\) 0 0
\(251\) 157.200 157.200i 0.626293 0.626293i −0.320840 0.947133i \(-0.603965\pi\)
0.947133 + 0.320840i \(0.103965\pi\)
\(252\) −38.8620 195.372i −0.154214 0.775287i
\(253\) −389.445 161.313i −1.53931 0.637602i
\(254\) 4.37484i 0.0172238i
\(255\) 0 0
\(256\) −221.489 −0.865191
\(257\) 55.8153 134.750i 0.217180 0.524320i −0.777314 0.629113i \(-0.783418\pi\)
0.994494 + 0.104794i \(0.0334182\pi\)
\(258\) −10.2232 + 2.03352i −0.0396248 + 0.00788186i
\(259\) 61.8363 + 61.8363i 0.238750 + 0.238750i
\(260\) 0 0
\(261\) 53.0248 266.574i 0.203160 1.02136i
\(262\) −7.35230 11.0035i −0.0280622 0.0419981i
\(263\) 0.704127 0.291659i 0.00267729 0.00110897i −0.381344 0.924433i \(-0.624539\pi\)
0.384022 + 0.923324i \(0.374539\pi\)
\(264\) −31.7360 + 13.1455i −0.120212 + 0.0497935i
\(265\) 0 0
\(266\) 39.8511 + 7.92687i 0.149816 + 0.0298003i
\(267\) 170.082 + 113.645i 0.637012 + 0.425638i
\(268\) −165.171 165.171i −0.616308 0.616308i
\(269\) 242.322 48.2008i 0.900825 0.179185i 0.277111 0.960838i \(-0.410623\pi\)
0.623714 + 0.781653i \(0.285623\pi\)
\(270\) 0 0
\(271\) 136.078i 0.502133i −0.967970 0.251066i \(-0.919219\pi\)
0.967970 0.251066i \(-0.0807812\pi\)
\(272\) 8.05896 260.696i 0.0296285 0.958442i
\(273\) 74.0652i 0.271301i
\(274\) −36.3343 15.0502i −0.132607 0.0549276i
\(275\) 0 0
\(276\) 125.470 + 125.470i 0.454600 + 0.454600i
\(277\) −63.3196 + 94.7644i −0.228590 + 0.342110i −0.927979 0.372631i \(-0.878456\pi\)
0.699389 + 0.714741i \(0.253456\pi\)
\(278\) −22.0762 4.39124i −0.0794110 0.0157958i
\(279\) −62.7237 + 41.9106i −0.224816 + 0.150217i
\(280\) 0 0
\(281\) −215.842 + 89.4048i −0.768122 + 0.318167i −0.732112 0.681185i \(-0.761465\pi\)
−0.0360106 + 0.999351i \(0.511465\pi\)
\(282\) −11.1513 + 7.45109i −0.0395438 + 0.0264223i
\(283\) 74.1716 372.886i 0.262091 1.31762i −0.595529 0.803334i \(-0.703057\pi\)
0.857620 0.514285i \(-0.171943\pi\)
\(284\) 87.5362 131.007i 0.308226 0.461293i
\(285\) 0 0
\(286\) −22.2503 + 4.42585i −0.0777981 + 0.0154750i
\(287\) −240.093 99.4499i −0.836562 0.346515i
\(288\) −77.7682 −0.270028
\(289\) 288.448 + 17.8508i 0.998091 + 0.0617674i
\(290\) 0 0
\(291\) −171.525 71.0479i −0.589432 0.244151i
\(292\) 45.7853 9.10726i 0.156799 0.0311893i
\(293\) −251.716 + 251.716i −0.859100 + 0.859100i −0.991232 0.132132i \(-0.957818\pi\)
0.132132 + 0.991232i \(0.457818\pi\)
\(294\) −0.694116 0.463794i −0.00236094 0.00157753i
\(295\) 0 0
\(296\) 18.8810 12.6159i 0.0637871 0.0426212i
\(297\) 272.965 113.066i 0.919074 0.380693i
\(298\) −12.5880 30.3900i −0.0422415 0.101980i
\(299\) 131.119 + 196.234i 0.438526 + 0.656300i
\(300\) 0 0
\(301\) −126.359 + 189.109i −0.419796 + 0.628269i
\(302\) −15.1576 15.1576i −0.0501907 0.0501907i
\(303\) 34.1569 + 171.718i 0.112729 + 0.566727i
\(304\) −141.628 + 341.920i −0.465881 + 1.12474i
\(305\) 0 0
\(306\) 0.866887 28.0426i 0.00283296 0.0916424i
\(307\) 209.760i 0.683259i 0.939835 + 0.341629i \(0.110979\pi\)
−0.939835 + 0.341629i \(0.889021\pi\)
\(308\) −142.423 + 343.839i −0.462411 + 1.11636i
\(309\) 23.8095 + 119.698i 0.0770533 + 0.387373i
\(310\) 0 0
\(311\) −3.28771 2.19678i −0.0105714 0.00706359i 0.550273 0.834985i \(-0.314524\pi\)
−0.560845 + 0.827921i \(0.689524\pi\)
\(312\) 18.8629 + 3.75206i 0.0604579 + 0.0120258i
\(313\) 252.697 + 378.187i 0.807337 + 1.20827i 0.974953 + 0.222413i \(0.0713933\pi\)
−0.167615 + 0.985852i \(0.553607\pi\)
\(314\) 8.94902 + 21.6049i 0.0285001 + 0.0688053i
\(315\) 0 0
\(316\) 255.763 + 382.776i 0.809376 + 1.21132i
\(317\) −0.232495 + 1.16883i −0.000733423 + 0.00368717i −0.981150 0.193246i \(-0.938098\pi\)
0.980417 + 0.196934i \(0.0630983\pi\)
\(318\) −15.9320 10.6454i −0.0501007 0.0334762i
\(319\) −359.070 + 359.070i −1.12561 + 1.12561i
\(320\) 0 0
\(321\) −27.5871 + 66.6012i −0.0859412 + 0.207480i
\(322\) −54.0311 −0.167798
\(323\) −373.831 168.561i −1.15737 0.521860i
\(324\) 125.361 0.386915
\(325\) 0 0
\(326\) 2.58322 + 12.9867i 0.00792397 + 0.0398365i
\(327\) −29.8917 + 29.8917i −0.0914120 + 0.0914120i
\(328\) −37.4907 + 56.1087i −0.114301 + 0.171063i
\(329\) −57.0912 + 287.017i −0.173529 + 0.872391i
\(330\) 0 0
\(331\) 186.788 + 450.945i 0.564313 + 1.36237i 0.906287 + 0.422662i \(0.138904\pi\)
−0.341975 + 0.939709i \(0.611096\pi\)
\(332\) 154.640 + 373.335i 0.465784 + 1.12450i
\(333\) −71.2412 + 47.6019i −0.213938 + 0.142949i
\(334\) 58.6264 + 11.6615i 0.175528 + 0.0349147i
\(335\) 0 0
\(336\) 109.209 109.209i 0.325027 0.325027i
\(337\) 17.5925 + 88.4436i 0.0522033 + 0.262444i 0.998069 0.0621144i \(-0.0197844\pi\)
−0.945866 + 0.324558i \(0.894784\pi\)
\(338\) −24.8999 10.3139i −0.0736682 0.0305144i
\(339\) 142.764i 0.421132i
\(340\) 0 0
\(341\) 140.940 0.413315
\(342\) −15.2346 + 36.7797i −0.0445457 + 0.107543i
\(343\) 327.144 65.0730i 0.953773 0.189717i
\(344\) 41.7609 + 41.7609i 0.121398 + 0.121398i
\(345\) 0 0
\(346\) 12.0611 60.6351i 0.0348586 0.175246i
\(347\) −98.2806 147.087i −0.283229 0.423883i 0.662389 0.749160i \(-0.269542\pi\)
−0.945619 + 0.325277i \(0.894542\pi\)
\(348\) 197.484 81.8005i 0.567482 0.235059i
\(349\) 277.045 114.756i 0.793826 0.328813i 0.0513451 0.998681i \(-0.483649\pi\)
0.742481 + 0.669868i \(0.233649\pi\)
\(350\) 0 0
\(351\) −162.242 32.2719i −0.462227 0.0919427i
\(352\) 120.809 + 80.7219i 0.343207 + 0.229324i
\(353\) −213.143 213.143i −0.603804 0.603804i 0.337516 0.941320i \(-0.390413\pi\)
−0.941320 + 0.337516i \(0.890413\pi\)
\(354\) −1.67841 + 0.333857i −0.00474127 + 0.000943098i
\(355\) 0 0
\(356\) 575.486i 1.61653i
\(357\) 117.211 + 124.689i 0.328323 + 0.349269i
\(358\) 21.9179i 0.0612232i
\(359\) −319.178 132.208i −0.889074 0.368266i −0.109065 0.994035i \(-0.534786\pi\)
−0.780009 + 0.625768i \(0.784786\pi\)
\(360\) 0 0
\(361\) 156.184 + 156.184i 0.432643 + 0.432643i
\(362\) 44.8070 67.0585i 0.123776 0.185244i
\(363\) −71.0927 14.1412i −0.195848 0.0389565i
\(364\) 173.254 115.765i 0.475972 0.318034i
\(365\) 0 0
\(366\) −13.9289 + 5.76953i −0.0380571 + 0.0157638i
\(367\) −413.881 + 276.546i −1.12774 + 0.753533i −0.972166 0.234292i \(-0.924723\pi\)
−0.155575 + 0.987824i \(0.549723\pi\)
\(368\) 96.0112 482.681i 0.260900 1.31163i
\(369\) 141.459 211.708i 0.383357 0.573735i
\(370\) 0 0
\(371\) −410.064 + 81.5668i −1.10529 + 0.219857i
\(372\) −54.8117 22.7038i −0.147343 0.0610316i
\(373\) −187.052 −0.501479 −0.250740 0.968055i \(-0.580674\pi\)
−0.250740 + 0.968055i \(0.580674\pi\)
\(374\) −30.4543 + 42.6629i −0.0814287 + 0.114072i
\(375\) 0 0
\(376\) 70.2050 + 29.0799i 0.186715 + 0.0773401i
\(377\) 278.846 55.4659i 0.739644 0.147124i
\(378\) 26.7787 26.7787i 0.0708431 0.0708431i
\(379\) −65.2279 43.5839i −0.172105 0.114997i 0.466534 0.884503i \(-0.345502\pi\)
−0.638640 + 0.769506i \(0.720502\pi\)
\(380\) 0 0
\(381\) 21.7389 14.5255i 0.0570575 0.0381246i
\(382\) 7.98468 3.30736i 0.0209023 0.00865801i
\(383\) 172.808 + 417.194i 0.451195 + 1.08928i 0.971868 + 0.235525i \(0.0756808\pi\)
−0.520674 + 0.853756i \(0.674319\pi\)
\(384\) −45.1969 67.6419i −0.117700 0.176151i
\(385\) 0 0
\(386\) 3.06279 4.58379i 0.00793468 0.0118751i
\(387\) −157.571 157.571i −0.407161 0.407161i
\(388\) 101.899 + 512.280i 0.262626 + 1.32031i
\(389\) 41.7745 100.853i 0.107390 0.259261i −0.861045 0.508528i \(-0.830190\pi\)
0.968435 + 0.249267i \(0.0801897\pi\)
\(390\) 0 0
\(391\) 531.288 + 122.859i 1.35879 + 0.314217i
\(392\) 4.72997i 0.0120662i
\(393\) −30.2659 + 73.0684i −0.0770125 + 0.185925i
\(394\) −5.02291 25.2519i −0.0127485 0.0640910i
\(395\) 0 0
\(396\) −303.188 202.584i −0.765627 0.511575i
\(397\) −562.982 111.984i −1.41809 0.282076i −0.574255 0.818676i \(-0.694708\pi\)
−0.843837 + 0.536600i \(0.819708\pi\)
\(398\) 20.6640 + 30.9258i 0.0519196 + 0.0777031i
\(399\) −92.9256 224.342i −0.232896 0.562261i
\(400\) 0 0
\(401\) −159.774 239.118i −0.398438 0.596304i 0.576956 0.816775i \(-0.304241\pi\)
−0.975394 + 0.220471i \(0.929241\pi\)
\(402\) 3.80059 19.1068i 0.00945420 0.0475295i
\(403\) −65.6113 43.8401i −0.162807 0.108784i
\(404\) 348.297 348.297i 0.862121 0.862121i
\(405\) 0 0
\(406\) −24.9084 + 60.1342i −0.0613508 + 0.148114i
\(407\) 160.079 0.393315
\(408\) 37.6935 23.5346i 0.0923860 0.0576829i
\(409\) −208.584 −0.509985 −0.254992 0.966943i \(-0.582073\pi\)
−0.254992 + 0.966943i \(0.582073\pi\)
\(410\) 0 0
\(411\) 45.8529 + 230.518i 0.111564 + 0.560871i
\(412\) 242.785 242.785i 0.589283 0.589283i
\(413\) −20.7451 + 31.0473i −0.0502303 + 0.0751750i
\(414\) 10.3277 51.9211i 0.0249462 0.125413i
\(415\) 0 0
\(416\) −31.1307 75.1561i −0.0748334 0.180664i
\(417\) 51.4779 + 124.279i 0.123448 + 0.298030i
\(418\) 61.8428 41.3220i 0.147949 0.0988565i
\(419\) −134.936 26.8405i −0.322043 0.0640584i 0.0314214 0.999506i \(-0.489997\pi\)
−0.353465 + 0.935448i \(0.614997\pi\)
\(420\) 0 0
\(421\) 198.240 198.240i 0.470880 0.470880i −0.431320 0.902199i \(-0.641952\pi\)
0.902199 + 0.431320i \(0.141952\pi\)
\(422\) 4.81595 + 24.2114i 0.0114122 + 0.0573730i
\(423\) −264.896 109.723i −0.626231 0.259393i
\(424\) 108.567i 0.256054i
\(425\) 0 0
\(426\) 13.1406 0.0308465
\(427\) −125.891 + 303.927i −0.294826 + 0.711773i
\(428\) 198.913 39.5662i 0.464750 0.0924445i
\(429\) 95.8684 + 95.8684i 0.223470 + 0.223470i
\(430\) 0 0
\(431\) −60.0816 + 302.051i −0.139400 + 0.700814i 0.846354 + 0.532621i \(0.178793\pi\)
−0.985754 + 0.168192i \(0.946207\pi\)
\(432\) 191.640 + 286.810i 0.443611 + 0.663911i
\(433\) 471.035 195.109i 1.08784 0.450598i 0.234587 0.972095i \(-0.424626\pi\)
0.853253 + 0.521497i \(0.174626\pi\)
\(434\) 16.6903 6.91334i 0.0384569 0.0159294i
\(435\) 0 0
\(436\) 116.644 + 23.2019i 0.267532 + 0.0532154i
\(437\) −643.362 429.881i −1.47222 0.983709i
\(438\) 2.75299 + 2.75299i 0.00628536 + 0.00628536i
\(439\) 104.675 20.8211i 0.238439 0.0474284i −0.0744244 0.997227i \(-0.523712\pi\)
0.312863 + 0.949798i \(0.398712\pi\)
\(440\) 0 0
\(441\) 17.8470i 0.0404694i
\(442\) 27.4477 10.3877i 0.0620989 0.0235016i
\(443\) 384.320i 0.867539i −0.901024 0.433769i \(-0.857183\pi\)
0.901024 0.433769i \(-0.142817\pi\)
\(444\) −62.2548 25.7868i −0.140214 0.0580784i
\(445\) 0 0
\(446\) −21.6158 21.6158i −0.0484659 0.0484659i
\(447\) −109.215 + 163.452i −0.244330 + 0.365665i
\(448\) −413.838 82.3175i −0.923746 0.183744i
\(449\) −33.3516 + 22.2848i −0.0742797 + 0.0496321i −0.592156 0.805824i \(-0.701723\pi\)
0.517876 + 0.855456i \(0.326723\pi\)
\(450\) 0 0
\(451\) −439.498 + 182.046i −0.974496 + 0.403649i
\(452\) 333.954 223.141i 0.738836 0.493674i
\(453\) −24.9925 + 125.646i −0.0551712 + 0.277364i
\(454\) 44.2021 66.1531i 0.0973615 0.145712i
\(455\) 0 0
\(456\) −61.8428 + 12.3013i −0.135620 + 0.0269765i
\(457\) 23.3696 + 9.67999i 0.0511369 + 0.0211816i 0.408105 0.912935i \(-0.366190\pi\)
−0.356968 + 0.934116i \(0.616190\pi\)
\(458\) −7.28159 −0.0158987
\(459\) −324.206 + 202.424i −0.706331 + 0.441011i
\(460\) 0 0
\(461\) −614.740 254.634i −1.33349 0.552351i −0.401843 0.915708i \(-0.631630\pi\)
−0.931650 + 0.363358i \(0.881630\pi\)
\(462\) −30.4425 + 6.05539i −0.0658929 + 0.0131069i
\(463\) 589.351 589.351i 1.27290 1.27290i 0.328335 0.944561i \(-0.393512\pi\)
0.944561 0.328335i \(-0.106488\pi\)
\(464\) −492.942 329.373i −1.06237 0.709856i
\(465\) 0 0
\(466\) 48.4091 32.3460i 0.103882 0.0694119i
\(467\) 249.292 103.260i 0.533816 0.221114i −0.0994577 0.995042i \(-0.531711\pi\)
0.633274 + 0.773928i \(0.281711\pi\)
\(468\) 78.1272 + 188.616i 0.166938 + 0.403025i
\(469\) −236.160 353.439i −0.503540 0.753601i
\(470\) 0 0
\(471\) 77.6434 116.202i 0.164848 0.246712i
\(472\) 6.85617 + 6.85617i 0.0145258 + 0.0145258i
\(473\) 81.2228 + 408.334i 0.171718 + 0.863286i
\(474\) −14.6928 + 35.4716i −0.0309975 + 0.0748346i
\(475\) 0 0
\(476\) 108.472 469.071i 0.227881 0.985444i
\(477\) 409.641i 0.858787i
\(478\) −16.4368 + 39.6819i −0.0343866 + 0.0830165i
\(479\) −73.5553 369.788i −0.153560 0.771999i −0.978414 0.206653i \(-0.933743\pi\)
0.824854 0.565346i \(-0.191257\pi\)
\(480\) 0 0
\(481\) −74.5210 49.7933i −0.154929 0.103520i
\(482\) 75.7121 + 15.0601i 0.157079 + 0.0312450i
\(483\) 179.396 + 268.485i 0.371420 + 0.555869i
\(484\) 78.0393 + 188.404i 0.161238 + 0.389263i
\(485\) 0 0
\(486\) 32.1855 + 48.1690i 0.0662253 + 0.0991132i
\(487\) 102.711 516.361i 0.210905 1.06029i −0.719706 0.694279i \(-0.755724\pi\)
0.930611 0.366010i \(-0.119276\pi\)
\(488\) 71.0264 + 47.4583i 0.145546 + 0.0972506i
\(489\) 55.9551 55.9551i 0.114428 0.114428i
\(490\) 0 0
\(491\) 236.144 570.101i 0.480944 1.16110i −0.478217 0.878242i \(-0.658717\pi\)
0.959161 0.282860i \(-0.0912833\pi\)
\(492\) 200.246 0.407004
\(493\) 381.661 534.662i 0.774161 1.08451i
\(494\) −41.6428 −0.0842971
\(495\) 0 0
\(496\) 32.1016 + 161.386i 0.0647210 + 0.325375i
\(497\) 202.746 202.746i 0.407941 0.407941i
\(498\) −18.7236 + 28.0218i −0.0375976 + 0.0562687i
\(499\) 162.431 816.596i 0.325513 1.63647i −0.378016 0.925799i \(-0.623393\pi\)
0.703529 0.710667i \(-0.251607\pi\)
\(500\) 0 0
\(501\) −136.706 330.038i −0.272867 0.658759i
\(502\) −19.9616 48.1916i −0.0397641 0.0959991i
\(503\) 194.100 129.694i 0.385885 0.257840i −0.347463 0.937694i \(-0.612957\pi\)
0.733348 + 0.679854i \(0.237957\pi\)
\(504\) −92.3214 18.3639i −0.183177 0.0364363i
\(505\) 0 0
\(506\) −69.9367 + 69.9367i −0.138215 + 0.138215i
\(507\) 31.4229 + 157.974i 0.0619782 + 0.311585i
\(508\) −67.9562 28.1484i −0.133772 0.0554102i
\(509\) 195.683i 0.384447i −0.981351 0.192223i \(-0.938430\pi\)
0.981351 0.192223i \(-0.0615698\pi\)
\(510\) 0 0
\(511\) 84.9517 0.166246
\(512\) −108.695 + 262.413i −0.212295 + 0.512526i
\(513\) 531.917 105.805i 1.03688 0.206247i
\(514\) −24.1985 24.1985i −0.0470788 0.0470788i
\(515\) 0 0
\(516\) 34.1901 171.885i 0.0662599 0.333111i
\(517\) 297.611 + 445.406i 0.575650 + 0.861521i
\(518\) 18.9567 7.85213i 0.0365960 0.0151586i
\(519\) −341.346 + 141.390i −0.657699 + 0.272428i
\(520\) 0 0
\(521\) 968.815 + 192.709i 1.85953 + 0.369883i 0.991868 0.127272i \(-0.0406220\pi\)
0.867662 + 0.497155i \(0.165622\pi\)
\(522\) −53.0248 35.4300i −0.101580 0.0678736i
\(523\) −326.381 326.381i −0.624055 0.624055i 0.322511 0.946566i \(-0.395473\pi\)
−0.946566 + 0.322511i \(0.895473\pi\)
\(524\) 218.228 43.4082i 0.416466 0.0828401i
\(525\) 0 0
\(526\) 0.178824i 0.000339969i
\(527\) −179.836 + 30.0276i −0.341244 + 0.0569784i
\(528\) 282.716i 0.535446i
\(529\) 461.876 + 191.315i 0.873111 + 0.361655i
\(530\) 0 0
\(531\) −25.8695 25.8695i −0.0487185 0.0487185i
\(532\) −379.540 + 568.021i −0.713420 + 1.06771i
\(533\) 261.223 + 51.9606i 0.490100 + 0.0974870i
\(534\) 39.9069 26.6650i 0.0747321 0.0499344i
\(535\) 0 0
\(536\) −101.977 + 42.2403i −0.190256 + 0.0788065i
\(537\) 108.912 72.7726i 0.202815 0.135517i
\(538\) 11.3095 56.8567i 0.0210214 0.105682i
\(539\) −18.5248 + 27.7244i −0.0343689 + 0.0514367i
\(540\) 0 0
\(541\) −388.337 + 77.2451i −0.717814 + 0.142782i −0.540466 0.841366i \(-0.681752\pi\)
−0.177348 + 0.984148i \(0.556752\pi\)
\(542\) −29.4980 12.2185i −0.0544244 0.0225433i
\(543\) −481.989 −0.887640
\(544\) −171.346 77.2601i −0.314975 0.142022i
\(545\) 0 0
\(546\) 16.0553 + 6.65033i 0.0294053 + 0.0121801i
\(547\) −243.007 + 48.3371i −0.444254 + 0.0883677i −0.412148 0.911117i \(-0.635221\pi\)
−0.0321060 + 0.999484i \(0.510221\pi\)
\(548\) 467.561 467.561i 0.853214 0.853214i
\(549\) −267.995 179.068i −0.488151 0.326172i
\(550\) 0 0
\(551\) −775.030 + 517.858i −1.40659 + 0.939852i
\(552\) 77.4654 32.0872i 0.140336 0.0581290i
\(553\) 320.596 + 773.987i 0.579740 + 1.39962i
\(554\) 14.8569 + 22.2349i 0.0268174 + 0.0401351i
\(555\) 0 0
\(556\) 210.253 314.666i 0.378153 0.565946i
\(557\) −64.5724 64.5724i −0.115929 0.115929i 0.646763 0.762691i \(-0.276122\pi\)
−0.762691 + 0.646763i \(0.776122\pi\)
\(558\) 3.45311 + 17.3600i 0.00618837 + 0.0311110i
\(559\) 89.2028 215.355i 0.159576 0.385250i
\(560\) 0 0
\(561\) 313.111 + 9.67926i 0.558130 + 0.0172536i
\(562\) 54.8164i 0.0975381i
\(563\) −115.282 + 278.316i −0.204764 + 0.494345i −0.992584 0.121561i \(-0.961210\pi\)
0.787819 + 0.615906i \(0.211210\pi\)
\(564\) −43.9914 221.160i −0.0779990 0.392128i
\(565\) 0 0
\(566\) −74.1716 49.5599i −0.131045 0.0875617i
\(567\) 223.746 + 44.5058i 0.394613 + 0.0784934i
\(568\) −41.3644 61.9062i −0.0728246 0.108990i
\(569\) 52.8038 + 127.480i 0.0928010 + 0.224042i 0.963464 0.267839i \(-0.0863096\pi\)
−0.870663 + 0.491881i \(0.836310\pi\)
\(570\) 0 0
\(571\) −59.2021 88.6021i −0.103681 0.155170i 0.776001 0.630731i \(-0.217245\pi\)
−0.879683 + 0.475561i \(0.842245\pi\)
\(572\) 74.4130 374.099i 0.130093 0.654020i
\(573\) −42.9455 28.6953i −0.0749486 0.0500790i
\(574\) −43.1161 + 43.1161i −0.0751151 + 0.0751151i
\(575\) 0 0
\(576\) 158.206 381.943i 0.274663 0.663095i
\(577\) −661.008 −1.14559 −0.572797 0.819697i \(-0.694142\pi\)
−0.572797 + 0.819697i \(0.694142\pi\)
\(578\) 29.7694 60.9249i 0.0515041 0.105406i
\(579\) −32.9464 −0.0569022
\(580\) 0 0
\(581\) 143.463 + 721.235i 0.246923 + 1.24137i
\(582\) −30.8025 + 30.8025i −0.0529252 + 0.0529252i
\(583\) −425.200 + 636.356i −0.729331 + 1.09152i
\(584\) 4.30355 21.6354i 0.00736910 0.0370469i
\(585\) 0 0
\(586\) 31.9636 + 77.1669i 0.0545453 + 0.131684i
\(587\) −69.4359 167.633i −0.118289 0.285576i 0.853634 0.520873i \(-0.174394\pi\)
−0.971923 + 0.235297i \(0.924394\pi\)
\(588\) 11.6704 7.79788i 0.0198475 0.0132617i
\(589\) 253.739 + 50.4719i 0.430797 + 0.0856909i
\(590\) 0 0
\(591\) −108.801 + 108.801i −0.184097 + 0.184097i
\(592\) 36.4608 + 183.301i 0.0615893 + 0.309630i
\(593\) −508.710 210.715i −0.857859 0.355337i −0.0899889 0.995943i \(-0.528683\pi\)
−0.767870 + 0.640606i \(0.778683\pi\)
\(594\) 69.3236i 0.116706i
\(595\) 0 0
\(596\) 553.054 0.927943
\(597\) 85.0637 205.362i 0.142485 0.343990i
\(598\) 54.3114 10.8032i 0.0908217 0.0180656i
\(599\) 273.259 + 273.259i 0.456191 + 0.456191i 0.897403 0.441212i \(-0.145451\pi\)
−0.441212 + 0.897403i \(0.645451\pi\)
\(600\) 0 0
\(601\) −16.5544 + 83.2246i −0.0275448 + 0.138477i −0.992111 0.125365i \(-0.959990\pi\)
0.964566 + 0.263842i \(0.0849898\pi\)
\(602\) 29.6479 + 44.3712i 0.0492490 + 0.0737063i
\(603\) 384.777 159.380i 0.638105 0.264312i
\(604\) 332.976 137.923i 0.551284 0.228349i
\(605\) 0 0
\(606\) 40.2908 + 8.01433i 0.0664864 + 0.0132250i
\(607\) −280.869 187.671i −0.462717 0.309178i 0.302271 0.953222i \(-0.402255\pi\)
−0.764988 + 0.644044i \(0.777255\pi\)
\(608\) 188.589 + 188.589i 0.310179 + 0.310179i
\(609\) 381.514 75.8878i 0.626459 0.124610i
\(610\) 0 0
\(611\) 299.921i 0.490869i
\(612\) 430.020 + 193.896i 0.702647 + 0.316824i
\(613\) 770.822i 1.25746i 0.777624 + 0.628729i \(0.216425\pi\)
−0.777624 + 0.628729i \(0.783575\pi\)
\(614\) 45.4704 + 18.8344i 0.0740560 + 0.0306750i
\(615\) 0 0
\(616\) 124.355 + 124.355i 0.201875 + 0.201875i
\(617\) −547.640 + 819.601i −0.887584 + 1.32836i 0.0564117 + 0.998408i \(0.482034\pi\)
−0.943996 + 0.329956i \(0.892966\pi\)
\(618\) 28.0852 + 5.58649i 0.0454453 + 0.00903962i
\(619\) −470.818 + 314.591i −0.760611 + 0.508224i −0.874356 0.485286i \(-0.838716\pi\)
0.113744 + 0.993510i \(0.463716\pi\)
\(620\) 0 0
\(621\) −666.289 + 275.986i −1.07293 + 0.444422i
\(622\) −0.771405 + 0.515436i −0.00124020 + 0.000828676i
\(623\) 204.310 1027.14i 0.327946 1.64870i
\(624\) −87.9398 + 131.611i −0.140929 + 0.210915i
\(625\) 0 0
\(626\) 104.670 20.8202i 0.167205 0.0332591i
\(627\) −410.665 170.103i −0.654968 0.271297i
\(628\) −393.177 −0.626078
\(629\) −204.256 + 34.1052i −0.324732 + 0.0542213i
\(630\) 0 0
\(631\) 133.777 + 55.4123i 0.212008 + 0.0878166i 0.486160 0.873870i \(-0.338397\pi\)
−0.274152 + 0.961686i \(0.588397\pi\)
\(632\) 213.359 42.4398i 0.337594 0.0671516i
\(633\) 104.318 104.318i 0.164800 0.164800i
\(634\) 0.232495 + 0.155348i 0.000366712 + 0.000245029i
\(635\) 0 0
\(636\) 267.869 178.985i 0.421178 0.281422i
\(637\) 17.2475 7.14417i 0.0270762 0.0112153i
\(638\) 45.5956 + 110.077i 0.0714664 + 0.172535i
\(639\) 156.075 + 233.583i 0.244249 + 0.365544i
\(640\) 0 0
\(641\) −465.702 + 696.973i −0.726525 + 1.08732i 0.265844 + 0.964016i \(0.414349\pi\)
−0.992369 + 0.123305i \(0.960651\pi\)
\(642\) 11.9603 + 11.9603i 0.0186297 + 0.0186297i
\(643\) −4.77116 23.9863i −0.00742016 0.0373037i 0.976898 0.213707i \(-0.0685537\pi\)
−0.984318 + 0.176403i \(0.943554\pi\)
\(644\) 347.644 839.287i 0.539820 1.30324i
\(645\) 0 0
\(646\) −70.1058 + 65.9014i −0.108523 + 0.102015i
\(647\) 1125.85i 1.74011i 0.492957 + 0.870054i \(0.335916\pi\)
−0.492957 + 0.870054i \(0.664084\pi\)
\(648\) 22.6694 54.7287i 0.0349836 0.0844579i
\(649\) 13.3349 + 67.0390i 0.0205468 + 0.103296i
\(650\) 0 0
\(651\) −89.7686 59.9815i −0.137893 0.0921374i
\(652\) −218.349 43.4323i −0.334891 0.0666139i
\(653\) 116.204 + 173.912i 0.177954 + 0.266327i 0.909714 0.415235i \(-0.136301\pi\)
−0.731760 + 0.681563i \(0.761301\pi\)
\(654\) 3.79573 + 9.16369i 0.00580386 + 0.0140118i
\(655\) 0 0
\(656\) −308.557 461.789i −0.470362 0.703946i
\(657\) −16.2380 + 81.6342i −0.0247154 + 0.124253i
\(658\) 57.0912 + 38.1471i 0.0867647 + 0.0579743i
\(659\) −776.454 + 776.454i −1.17823 + 1.17823i −0.198036 + 0.980195i \(0.563456\pi\)
−0.980195 + 0.198036i \(0.936544\pi\)
\(660\) 0 0
\(661\) 232.630 561.618i 0.351936 0.849649i −0.644445 0.764651i \(-0.722911\pi\)
0.996381 0.0849986i \(-0.0270886\pi\)
\(662\) 114.524 0.172997
\(663\) −142.750 101.900i −0.215309 0.153696i
\(664\) 190.951 0.287577
\(665\) 0 0
\(666\) 3.92202 + 19.7173i 0.00588892 + 0.0296056i
\(667\) 876.464 876.464i 1.31404 1.31404i
\(668\) −558.355 + 835.637i −0.835861 + 1.25095i
\(669\) −35.6411 + 179.180i −0.0532752 + 0.267832i
\(670\) 0 0
\(671\) 230.446 + 556.347i 0.343437 + 0.829131i
\(672\) −42.5926 102.828i −0.0633819 0.153017i
\(673\) −637.906 + 426.235i −0.947855 + 0.633336i −0.930414 0.366511i \(-0.880552\pi\)
−0.0174414 + 0.999848i \(0.505552\pi\)
\(674\) 20.7518 + 4.12779i 0.0307890 + 0.00612431i
\(675\) 0 0
\(676\) 320.419 320.419i 0.473993 0.473993i
\(677\) −139.703 702.334i −0.206356 1.03742i −0.935572 0.353137i \(-0.885115\pi\)
0.729216 0.684284i \(-0.239885\pi\)
\(678\) 30.9473 + 12.8188i 0.0456449 + 0.0189068i
\(679\) 950.503i 1.39986i
\(680\) 0 0
\(681\) −475.482 −0.698211
\(682\) 12.6551 30.5520i 0.0185558 0.0447977i
\(683\) 1212.71 241.224i 1.77557 0.353182i 0.804864 0.593460i \(-0.202238\pi\)
0.970704 + 0.240277i \(0.0772384\pi\)
\(684\) −473.292 473.292i −0.691948 0.691948i
\(685\) 0 0
\(686\) 15.2683 76.7588i 0.0222570 0.111893i
\(687\) 24.1766 + 36.1828i 0.0351915 + 0.0526678i
\(688\) −449.069 + 186.010i −0.652717 + 0.270364i
\(689\) 395.882 163.980i 0.574575 0.237997i
\(690\) 0 0
\(691\) −229.781 45.7063i −0.332534 0.0661451i 0.0259995 0.999662i \(-0.491723\pi\)
−0.358534 + 0.933517i \(0.616723\pi\)
\(692\) 864.268 + 577.485i 1.24894 + 0.834516i
\(693\) −469.214 469.214i −0.677076 0.677076i
\(694\) −40.7092 + 8.09756i −0.0586587 + 0.0116680i
\(695\) 0 0
\(696\) 101.008i 0.145126i
\(697\) 522.000 325.921i 0.748925 0.467605i
\(698\) 70.3598i 0.100802i
\(699\) −321.459 133.153i −0.459884 0.190490i
\(700\) 0 0
\(701\) 375.122 + 375.122i 0.535124 + 0.535124i 0.922093 0.386968i \(-0.126478\pi\)
−0.386968 + 0.922093i \(0.626478\pi\)
\(702\) −21.5634 + 32.2719i −0.0307171 + 0.0459713i
\(703\) 288.196 + 57.3257i 0.409951 + 0.0815444i
\(704\) −642.213 + 429.113i −0.912235 + 0.609536i
\(705\) 0 0
\(706\) −65.3416 + 27.0654i −0.0925519 + 0.0383363i
\(707\) 745.300 497.993i 1.05417 0.704375i
\(708\) 5.61322 28.2196i 0.00792827 0.0398581i
\(709\) 90.0264 134.734i 0.126977 0.190034i −0.762534 0.646948i \(-0.776045\pi\)
0.889511 + 0.456914i \(0.151045\pi\)
\(710\) 0 0
\(711\) −805.042 + 160.133i −1.13227 + 0.225222i
\(712\) −251.240 104.067i −0.352866 0.146162i
\(713\) −344.026 −0.482505
\(714\) 37.5536 14.2123i 0.0525961 0.0199052i
\(715\) 0 0
\(716\) −340.460 141.023i −0.475503 0.196960i
\(717\) 251.756 50.0775i 0.351125 0.0698430i
\(718\) −57.3180 + 57.3180i −0.0798301 + 0.0798301i
\(719\) 257.072 + 171.770i 0.357541 + 0.238901i 0.721347 0.692573i \(-0.243523\pi\)
−0.363807 + 0.931474i \(0.618523\pi\)
\(720\) 0 0
\(721\) 519.520 347.132i 0.720555 0.481459i
\(722\) 47.8803 19.8327i 0.0663162 0.0274691i
\(723\) −176.547 426.223i −0.244187 0.589519i
\(724\) 753.352 + 1127.47i 1.04054 + 1.55728i
\(725\) 0 0
\(726\) −9.44887 + 14.1412i −0.0130150 + 0.0194783i
\(727\) −114.563 114.563i −0.157583 0.157583i 0.623912 0.781495i \(-0.285542\pi\)
−0.781495 + 0.623912i \(0.785542\pi\)
\(728\) −19.2093 96.5716i −0.0263864 0.132653i
\(729\) 23.0458 55.6376i 0.0316129 0.0763204i
\(730\) 0 0
\(731\) −190.634 503.718i −0.260785 0.689080i
\(732\) 253.485i 0.346291i
\(733\) −513.896 + 1240.65i −0.701086 + 1.69257i 0.0200698 + 0.999799i \(0.493611\pi\)
−0.721156 + 0.692773i \(0.756389\pi\)
\(734\) 22.7853 + 114.549i 0.0310426 + 0.156062i
\(735\) 0 0
\(736\) −294.886 197.037i −0.400660 0.267713i
\(737\) −763.164 151.803i −1.03550 0.205974i
\(738\) −33.1909 49.6737i −0.0449741 0.0673086i
\(739\) 180.353 + 435.411i 0.244050 + 0.589190i 0.997678 0.0681123i \(-0.0216976\pi\)
−0.753627 + 0.657302i \(0.771698\pi\)
\(740\) 0 0
\(741\) 138.264 + 206.926i 0.186591 + 0.279253i
\(742\) −19.1383 + 96.2146i −0.0257928 + 0.129669i
\(743\) −1006.79 672.718i −1.35504 0.905408i −0.355467 0.934689i \(-0.615678\pi\)
−0.999571 + 0.0292810i \(0.990678\pi\)
\(744\) −19.8236 + 19.8236i −0.0266446 + 0.0266446i
\(745\) 0 0
\(746\) −16.7954 + 40.5477i −0.0225140 + 0.0543535i
\(747\) −720.492 −0.964514
\(748\) −466.753 747.560i −0.624001 0.999411i
\(749\) 369.070 0.492750
\(750\) 0 0
\(751\) 260.251 + 1308.37i 0.346539 + 1.74217i 0.623992 + 0.781431i \(0.285510\pi\)
−0.277453 + 0.960739i \(0.589490\pi\)
\(752\) −442.232 + 442.232i −0.588075 + 0.588075i
\(753\) −173.191 + 259.198i −0.230001 + 0.344220i
\(754\) 13.0141 65.4265i 0.0172601 0.0867725i
\(755\) 0 0
\(756\) 243.667 + 588.263i 0.322310 + 0.778126i
\(757\) 216.673 + 523.096i 0.286226 + 0.691011i 0.999956 0.00941009i \(-0.00299537\pi\)
−0.713729 + 0.700422i \(0.752995\pi\)
\(758\) −15.3046 + 10.2262i −0.0201908 + 0.0134911i
\(759\) 579.727 + 115.315i 0.763804 + 0.151930i
\(760\) 0 0
\(761\) 375.368 375.368i 0.493256 0.493256i −0.416075 0.909330i \(-0.636594\pi\)
0.909330 + 0.416075i \(0.136594\pi\)
\(762\) −1.19679 6.01665i −0.00157059 0.00789587i
\(763\) 199.951 + 82.8224i 0.262059 + 0.108548i
\(764\) 145.309i 0.190196i
\(765\) 0 0
\(766\) 105.953 0.138320
\(767\) 14.6450 35.3562i 0.0190939 0.0460968i
\(768\) 304.611 60.5908i 0.396628 0.0788943i
\(769\) 443.086 + 443.086i 0.576185 + 0.576185i 0.933850 0.357665i \(-0.116427\pi\)
−0.357665 + 0.933850i \(0.616427\pi\)
\(770\) 0 0
\(771\) −39.8996 + 200.589i −0.0517505 + 0.260167i
\(772\) 51.4954 + 77.0684i 0.0667039 + 0.0998295i
\(773\) −966.801 + 400.462i −1.25071 + 0.518062i −0.907047 0.421029i \(-0.861669\pi\)
−0.343666 + 0.939092i \(0.611669\pi\)
\(774\) −48.3055 + 20.0088i −0.0624102 + 0.0258511i
\(775\) 0 0
\(776\) 242.073 + 48.1514i 0.311950 + 0.0620507i
\(777\) −101.959 68.1266i −0.131221 0.0876790i
\(778\) −18.1112 18.1112i −0.0232791 0.0232791i
\(779\) −856.433 + 170.355i −1.09940 + 0.218684i
\(780\) 0 0
\(781\) 524.862i 0.672038i
\(782\) 74.3369 104.137i 0.0950600 0.133168i
\(783\) 868.781i 1.10955i
\(784\) −35.9655 14.8974i −0.0458744 0.0190018i
\(785\) 0 0
\(786\) 13.1216 + 13.1216i 0.0166942 + 0.0166942i
\(787\) 413.767 619.246i 0.525752 0.786844i −0.469627 0.882865i \(-0.655612\pi\)
0.995379 + 0.0960208i \(0.0306115\pi\)
\(788\) 424.566 + 84.4515i 0.538790 + 0.107172i
\(789\) −0.888589 + 0.593736i −0.00112622 + 0.000752517i
\(790\) 0 0
\(791\) 675.266 279.704i 0.853687 0.353609i
\(792\) −143.269 + 95.7291i −0.180895 + 0.120870i
\(793\) 65.7753 330.675i 0.0829449 0.416992i
\(794\) −74.8254 + 111.984i −0.0942386 + 0.141038i
\(795\) 0 0
\(796\) −613.340 + 122.001i −0.770527 + 0.153267i
\(797\) −170.291 70.5367i −0.213665 0.0885028i 0.273284 0.961933i \(-0.411890\pi\)
−0.486949 + 0.873431i \(0.661890\pi\)
\(798\) −56.9751 −0.0713974
\(799\) −474.637 504.918i −0.594039 0.631938i
\(800\) 0 0
\(801\) 947.974 + 392.663i 1.18349 + 0.490217i
\(802\) −66.1804 + 13.1641i −0.0825192 + 0.0164141i
\(803\) 109.960 109.960i 0.136936 0.136936i
\(804\) 272.341 + 181.972i 0.338733 + 0.226334i
\(805\) 0 0
\(806\) −15.3946 + 10.2863i −0.0191000 + 0.0127622i
\(807\) −320.076 + 132.580i −0.396624 + 0.164287i
\(808\) −89.0725 215.040i −0.110238 0.266139i
\(809\) −455.902 682.305i −0.563538 0.843393i 0.434830 0.900513i \(-0.356809\pi\)
−0.998367 + 0.0571191i \(0.981809\pi\)
\(810\) 0 0
\(811\) −289.106 + 432.678i −0.356481 + 0.533511i −0.965757 0.259446i \(-0.916460\pi\)
0.609277 + 0.792958i \(0.291460\pi\)
\(812\) −773.826 773.826i −0.952988 0.952988i
\(813\) 37.2257 + 187.146i 0.0457880 + 0.230192i
\(814\) 14.3736 34.7008i 0.0176579 0.0426300i
\(815\) 0 0
\(816\) 60.2330 + 360.736i 0.0738150 + 0.442079i
\(817\) 764.224i 0.935402i
\(818\) −18.7288 + 45.2153i −0.0228958 + 0.0552754i
\(819\) 72.4800 + 364.382i 0.0884982 + 0.444910i
\(820\) 0 0
\(821\) −624.614 417.354i −0.760797 0.508348i 0.113620 0.993524i \(-0.463755\pi\)
−0.874416 + 0.485176i \(0.838755\pi\)
\(822\) 54.0872 + 10.7586i 0.0657995 + 0.0130883i
\(823\) −662.320 991.232i −0.804763 1.20441i −0.975696 0.219130i \(-0.929678\pi\)
0.170933 0.985283i \(-0.445322\pi\)
\(824\) −62.0890 149.896i −0.0753508 0.181913i
\(825\) 0 0
\(826\) 4.86749 + 7.28472i 0.00589285 + 0.00881927i
\(827\) 24.2442 121.884i 0.0293158 0.147380i −0.963355 0.268229i \(-0.913562\pi\)
0.992671 + 0.120849i \(0.0385616\pi\)
\(828\) 740.062 + 494.493i 0.893794 + 0.597214i
\(829\) 790.484 790.484i 0.953540 0.953540i −0.0454281 0.998968i \(-0.514465\pi\)
0.998968 + 0.0454281i \(0.0144652\pi\)
\(830\) 0 0
\(831\) 61.1586 147.650i 0.0735964 0.177677i
\(832\) 432.444 0.519764
\(833\) 17.7304 39.3222i 0.0212850 0.0472055i
\(834\) 31.5624 0.0378446
\(835\) 0 0
\(836\) 243.967 + 1226.50i 0.291826 + 1.46711i
\(837\) 170.505 170.505i 0.203710 0.203710i
\(838\) −17.9342 + 26.8405i −0.0214012 + 0.0320292i
\(839\) −234.514 + 1178.98i −0.279516 + 1.40522i 0.544551 + 0.838728i \(0.316700\pi\)
−0.824067 + 0.566493i \(0.808300\pi\)
\(840\) 0 0
\(841\) −249.579 602.536i −0.296764 0.716452i
\(842\) −25.1731 60.7731i −0.0298967 0.0721771i
\(843\) 272.387 182.003i 0.323116 0.215899i
\(844\) −407.072 80.9718i −0.482313 0.0959381i
\(845\) 0 0
\(846\) −47.5701 + 47.5701i −0.0562294 + 0.0562294i
\(847\) 72.3984 + 363.972i 0.0854763 + 0.429718i
\(848\) −825.515 341.940i −0.973485 0.403231i
\(849\) 533.115i 0.627933i
\(850\) 0 0
\(851\) −390.743 −0.459157
\(852\) −84.5487 + 204.119i −0.0992356 + 0.239576i
\(853\) 1501.74 298.716i 1.76054 0.350194i 0.794242 0.607602i \(-0.207868\pi\)
0.966303 + 0.257408i \(0.0828685\pi\)
\(854\) 54.5793 + 54.5793i 0.0639102 + 0.0639102i
\(855\) 0 0
\(856\) 18.6967 93.9944i 0.0218419 0.109807i
\(857\) 342.009 + 511.852i 0.399077 + 0.597260i 0.975529 0.219870i \(-0.0705634\pi\)
−0.576453 + 0.817131i \(0.695563\pi\)
\(858\) 29.3897 12.1736i 0.0342537 0.0141884i
\(859\) 161.984 67.0958i 0.188572 0.0781092i −0.286399 0.958110i \(-0.592458\pi\)
0.474972 + 0.880001i \(0.342458\pi\)
\(860\) 0 0
\(861\) 357.402 + 71.0918i 0.415102 + 0.0825688i
\(862\) 60.0816 + 40.1452i 0.0697002 + 0.0465722i
\(863\) −551.248 551.248i −0.638758 0.638758i 0.311491 0.950249i \(-0.399172\pi\)
−0.950249 + 0.311491i \(0.899172\pi\)
\(864\) 243.805 48.4959i 0.282182 0.0561295i
\(865\) 0 0
\(866\) 119.626i 0.138137i
\(867\) −401.582 + 54.3583i −0.463186 + 0.0626970i
\(868\) 303.739i 0.349930i
\(869\) 1416.81 + 586.860i 1.63039 + 0.675328i
\(870\) 0 0
\(871\) 308.053 + 308.053i 0.353678 + 0.353678i
\(872\) 31.2224 46.7276i 0.0358055 0.0535867i
\(873\) −913.384 181.683i −1.04626 0.208114i
\(874\) −150.954 + 100.864i −0.172716 + 0.115405i
\(875\) 0 0
\(876\) −60.4765 + 25.0502i −0.0690371 + 0.0285961i
\(877\) −932.115 + 622.820i −1.06285 + 0.710171i −0.958708 0.284392i \(-0.908208\pi\)
−0.104137 + 0.994563i \(0.533208\pi\)
\(878\) 4.88531 24.5601i 0.00556413 0.0279728i
\(879\) 277.322 415.041i 0.315497 0.472175i
\(880\) 0 0
\(881\) 890.772 177.186i 1.01109 0.201119i 0.338370 0.941013i \(-0.390125\pi\)
0.672723 + 0.739895i \(0.265125\pi\)
\(882\) −3.86874 1.60248i −0.00438633 0.00181688i
\(883\) −1050.48 −1.18967 −0.594837 0.803846i \(-0.702783\pi\)
−0.594837 + 0.803846i \(0.702783\pi\)
\(884\) −15.2462 + 493.193i −0.0172468 + 0.557911i
\(885\) 0 0
\(886\) −83.3100 34.5082i −0.0940294 0.0389483i
\(887\) 886.081 176.252i 0.998964 0.198706i 0.331586 0.943425i \(-0.392416\pi\)
0.667378 + 0.744719i \(0.267416\pi\)
\(888\) −22.5155 + 22.5155i −0.0253553 + 0.0253553i
\(889\) −111.296 74.3657i −0.125192 0.0836509i
\(890\) 0 0
\(891\) 347.219 232.004i 0.389696 0.260386i
\(892\) 474.846 196.688i 0.532339 0.220502i
\(893\) 376.295 + 908.455i 0.421382 + 1.01731i
\(894\) 25.6256 + 38.3514i 0.0286639 + 0.0428986i
\(895\) 0 0
\(896\) −231.393 + 346.304i −0.258251 + 0.386500i
\(897\) −234.008 234.008i −0.260879 0.260879i
\(898\) 1.83609 + 9.23067i 0.00204465 + 0.0102791i
\(899\) −158.597 + 382.886i −0.176414 + 0.425902i
\(900\) 0 0
\(901\) 406.965 902.561i 0.451682 1.00173i
\(902\) 111.617i 0.123744i
\(903\) 122.046 294.645i 0.135156 0.326296i
\(904\) −37.0267 186.146i −0.0409587 0.205913i
\(905\) 0 0
\(906\) 24.9925 + 16.6995i 0.0275856 + 0.0184321i
\(907\) 1293.65 + 257.323i 1.42630 + 0.283708i 0.847080 0.531465i \(-0.178358\pi\)
0.579217 + 0.815173i \(0.303358\pi\)
\(908\) 743.182 + 1112.25i 0.818482 + 1.22494i
\(909\) 336.086 + 811.383i 0.369731 + 0.892611i
\(910\) 0 0
\(911\) 414.003 + 619.599i 0.454449 + 0.680130i 0.985972 0.166914i \(-0.0533801\pi\)
−0.531523 + 0.847044i \(0.678380\pi\)
\(912\) 101.243 508.981i 0.111012 0.558094i
\(913\) 1119.25 + 747.856i 1.22590 + 0.819120i
\(914\) 4.19671 4.19671i 0.00459159 0.00459159i
\(915\) 0 0
\(916\) 46.8509 113.108i 0.0511472 0.123480i
\(917\) 404.908 0.441557
\(918\) 14.7695 + 88.4548i 0.0160888 + 0.0963560i
\(919\) −682.519 −0.742676 −0.371338 0.928498i \(-0.621101\pi\)
−0.371338 + 0.928498i \(0.621101\pi\)
\(920\) 0 0
\(921\) −57.3823 288.481i −0.0623044 0.313225i
\(922\) −110.395 + 110.395i −0.119735 + 0.119735i
\(923\) −163.260 + 244.336i −0.176880 + 0.264720i
\(924\) 101.811 511.838i 0.110185 0.553937i
\(925\) 0 0
\(926\) −74.8373 180.673i −0.0808178 0.195111i
\(927\) 234.273 + 565.584i 0.252721 + 0.610123i
\(928\) −355.236 + 237.361i −0.382798 + 0.255777i
\(929\) −759.942 151.162i −0.818021 0.162715i −0.231694 0.972789i \(-0.574427\pi\)
−0.586327 + 0.810074i \(0.699427\pi\)
\(930\) 0 0
\(931\) −43.2791 + 43.2791i −0.0464867 + 0.0464867i
\(932\) 190.972 + 960.079i 0.204905 + 1.03013i
\(933\) 5.12249 + 2.12180i 0.00549034 + 0.00227417i
\(934\) 63.3115i 0.0677853i
\(935\) 0 0
\(936\) 96.4721 0.103069
\(937\) −66.3005 + 160.063i −0.0707582 + 0.170825i −0.955302 0.295632i \(-0.904470\pi\)
0.884544 + 0.466457i \(0.154470\pi\)
\(938\) −97.8207 + 19.4578i −0.104287 + 0.0207439i
\(939\) −450.987 450.987i −0.480285 0.480285i
\(940\) 0 0
\(941\) −109.163 + 548.798i −0.116007 + 0.583207i 0.878430 + 0.477872i \(0.158592\pi\)
−0.994437 + 0.105335i \(0.966408\pi\)
\(942\) −18.2177 27.2647i −0.0193394 0.0289435i
\(943\) 1072.78 444.362i 1.13763 0.471221i
\(944\) −73.7267 + 30.5386i −0.0781003 + 0.0323502i
\(945\) 0 0
\(946\) 95.8088 + 19.0576i 0.101278 + 0.0201454i
\(947\) −1131.96 756.351i −1.19531 0.798681i −0.211410 0.977398i \(-0.567805\pi\)
−0.983901 + 0.178717i \(0.942805\pi\)
\(948\) −456.460 456.460i −0.481498 0.481498i
\(949\) −85.3924 + 16.9856i −0.0899814 + 0.0178984i
\(950\) 0 0
\(951\) 1.67108i 0.00175718i
\(952\) −185.167 132.179i −0.194504 0.138844i
\(953\) 553.052i 0.580328i −0.956977 0.290164i \(-0.906290\pi\)
0.956977 0.290164i \(-0.0937098\pi\)
\(954\) −88.7991 36.7818i −0.0930808 0.0385553i
\(955\) 0 0
\(956\) −510.639 510.639i −0.534141 0.534141i
\(957\) 395.596 592.051i 0.413371 0.618653i
\(958\) −86.7644 17.2585i −0.0905683 0.0180152i
\(959\) 1000.51 668.516i 1.04328 0.697097i
\(960\) 0 0
\(961\) −781.578 + 323.740i −0.813297 + 0.336878i
\(962\) −17.4851 + 11.6832i −0.0181758 + 0.0121447i
\(963\) −70.5457 + 354.657i −0.0732562 + 0.368284i
\(964\) −721.078 + 1079.17i −0.748006 + 1.11947i
\(965\) 0 0
\(966\) 74.3081 14.7808i 0.0769235 0.0153010i
\(967\) 681.241 + 282.179i 0.704490 + 0.291809i 0.706022 0.708190i \(-0.250488\pi\)
−0.00153265 + 0.999999i \(0.500488\pi\)
\(968\) 96.3636 0.0995491
\(969\) 560.237 + 129.553i 0.578160 + 0.133698i
\(970\) 0 0
\(971\) −1570.52 650.532i −1.61743 0.669961i −0.623688 0.781673i \(-0.714367\pi\)
−0.993741 + 0.111712i \(0.964367\pi\)
\(972\) −955.316 + 190.024i −0.982836 + 0.195498i
\(973\) 486.976 486.976i 0.500490 0.500490i
\(974\) −102.711 68.6290i −0.105452 0.0704610i
\(975\) 0 0
\(976\) −584.564 + 390.593i −0.598939 + 0.400198i
\(977\) 112.483 46.5920i 0.115131 0.0476888i −0.324374 0.945929i \(-0.605154\pi\)
0.439505 + 0.898240i \(0.355154\pi\)
\(978\) −7.10532 17.1538i −0.00726515 0.0175396i
\(979\) −1065.05 1593.96i −1.08790 1.62815i
\(980\) 0 0
\(981\) −117.808 + 176.311i −0.120089 + 0.179726i
\(982\) −102.379 102.379i −0.104256 0.104256i
\(983\) 238.411 + 1198.57i 0.242534 + 1.21930i 0.889555 + 0.456828i \(0.151015\pi\)
−0.647021 + 0.762472i \(0.723985\pi\)
\(984\) 36.2112 87.4215i 0.0368000 0.0888430i
\(985\) 0 0
\(986\) −81.6307 130.741i −0.0827898 0.132598i
\(987\) 410.348i 0.415753i
\(988\) 267.936 646.855i 0.271190 0.654711i
\(989\) −198.259 996.716i −0.200464 1.00780i
\(990\) 0 0
\(991\) −1202.45 803.454i −1.21337 0.810750i −0.226780 0.973946i \(-0.572820\pi\)
−0.986594 + 0.163196i \(0.947820\pi\)
\(992\) 116.302 + 23.1339i 0.117240 + 0.0233205i
\(993\) −380.247 569.080i −0.382928 0.573092i
\(994\) −25.7453 62.1546i −0.0259007 0.0625297i
\(995\) 0 0
\(996\) −314.804 471.138i −0.316069 0.473030i
\(997\) 167.876 843.968i 0.168381 0.846508i −0.800567 0.599243i \(-0.795468\pi\)
0.968948 0.247265i \(-0.0795317\pi\)
\(998\) −162.431 108.533i −0.162757 0.108751i
\(999\) 193.659 193.659i 0.193852 0.193852i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.b.249.1 8
5.2 odd 4 17.3.e.b.11.1 8
5.3 odd 4 425.3.u.a.351.1 8
5.4 even 2 425.3.t.d.249.1 8
15.2 even 4 153.3.p.a.28.1 8
17.14 odd 16 425.3.t.d.99.1 8
20.7 even 4 272.3.bh.b.113.1 8
85.2 odd 8 289.3.e.n.214.1 8
85.7 even 16 289.3.e.n.131.1 8
85.12 even 16 289.3.e.h.224.1 8
85.14 odd 16 inner 425.3.t.b.99.1 8
85.22 even 16 289.3.e.f.224.1 8
85.27 even 16 289.3.e.j.131.1 8
85.32 odd 8 289.3.e.j.214.1 8
85.37 even 16 289.3.e.g.65.1 8
85.42 odd 8 289.3.e.a.75.1 8
85.47 odd 4 289.3.e.f.40.1 8
85.48 even 16 425.3.u.a.201.1 8
85.57 even 16 289.3.e.a.158.1 8
85.62 even 16 289.3.e.e.158.1 8
85.67 odd 4 289.3.e.g.249.1 8
85.72 odd 4 289.3.e.h.40.1 8
85.77 odd 8 289.3.e.e.75.1 8
85.82 even 16 17.3.e.b.14.1 yes 8
255.167 odd 16 153.3.p.a.82.1 8
340.167 odd 16 272.3.bh.b.65.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.11.1 8 5.2 odd 4
17.3.e.b.14.1 yes 8 85.82 even 16
153.3.p.a.28.1 8 15.2 even 4
153.3.p.a.82.1 8 255.167 odd 16
272.3.bh.b.65.1 8 340.167 odd 16
272.3.bh.b.113.1 8 20.7 even 4
289.3.e.a.75.1 8 85.42 odd 8
289.3.e.a.158.1 8 85.57 even 16
289.3.e.e.75.1 8 85.77 odd 8
289.3.e.e.158.1 8 85.62 even 16
289.3.e.f.40.1 8 85.47 odd 4
289.3.e.f.224.1 8 85.22 even 16
289.3.e.g.65.1 8 85.37 even 16
289.3.e.g.249.1 8 85.67 odd 4
289.3.e.h.40.1 8 85.72 odd 4
289.3.e.h.224.1 8 85.12 even 16
289.3.e.j.131.1 8 85.27 even 16
289.3.e.j.214.1 8 85.32 odd 8
289.3.e.n.131.1 8 85.7 even 16
289.3.e.n.214.1 8 85.2 odd 8
425.3.t.b.99.1 8 85.14 odd 16 inner
425.3.t.b.249.1 8 1.1 even 1 trivial
425.3.t.d.99.1 8 17.14 odd 16
425.3.t.d.249.1 8 5.4 even 2
425.3.u.a.201.1 8 85.48 even 16
425.3.u.a.351.1 8 5.3 odd 4