Properties

Label 4225.2.a.cb.1.8
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4225,2,Mod(1,4225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,16,0,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26x^{16} + 281x^{14} - 1632x^{12} + 5482x^{10} - 10620x^{8} + 11052x^{6} - 5165x^{4} + 760x^{2} - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.395078\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.395078 q^{2} +2.73651 q^{3} -1.84391 q^{4} -1.08113 q^{6} -0.629405 q^{7} +1.51865 q^{8} +4.48846 q^{9} +5.49747 q^{11} -5.04588 q^{12} +0.248664 q^{14} +3.08784 q^{16} -4.25364 q^{17} -1.77329 q^{18} +3.61686 q^{19} -1.72237 q^{21} -2.17193 q^{22} +7.05869 q^{23} +4.15578 q^{24} +4.07319 q^{27} +1.16057 q^{28} +2.09557 q^{29} +2.97582 q^{31} -4.25723 q^{32} +15.0439 q^{33} +1.68052 q^{34} -8.27634 q^{36} -0.817814 q^{37} -1.42894 q^{38} -4.89390 q^{41} +0.680471 q^{42} -9.91411 q^{43} -10.1369 q^{44} -2.78873 q^{46} +2.29494 q^{47} +8.44990 q^{48} -6.60385 q^{49} -11.6401 q^{51} -5.84288 q^{53} -1.60923 q^{54} -0.955844 q^{56} +9.89756 q^{57} -0.827912 q^{58} +5.19393 q^{59} +5.92410 q^{61} -1.17568 q^{62} -2.82506 q^{63} -4.49375 q^{64} -5.94350 q^{66} +13.7031 q^{67} +7.84335 q^{68} +19.3161 q^{69} +0.210677 q^{71} +6.81639 q^{72} +12.4282 q^{73} +0.323100 q^{74} -6.66918 q^{76} -3.46014 q^{77} -7.19084 q^{79} -2.31909 q^{81} +1.93347 q^{82} +6.61897 q^{83} +3.17590 q^{84} +3.91685 q^{86} +5.73453 q^{87} +8.34872 q^{88} +3.66109 q^{89} -13.0156 q^{92} +8.14336 q^{93} -0.906679 q^{94} -11.6499 q^{96} +4.54596 q^{97} +2.60904 q^{98} +24.6752 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 16 q^{4} + 16 q^{6} + 18 q^{9} + 22 q^{11} + 4 q^{14} - 12 q^{16} + 28 q^{19} + 26 q^{21} + 34 q^{24} - 20 q^{29} + 32 q^{31} + 18 q^{34} + 32 q^{36} + 52 q^{41} + 50 q^{44} + 30 q^{46} + 44 q^{49}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.395078 −0.279362 −0.139681 0.990197i \(-0.544608\pi\)
−0.139681 + 0.990197i \(0.544608\pi\)
\(3\) 2.73651 1.57992 0.789961 0.613157i \(-0.210101\pi\)
0.789961 + 0.613157i \(0.210101\pi\)
\(4\) −1.84391 −0.921957
\(5\) 0 0
\(6\) −1.08113 −0.441371
\(7\) −0.629405 −0.237893 −0.118946 0.992901i \(-0.537952\pi\)
−0.118946 + 0.992901i \(0.537952\pi\)
\(8\) 1.51865 0.536922
\(9\) 4.48846 1.49615
\(10\) 0 0
\(11\) 5.49747 1.65755 0.828775 0.559582i \(-0.189038\pi\)
0.828775 + 0.559582i \(0.189038\pi\)
\(12\) −5.04588 −1.45662
\(13\) 0 0
\(14\) 0.248664 0.0664583
\(15\) 0 0
\(16\) 3.08784 0.771961
\(17\) −4.25364 −1.03166 −0.515830 0.856691i \(-0.672516\pi\)
−0.515830 + 0.856691i \(0.672516\pi\)
\(18\) −1.77329 −0.417969
\(19\) 3.61686 0.829765 0.414883 0.909875i \(-0.363823\pi\)
0.414883 + 0.909875i \(0.363823\pi\)
\(20\) 0 0
\(21\) −1.72237 −0.375852
\(22\) −2.17193 −0.463057
\(23\) 7.05869 1.47184 0.735919 0.677069i \(-0.236750\pi\)
0.735919 + 0.677069i \(0.236750\pi\)
\(24\) 4.15578 0.848296
\(25\) 0 0
\(26\) 0 0
\(27\) 4.07319 0.783885
\(28\) 1.16057 0.219327
\(29\) 2.09557 0.389137 0.194568 0.980889i \(-0.437669\pi\)
0.194568 + 0.980889i \(0.437669\pi\)
\(30\) 0 0
\(31\) 2.97582 0.534474 0.267237 0.963631i \(-0.413889\pi\)
0.267237 + 0.963631i \(0.413889\pi\)
\(32\) −4.25723 −0.752579
\(33\) 15.0439 2.61880
\(34\) 1.68052 0.288207
\(35\) 0 0
\(36\) −8.27634 −1.37939
\(37\) −0.817814 −0.134448 −0.0672239 0.997738i \(-0.521414\pi\)
−0.0672239 + 0.997738i \(0.521414\pi\)
\(38\) −1.42894 −0.231805
\(39\) 0 0
\(40\) 0 0
\(41\) −4.89390 −0.764298 −0.382149 0.924101i \(-0.624816\pi\)
−0.382149 + 0.924101i \(0.624816\pi\)
\(42\) 0.680471 0.104999
\(43\) −9.91411 −1.51189 −0.755944 0.654636i \(-0.772822\pi\)
−0.755944 + 0.654636i \(0.772822\pi\)
\(44\) −10.1369 −1.52819
\(45\) 0 0
\(46\) −2.78873 −0.411176
\(47\) 2.29494 0.334751 0.167375 0.985893i \(-0.446471\pi\)
0.167375 + 0.985893i \(0.446471\pi\)
\(48\) 8.44990 1.21964
\(49\) −6.60385 −0.943407
\(50\) 0 0
\(51\) −11.6401 −1.62994
\(52\) 0 0
\(53\) −5.84288 −0.802581 −0.401291 0.915951i \(-0.631438\pi\)
−0.401291 + 0.915951i \(0.631438\pi\)
\(54\) −1.60923 −0.218988
\(55\) 0 0
\(56\) −0.955844 −0.127730
\(57\) 9.89756 1.31096
\(58\) −0.827912 −0.108710
\(59\) 5.19393 0.676192 0.338096 0.941112i \(-0.390217\pi\)
0.338096 + 0.941112i \(0.390217\pi\)
\(60\) 0 0
\(61\) 5.92410 0.758503 0.379252 0.925294i \(-0.376181\pi\)
0.379252 + 0.925294i \(0.376181\pi\)
\(62\) −1.17568 −0.149312
\(63\) −2.82506 −0.355924
\(64\) −4.49375 −0.561718
\(65\) 0 0
\(66\) −5.94350 −0.731595
\(67\) 13.7031 1.67410 0.837052 0.547124i \(-0.184277\pi\)
0.837052 + 0.547124i \(0.184277\pi\)
\(68\) 7.84335 0.951146
\(69\) 19.3161 2.32539
\(70\) 0 0
\(71\) 0.210677 0.0250028 0.0125014 0.999922i \(-0.496021\pi\)
0.0125014 + 0.999922i \(0.496021\pi\)
\(72\) 6.81639 0.803319
\(73\) 12.4282 1.45461 0.727306 0.686314i \(-0.240772\pi\)
0.727306 + 0.686314i \(0.240772\pi\)
\(74\) 0.323100 0.0375596
\(75\) 0 0
\(76\) −6.66918 −0.765007
\(77\) −3.46014 −0.394319
\(78\) 0 0
\(79\) −7.19084 −0.809032 −0.404516 0.914531i \(-0.632560\pi\)
−0.404516 + 0.914531i \(0.632560\pi\)
\(80\) 0 0
\(81\) −2.31909 −0.257677
\(82\) 1.93347 0.213516
\(83\) 6.61897 0.726526 0.363263 0.931687i \(-0.381663\pi\)
0.363263 + 0.931687i \(0.381663\pi\)
\(84\) 3.17590 0.346519
\(85\) 0 0
\(86\) 3.91685 0.422365
\(87\) 5.73453 0.614806
\(88\) 8.34872 0.889976
\(89\) 3.66109 0.388074 0.194037 0.980994i \(-0.437842\pi\)
0.194037 + 0.980994i \(0.437842\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −13.0156 −1.35697
\(93\) 8.14336 0.844427
\(94\) −0.906679 −0.0935168
\(95\) 0 0
\(96\) −11.6499 −1.18902
\(97\) 4.54596 0.461573 0.230786 0.973004i \(-0.425870\pi\)
0.230786 + 0.973004i \(0.425870\pi\)
\(98\) 2.60904 0.263552
\(99\) 24.6752 2.47995
\(100\) 0 0
\(101\) 10.5652 1.05128 0.525639 0.850708i \(-0.323826\pi\)
0.525639 + 0.850708i \(0.323826\pi\)
\(102\) 4.59876 0.455345
\(103\) −8.11584 −0.799677 −0.399839 0.916586i \(-0.630934\pi\)
−0.399839 + 0.916586i \(0.630934\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.30839 0.224211
\(107\) −4.75614 −0.459793 −0.229897 0.973215i \(-0.573839\pi\)
−0.229897 + 0.973215i \(0.573839\pi\)
\(108\) −7.51060 −0.722708
\(109\) 2.23043 0.213636 0.106818 0.994279i \(-0.465934\pi\)
0.106818 + 0.994279i \(0.465934\pi\)
\(110\) 0 0
\(111\) −2.23795 −0.212417
\(112\) −1.94350 −0.183644
\(113\) −6.66337 −0.626837 −0.313419 0.949615i \(-0.601474\pi\)
−0.313419 + 0.949615i \(0.601474\pi\)
\(114\) −3.91031 −0.366234
\(115\) 0 0
\(116\) −3.86404 −0.358767
\(117\) 0 0
\(118\) −2.05201 −0.188903
\(119\) 2.67726 0.245424
\(120\) 0 0
\(121\) 19.2222 1.74747
\(122\) −2.34048 −0.211897
\(123\) −13.3922 −1.20753
\(124\) −5.48716 −0.492761
\(125\) 0 0
\(126\) 1.11612 0.0994319
\(127\) 10.6090 0.941398 0.470699 0.882294i \(-0.344002\pi\)
0.470699 + 0.882294i \(0.344002\pi\)
\(128\) 10.2898 0.909502
\(129\) −27.1300 −2.38867
\(130\) 0 0
\(131\) 0.888454 0.0776246 0.0388123 0.999247i \(-0.487643\pi\)
0.0388123 + 0.999247i \(0.487643\pi\)
\(132\) −27.7396 −2.41442
\(133\) −2.27647 −0.197395
\(134\) −5.41380 −0.467682
\(135\) 0 0
\(136\) −6.45978 −0.553921
\(137\) −2.66255 −0.227477 −0.113738 0.993511i \(-0.536283\pi\)
−0.113738 + 0.993511i \(0.536283\pi\)
\(138\) −7.63138 −0.649627
\(139\) 13.9094 1.17978 0.589892 0.807482i \(-0.299170\pi\)
0.589892 + 0.807482i \(0.299170\pi\)
\(140\) 0 0
\(141\) 6.28011 0.528880
\(142\) −0.0832340 −0.00698484
\(143\) 0 0
\(144\) 13.8597 1.15497
\(145\) 0 0
\(146\) −4.91011 −0.406364
\(147\) −18.0715 −1.49051
\(148\) 1.50798 0.123955
\(149\) 11.4154 0.935186 0.467593 0.883944i \(-0.345121\pi\)
0.467593 + 0.883944i \(0.345121\pi\)
\(150\) 0 0
\(151\) 13.1691 1.07169 0.535843 0.844317i \(-0.319994\pi\)
0.535843 + 0.844317i \(0.319994\pi\)
\(152\) 5.49273 0.445519
\(153\) −19.0923 −1.54352
\(154\) 1.36702 0.110158
\(155\) 0 0
\(156\) 0 0
\(157\) 7.24976 0.578593 0.289297 0.957239i \(-0.406579\pi\)
0.289297 + 0.957239i \(0.406579\pi\)
\(158\) 2.84094 0.226013
\(159\) −15.9891 −1.26802
\(160\) 0 0
\(161\) −4.44277 −0.350140
\(162\) 0.916221 0.0719851
\(163\) −14.3271 −1.12218 −0.561091 0.827754i \(-0.689618\pi\)
−0.561091 + 0.827754i \(0.689618\pi\)
\(164\) 9.02392 0.704650
\(165\) 0 0
\(166\) −2.61501 −0.202964
\(167\) −18.1705 −1.40608 −0.703038 0.711152i \(-0.748174\pi\)
−0.703038 + 0.711152i \(0.748174\pi\)
\(168\) −2.61567 −0.201803
\(169\) 0 0
\(170\) 0 0
\(171\) 16.2342 1.24146
\(172\) 18.2808 1.39390
\(173\) 13.3976 1.01860 0.509300 0.860589i \(-0.329905\pi\)
0.509300 + 0.860589i \(0.329905\pi\)
\(174\) −2.26559 −0.171754
\(175\) 0 0
\(176\) 16.9753 1.27956
\(177\) 14.2132 1.06833
\(178\) −1.44642 −0.108413
\(179\) −4.87440 −0.364330 −0.182165 0.983268i \(-0.558310\pi\)
−0.182165 + 0.983268i \(0.558310\pi\)
\(180\) 0 0
\(181\) 21.6211 1.60708 0.803541 0.595249i \(-0.202947\pi\)
0.803541 + 0.595249i \(0.202947\pi\)
\(182\) 0 0
\(183\) 16.2113 1.19838
\(184\) 10.7196 0.790263
\(185\) 0 0
\(186\) −3.21726 −0.235901
\(187\) −23.3843 −1.71003
\(188\) −4.23166 −0.308626
\(189\) −2.56369 −0.186481
\(190\) 0 0
\(191\) 3.40566 0.246425 0.123212 0.992380i \(-0.460680\pi\)
0.123212 + 0.992380i \(0.460680\pi\)
\(192\) −12.2972 −0.887471
\(193\) −12.8482 −0.924832 −0.462416 0.886663i \(-0.653017\pi\)
−0.462416 + 0.886663i \(0.653017\pi\)
\(194\) −1.79601 −0.128946
\(195\) 0 0
\(196\) 12.1769 0.869780
\(197\) 6.29884 0.448774 0.224387 0.974500i \(-0.427962\pi\)
0.224387 + 0.974500i \(0.427962\pi\)
\(198\) −9.74863 −0.692805
\(199\) 5.91708 0.419451 0.209725 0.977760i \(-0.432743\pi\)
0.209725 + 0.977760i \(0.432743\pi\)
\(200\) 0 0
\(201\) 37.4987 2.64495
\(202\) −4.17408 −0.293687
\(203\) −1.31896 −0.0925728
\(204\) 21.4634 1.50274
\(205\) 0 0
\(206\) 3.20639 0.223400
\(207\) 31.6827 2.20210
\(208\) 0 0
\(209\) 19.8836 1.37538
\(210\) 0 0
\(211\) 10.4670 0.720578 0.360289 0.932841i \(-0.382678\pi\)
0.360289 + 0.932841i \(0.382678\pi\)
\(212\) 10.7738 0.739945
\(213\) 0.576520 0.0395025
\(214\) 1.87905 0.128449
\(215\) 0 0
\(216\) 6.18573 0.420886
\(217\) −1.87300 −0.127147
\(218\) −0.881193 −0.0596819
\(219\) 34.0099 2.29817
\(220\) 0 0
\(221\) 0 0
\(222\) 0.884166 0.0593413
\(223\) −11.0759 −0.741696 −0.370848 0.928693i \(-0.620933\pi\)
−0.370848 + 0.928693i \(0.620933\pi\)
\(224\) 2.67952 0.179033
\(225\) 0 0
\(226\) 2.63255 0.175115
\(227\) 23.2890 1.54574 0.772872 0.634562i \(-0.218819\pi\)
0.772872 + 0.634562i \(0.218819\pi\)
\(228\) −18.2502 −1.20865
\(229\) 7.19056 0.475166 0.237583 0.971367i \(-0.423645\pi\)
0.237583 + 0.971367i \(0.423645\pi\)
\(230\) 0 0
\(231\) −9.46869 −0.622994
\(232\) 3.18242 0.208936
\(233\) 3.46735 0.227154 0.113577 0.993529i \(-0.463769\pi\)
0.113577 + 0.993529i \(0.463769\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −9.57716 −0.623420
\(237\) −19.6778 −1.27821
\(238\) −1.05773 −0.0685624
\(239\) −18.4358 −1.19251 −0.596255 0.802795i \(-0.703345\pi\)
−0.596255 + 0.802795i \(0.703345\pi\)
\(240\) 0 0
\(241\) −8.22700 −0.529948 −0.264974 0.964256i \(-0.585363\pi\)
−0.264974 + 0.964256i \(0.585363\pi\)
\(242\) −7.59427 −0.488178
\(243\) −18.5658 −1.19099
\(244\) −10.9235 −0.699307
\(245\) 0 0
\(246\) 5.29096 0.337339
\(247\) 0 0
\(248\) 4.51922 0.286971
\(249\) 18.1129 1.14786
\(250\) 0 0
\(251\) −29.0068 −1.83089 −0.915446 0.402442i \(-0.868162\pi\)
−0.915446 + 0.402442i \(0.868162\pi\)
\(252\) 5.20917 0.328147
\(253\) 38.8049 2.43965
\(254\) −4.19139 −0.262991
\(255\) 0 0
\(256\) 4.92220 0.307638
\(257\) 11.3098 0.705488 0.352744 0.935720i \(-0.385249\pi\)
0.352744 + 0.935720i \(0.385249\pi\)
\(258\) 10.7185 0.667303
\(259\) 0.514736 0.0319841
\(260\) 0 0
\(261\) 9.40587 0.582209
\(262\) −0.351009 −0.0216854
\(263\) −14.9504 −0.921882 −0.460941 0.887431i \(-0.652488\pi\)
−0.460941 + 0.887431i \(0.652488\pi\)
\(264\) 22.8463 1.40609
\(265\) 0 0
\(266\) 0.899384 0.0551448
\(267\) 10.0186 0.613127
\(268\) −25.2674 −1.54345
\(269\) −19.1369 −1.16680 −0.583398 0.812187i \(-0.698277\pi\)
−0.583398 + 0.812187i \(0.698277\pi\)
\(270\) 0 0
\(271\) 7.95487 0.483224 0.241612 0.970373i \(-0.422324\pi\)
0.241612 + 0.970373i \(0.422324\pi\)
\(272\) −13.1346 −0.796401
\(273\) 0 0
\(274\) 1.05191 0.0635484
\(275\) 0 0
\(276\) −35.6173 −2.14391
\(277\) 32.0550 1.92600 0.963000 0.269502i \(-0.0868590\pi\)
0.963000 + 0.269502i \(0.0868590\pi\)
\(278\) −5.49532 −0.329587
\(279\) 13.3569 0.799655
\(280\) 0 0
\(281\) 15.1240 0.902221 0.451110 0.892468i \(-0.351028\pi\)
0.451110 + 0.892468i \(0.351028\pi\)
\(282\) −2.48113 −0.147749
\(283\) −12.0333 −0.715306 −0.357653 0.933855i \(-0.616423\pi\)
−0.357653 + 0.933855i \(0.616423\pi\)
\(284\) −0.388471 −0.0230515
\(285\) 0 0
\(286\) 0 0
\(287\) 3.08024 0.181821
\(288\) −19.1084 −1.12597
\(289\) 1.09348 0.0643224
\(290\) 0 0
\(291\) 12.4401 0.729249
\(292\) −22.9165 −1.34109
\(293\) −23.1522 −1.35257 −0.676283 0.736642i \(-0.736410\pi\)
−0.676283 + 0.736642i \(0.736410\pi\)
\(294\) 7.13964 0.416392
\(295\) 0 0
\(296\) −1.24197 −0.0721880
\(297\) 22.3922 1.29933
\(298\) −4.50997 −0.261256
\(299\) 0 0
\(300\) 0 0
\(301\) 6.23999 0.359667
\(302\) −5.20283 −0.299389
\(303\) 28.9117 1.66094
\(304\) 11.1683 0.640546
\(305\) 0 0
\(306\) 7.54296 0.431202
\(307\) −24.6921 −1.40925 −0.704627 0.709578i \(-0.748886\pi\)
−0.704627 + 0.709578i \(0.748886\pi\)
\(308\) 6.38019 0.363545
\(309\) −22.2090 −1.26343
\(310\) 0 0
\(311\) −18.8313 −1.06782 −0.533912 0.845540i \(-0.679279\pi\)
−0.533912 + 0.845540i \(0.679279\pi\)
\(312\) 0 0
\(313\) −6.10639 −0.345154 −0.172577 0.984996i \(-0.555209\pi\)
−0.172577 + 0.984996i \(0.555209\pi\)
\(314\) −2.86422 −0.161637
\(315\) 0 0
\(316\) 13.2593 0.745893
\(317\) 8.97504 0.504088 0.252044 0.967716i \(-0.418897\pi\)
0.252044 + 0.967716i \(0.418897\pi\)
\(318\) 6.31693 0.354236
\(319\) 11.5203 0.645014
\(320\) 0 0
\(321\) −13.0152 −0.726437
\(322\) 1.75524 0.0978159
\(323\) −15.3848 −0.856035
\(324\) 4.27620 0.237567
\(325\) 0 0
\(326\) 5.66031 0.313495
\(327\) 6.10358 0.337529
\(328\) −7.43210 −0.410369
\(329\) −1.44445 −0.0796348
\(330\) 0 0
\(331\) 7.89045 0.433698 0.216849 0.976205i \(-0.430422\pi\)
0.216849 + 0.976205i \(0.430422\pi\)
\(332\) −12.2048 −0.669826
\(333\) −3.67073 −0.201155
\(334\) 7.17877 0.392805
\(335\) 0 0
\(336\) −5.31841 −0.290143
\(337\) 0.643374 0.0350468 0.0175234 0.999846i \(-0.494422\pi\)
0.0175234 + 0.999846i \(0.494422\pi\)
\(338\) 0 0
\(339\) −18.2344 −0.990354
\(340\) 0 0
\(341\) 16.3595 0.885917
\(342\) −6.41376 −0.346816
\(343\) 8.56233 0.462323
\(344\) −15.0560 −0.811767
\(345\) 0 0
\(346\) −5.29309 −0.284558
\(347\) −14.2788 −0.766527 −0.383264 0.923639i \(-0.625200\pi\)
−0.383264 + 0.923639i \(0.625200\pi\)
\(348\) −10.5740 −0.566824
\(349\) −22.5207 −1.20551 −0.602753 0.797927i \(-0.705930\pi\)
−0.602753 + 0.797927i \(0.705930\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −23.4040 −1.24744
\(353\) 1.49751 0.0797047 0.0398523 0.999206i \(-0.487311\pi\)
0.0398523 + 0.999206i \(0.487311\pi\)
\(354\) −5.61533 −0.298452
\(355\) 0 0
\(356\) −6.75073 −0.357788
\(357\) 7.32635 0.387752
\(358\) 1.92577 0.101780
\(359\) 31.3295 1.65351 0.826753 0.562566i \(-0.190186\pi\)
0.826753 + 0.562566i \(0.190186\pi\)
\(360\) 0 0
\(361\) −5.91831 −0.311490
\(362\) −8.54202 −0.448959
\(363\) 52.6017 2.76087
\(364\) 0 0
\(365\) 0 0
\(366\) −6.40474 −0.334781
\(367\) −8.02558 −0.418932 −0.209466 0.977816i \(-0.567173\pi\)
−0.209466 + 0.977816i \(0.567173\pi\)
\(368\) 21.7961 1.13620
\(369\) −21.9661 −1.14351
\(370\) 0 0
\(371\) 3.67754 0.190928
\(372\) −15.0156 −0.778525
\(373\) 26.3733 1.36556 0.682778 0.730626i \(-0.260772\pi\)
0.682778 + 0.730626i \(0.260772\pi\)
\(374\) 9.23862 0.477718
\(375\) 0 0
\(376\) 3.48520 0.179735
\(377\) 0 0
\(378\) 1.01286 0.0520957
\(379\) −28.5043 −1.46417 −0.732085 0.681214i \(-0.761453\pi\)
−0.732085 + 0.681214i \(0.761453\pi\)
\(380\) 0 0
\(381\) 29.0316 1.48734
\(382\) −1.34550 −0.0688418
\(383\) −14.8547 −0.759038 −0.379519 0.925184i \(-0.623911\pi\)
−0.379519 + 0.925184i \(0.623911\pi\)
\(384\) 28.1582 1.43694
\(385\) 0 0
\(386\) 5.07603 0.258363
\(387\) −44.4991 −2.26202
\(388\) −8.38236 −0.425550
\(389\) −21.1231 −1.07098 −0.535491 0.844541i \(-0.679873\pi\)
−0.535491 + 0.844541i \(0.679873\pi\)
\(390\) 0 0
\(391\) −30.0251 −1.51844
\(392\) −10.0289 −0.506536
\(393\) 2.43126 0.122641
\(394\) −2.48854 −0.125371
\(395\) 0 0
\(396\) −45.4989 −2.28641
\(397\) −23.0726 −1.15798 −0.578991 0.815334i \(-0.696553\pi\)
−0.578991 + 0.815334i \(0.696553\pi\)
\(398\) −2.33771 −0.117179
\(399\) −6.22958 −0.311869
\(400\) 0 0
\(401\) −15.4998 −0.774021 −0.387011 0.922075i \(-0.626492\pi\)
−0.387011 + 0.922075i \(0.626492\pi\)
\(402\) −14.8149 −0.738900
\(403\) 0 0
\(404\) −19.4813 −0.969232
\(405\) 0 0
\(406\) 0.521092 0.0258614
\(407\) −4.49591 −0.222854
\(408\) −17.6772 −0.875153
\(409\) 35.7519 1.76782 0.883908 0.467661i \(-0.154903\pi\)
0.883908 + 0.467661i \(0.154903\pi\)
\(410\) 0 0
\(411\) −7.28607 −0.359395
\(412\) 14.9649 0.737268
\(413\) −3.26909 −0.160861
\(414\) −12.5171 −0.615183
\(415\) 0 0
\(416\) 0 0
\(417\) 38.0633 1.86397
\(418\) −7.85558 −0.384229
\(419\) 28.9110 1.41239 0.706196 0.708016i \(-0.250410\pi\)
0.706196 + 0.708016i \(0.250410\pi\)
\(420\) 0 0
\(421\) −20.1416 −0.981640 −0.490820 0.871261i \(-0.663303\pi\)
−0.490820 + 0.871261i \(0.663303\pi\)
\(422\) −4.13528 −0.201302
\(423\) 10.3007 0.500839
\(424\) −8.87327 −0.430924
\(425\) 0 0
\(426\) −0.227770 −0.0110355
\(427\) −3.72866 −0.180442
\(428\) 8.76990 0.423909
\(429\) 0 0
\(430\) 0 0
\(431\) 28.3861 1.36731 0.683656 0.729805i \(-0.260389\pi\)
0.683656 + 0.729805i \(0.260389\pi\)
\(432\) 12.5774 0.605129
\(433\) −4.76509 −0.228996 −0.114498 0.993423i \(-0.536526\pi\)
−0.114498 + 0.993423i \(0.536526\pi\)
\(434\) 0.739981 0.0355202
\(435\) 0 0
\(436\) −4.11271 −0.196963
\(437\) 25.5303 1.22128
\(438\) −13.4365 −0.642023
\(439\) 16.0627 0.766630 0.383315 0.923618i \(-0.374782\pi\)
0.383315 + 0.923618i \(0.374782\pi\)
\(440\) 0 0
\(441\) −29.6411 −1.41148
\(442\) 0 0
\(443\) −5.76501 −0.273904 −0.136952 0.990578i \(-0.543731\pi\)
−0.136952 + 0.990578i \(0.543731\pi\)
\(444\) 4.12659 0.195839
\(445\) 0 0
\(446\) 4.37584 0.207202
\(447\) 31.2383 1.47752
\(448\) 2.82839 0.133629
\(449\) −16.4687 −0.777208 −0.388604 0.921405i \(-0.627043\pi\)
−0.388604 + 0.921405i \(0.627043\pi\)
\(450\) 0 0
\(451\) −26.9041 −1.26686
\(452\) 12.2867 0.577917
\(453\) 36.0373 1.69318
\(454\) −9.20097 −0.431823
\(455\) 0 0
\(456\) 15.0309 0.703886
\(457\) 22.3227 1.04421 0.522106 0.852880i \(-0.325146\pi\)
0.522106 + 0.852880i \(0.325146\pi\)
\(458\) −2.84083 −0.132743
\(459\) −17.3259 −0.808703
\(460\) 0 0
\(461\) −11.6864 −0.544289 −0.272145 0.962256i \(-0.587733\pi\)
−0.272145 + 0.962256i \(0.587733\pi\)
\(462\) 3.74087 0.174041
\(463\) −13.7716 −0.640020 −0.320010 0.947414i \(-0.603686\pi\)
−0.320010 + 0.947414i \(0.603686\pi\)
\(464\) 6.47078 0.300398
\(465\) 0 0
\(466\) −1.36987 −0.0634582
\(467\) −9.80830 −0.453874 −0.226937 0.973909i \(-0.572871\pi\)
−0.226937 + 0.973909i \(0.572871\pi\)
\(468\) 0 0
\(469\) −8.62482 −0.398257
\(470\) 0 0
\(471\) 19.8390 0.914133
\(472\) 7.88774 0.363063
\(473\) −54.5026 −2.50603
\(474\) 7.77425 0.357083
\(475\) 0 0
\(476\) −4.93664 −0.226271
\(477\) −26.2255 −1.20079
\(478\) 7.28357 0.333143
\(479\) 4.30152 0.196541 0.0982707 0.995160i \(-0.468669\pi\)
0.0982707 + 0.995160i \(0.468669\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 3.25031 0.148048
\(483\) −12.1577 −0.553193
\(484\) −35.4441 −1.61109
\(485\) 0 0
\(486\) 7.33493 0.332719
\(487\) −32.0389 −1.45182 −0.725910 0.687790i \(-0.758581\pi\)
−0.725910 + 0.687790i \(0.758581\pi\)
\(488\) 8.99661 0.407257
\(489\) −39.2061 −1.77296
\(490\) 0 0
\(491\) 16.3710 0.738812 0.369406 0.929268i \(-0.379561\pi\)
0.369406 + 0.929268i \(0.379561\pi\)
\(492\) 24.6940 1.11329
\(493\) −8.91379 −0.401457
\(494\) 0 0
\(495\) 0 0
\(496\) 9.18887 0.412593
\(497\) −0.132601 −0.00594799
\(498\) −7.15599 −0.320668
\(499\) 13.4370 0.601523 0.300761 0.953699i \(-0.402759\pi\)
0.300761 + 0.953699i \(0.402759\pi\)
\(500\) 0 0
\(501\) −49.7237 −2.22149
\(502\) 11.4599 0.511482
\(503\) −12.8188 −0.571561 −0.285781 0.958295i \(-0.592253\pi\)
−0.285781 + 0.958295i \(0.592253\pi\)
\(504\) −4.29027 −0.191104
\(505\) 0 0
\(506\) −15.3310 −0.681545
\(507\) 0 0
\(508\) −19.5621 −0.867928
\(509\) 4.55682 0.201978 0.100989 0.994888i \(-0.467799\pi\)
0.100989 + 0.994888i \(0.467799\pi\)
\(510\) 0 0
\(511\) −7.82238 −0.346042
\(512\) −22.5243 −0.995445
\(513\) 14.7322 0.650441
\(514\) −4.46827 −0.197087
\(515\) 0 0
\(516\) 50.0254 2.20225
\(517\) 12.6164 0.554867
\(518\) −0.203361 −0.00893517
\(519\) 36.6626 1.60931
\(520\) 0 0
\(521\) −24.5910 −1.07735 −0.538675 0.842513i \(-0.681075\pi\)
−0.538675 + 0.842513i \(0.681075\pi\)
\(522\) −3.71605 −0.162647
\(523\) −0.369116 −0.0161403 −0.00807015 0.999967i \(-0.502569\pi\)
−0.00807015 + 0.999967i \(0.502569\pi\)
\(524\) −1.63823 −0.0715665
\(525\) 0 0
\(526\) 5.90658 0.257539
\(527\) −12.6581 −0.551395
\(528\) 46.4531 2.02161
\(529\) 26.8251 1.16631
\(530\) 0 0
\(531\) 23.3128 1.01169
\(532\) 4.19762 0.181990
\(533\) 0 0
\(534\) −3.95812 −0.171285
\(535\) 0 0
\(536\) 20.8102 0.898864
\(537\) −13.3388 −0.575612
\(538\) 7.56056 0.325959
\(539\) −36.3045 −1.56374
\(540\) 0 0
\(541\) −34.1173 −1.46682 −0.733408 0.679789i \(-0.762071\pi\)
−0.733408 + 0.679789i \(0.762071\pi\)
\(542\) −3.14280 −0.134995
\(543\) 59.1662 2.53907
\(544\) 18.1087 0.776406
\(545\) 0 0
\(546\) 0 0
\(547\) −13.8903 −0.593908 −0.296954 0.954892i \(-0.595971\pi\)
−0.296954 + 0.954892i \(0.595971\pi\)
\(548\) 4.90950 0.209724
\(549\) 26.5901 1.13484
\(550\) 0 0
\(551\) 7.57937 0.322892
\(552\) 29.3344 1.24855
\(553\) 4.52595 0.192463
\(554\) −12.6642 −0.538052
\(555\) 0 0
\(556\) −25.6478 −1.08771
\(557\) −30.5369 −1.29389 −0.646945 0.762537i \(-0.723954\pi\)
−0.646945 + 0.762537i \(0.723954\pi\)
\(558\) −5.27701 −0.223394
\(559\) 0 0
\(560\) 0 0
\(561\) −63.9912 −2.70171
\(562\) −5.97515 −0.252047
\(563\) −35.3205 −1.48858 −0.744292 0.667855i \(-0.767213\pi\)
−0.744292 + 0.667855i \(0.767213\pi\)
\(564\) −11.5800 −0.487605
\(565\) 0 0
\(566\) 4.75410 0.199830
\(567\) 1.45965 0.0612994
\(568\) 0.319944 0.0134246
\(569\) 34.7921 1.45856 0.729280 0.684215i \(-0.239855\pi\)
0.729280 + 0.684215i \(0.239855\pi\)
\(570\) 0 0
\(571\) 0.332839 0.0139289 0.00696445 0.999976i \(-0.497783\pi\)
0.00696445 + 0.999976i \(0.497783\pi\)
\(572\) 0 0
\(573\) 9.31960 0.389332
\(574\) −1.21694 −0.0507940
\(575\) 0 0
\(576\) −20.1700 −0.840417
\(577\) −24.1460 −1.00521 −0.502605 0.864516i \(-0.667625\pi\)
−0.502605 + 0.864516i \(0.667625\pi\)
\(578\) −0.432010 −0.0179693
\(579\) −35.1591 −1.46116
\(580\) 0 0
\(581\) −4.16601 −0.172835
\(582\) −4.91479 −0.203725
\(583\) −32.1211 −1.33032
\(584\) 18.8740 0.781013
\(585\) 0 0
\(586\) 9.14693 0.377856
\(587\) 12.9251 0.533476 0.266738 0.963769i \(-0.414054\pi\)
0.266738 + 0.963769i \(0.414054\pi\)
\(588\) 33.3222 1.37419
\(589\) 10.7631 0.443488
\(590\) 0 0
\(591\) 17.2368 0.709028
\(592\) −2.52528 −0.103788
\(593\) 23.5928 0.968840 0.484420 0.874836i \(-0.339031\pi\)
0.484420 + 0.874836i \(0.339031\pi\)
\(594\) −8.84668 −0.362984
\(595\) 0 0
\(596\) −21.0490 −0.862201
\(597\) 16.1921 0.662699
\(598\) 0 0
\(599\) 46.4577 1.89821 0.949105 0.314961i \(-0.101991\pi\)
0.949105 + 0.314961i \(0.101991\pi\)
\(600\) 0 0
\(601\) −37.0915 −1.51300 −0.756498 0.653996i \(-0.773091\pi\)
−0.756498 + 0.653996i \(0.773091\pi\)
\(602\) −2.46528 −0.100478
\(603\) 61.5060 2.50472
\(604\) −24.2827 −0.988049
\(605\) 0 0
\(606\) −11.4224 −0.464003
\(607\) −20.2943 −0.823722 −0.411861 0.911247i \(-0.635121\pi\)
−0.411861 + 0.911247i \(0.635121\pi\)
\(608\) −15.3978 −0.624464
\(609\) −3.60934 −0.146258
\(610\) 0 0
\(611\) 0 0
\(612\) 35.2046 1.42306
\(613\) 41.3558 1.67035 0.835173 0.549987i \(-0.185367\pi\)
0.835173 + 0.549987i \(0.185367\pi\)
\(614\) 9.75532 0.393693
\(615\) 0 0
\(616\) −5.25472 −0.211719
\(617\) −38.5909 −1.55361 −0.776806 0.629739i \(-0.783162\pi\)
−0.776806 + 0.629739i \(0.783162\pi\)
\(618\) 8.77430 0.352954
\(619\) −13.0016 −0.522579 −0.261289 0.965261i \(-0.584148\pi\)
−0.261289 + 0.965261i \(0.584148\pi\)
\(620\) 0 0
\(621\) 28.7514 1.15375
\(622\) 7.43983 0.298310
\(623\) −2.30431 −0.0923201
\(624\) 0 0
\(625\) 0 0
\(626\) 2.41250 0.0964229
\(627\) 54.4116 2.17299
\(628\) −13.3679 −0.533438
\(629\) 3.47869 0.138704
\(630\) 0 0
\(631\) 21.2897 0.847531 0.423765 0.905772i \(-0.360708\pi\)
0.423765 + 0.905772i \(0.360708\pi\)
\(632\) −10.9203 −0.434388
\(633\) 28.6430 1.13846
\(634\) −3.54584 −0.140823
\(635\) 0 0
\(636\) 29.4825 1.16906
\(637\) 0 0
\(638\) −4.55142 −0.180193
\(639\) 0.945617 0.0374080
\(640\) 0 0
\(641\) −24.9061 −0.983732 −0.491866 0.870671i \(-0.663685\pi\)
−0.491866 + 0.870671i \(0.663685\pi\)
\(642\) 5.14202 0.202939
\(643\) −32.6396 −1.28718 −0.643590 0.765370i \(-0.722556\pi\)
−0.643590 + 0.765370i \(0.722556\pi\)
\(644\) 8.19209 0.322814
\(645\) 0 0
\(646\) 6.07821 0.239144
\(647\) 20.8586 0.820037 0.410019 0.912077i \(-0.365522\pi\)
0.410019 + 0.912077i \(0.365522\pi\)
\(648\) −3.52188 −0.138352
\(649\) 28.5535 1.12082
\(650\) 0 0
\(651\) −5.12547 −0.200883
\(652\) 26.4179 1.03460
\(653\) 30.6745 1.20038 0.600192 0.799856i \(-0.295091\pi\)
0.600192 + 0.799856i \(0.295091\pi\)
\(654\) −2.41139 −0.0942928
\(655\) 0 0
\(656\) −15.1116 −0.590008
\(657\) 55.7835 2.17632
\(658\) 0.570669 0.0222470
\(659\) −13.5866 −0.529259 −0.264630 0.964350i \(-0.585250\pi\)
−0.264630 + 0.964350i \(0.585250\pi\)
\(660\) 0 0
\(661\) 49.3974 1.92134 0.960668 0.277701i \(-0.0895724\pi\)
0.960668 + 0.277701i \(0.0895724\pi\)
\(662\) −3.11734 −0.121159
\(663\) 0 0
\(664\) 10.0519 0.390088
\(665\) 0 0
\(666\) 1.45022 0.0561950
\(667\) 14.7919 0.572746
\(668\) 33.5048 1.29634
\(669\) −30.3092 −1.17182
\(670\) 0 0
\(671\) 32.5676 1.25726
\(672\) 7.33253 0.282859
\(673\) −34.5275 −1.33094 −0.665469 0.746426i \(-0.731768\pi\)
−0.665469 + 0.746426i \(0.731768\pi\)
\(674\) −0.254183 −0.00979077
\(675\) 0 0
\(676\) 0 0
\(677\) −37.0871 −1.42537 −0.712686 0.701483i \(-0.752522\pi\)
−0.712686 + 0.701483i \(0.752522\pi\)
\(678\) 7.20400 0.276668
\(679\) −2.86125 −0.109805
\(680\) 0 0
\(681\) 63.7304 2.44216
\(682\) −6.46328 −0.247492
\(683\) 23.2145 0.888278 0.444139 0.895958i \(-0.353510\pi\)
0.444139 + 0.895958i \(0.353510\pi\)
\(684\) −29.9344 −1.14457
\(685\) 0 0
\(686\) −3.38279 −0.129156
\(687\) 19.6770 0.750725
\(688\) −30.6132 −1.16712
\(689\) 0 0
\(690\) 0 0
\(691\) −45.0405 −1.71342 −0.856710 0.515798i \(-0.827496\pi\)
−0.856710 + 0.515798i \(0.827496\pi\)
\(692\) −24.7040 −0.939104
\(693\) −15.5307 −0.589962
\(694\) 5.64125 0.214139
\(695\) 0 0
\(696\) 8.70872 0.330103
\(697\) 20.8169 0.788496
\(698\) 8.89745 0.336773
\(699\) 9.48842 0.358885
\(700\) 0 0
\(701\) 6.01190 0.227066 0.113533 0.993534i \(-0.463783\pi\)
0.113533 + 0.993534i \(0.463783\pi\)
\(702\) 0 0
\(703\) −2.95792 −0.111560
\(704\) −24.7042 −0.931076
\(705\) 0 0
\(706\) −0.591635 −0.0222665
\(707\) −6.64979 −0.250091
\(708\) −26.2080 −0.984955
\(709\) 1.93887 0.0728159 0.0364080 0.999337i \(-0.488408\pi\)
0.0364080 + 0.999337i \(0.488408\pi\)
\(710\) 0 0
\(711\) −32.2758 −1.21044
\(712\) 5.55989 0.208366
\(713\) 21.0054 0.786659
\(714\) −2.89448 −0.108323
\(715\) 0 0
\(716\) 8.98797 0.335896
\(717\) −50.4496 −1.88407
\(718\) −12.3776 −0.461927
\(719\) −32.3056 −1.20479 −0.602397 0.798197i \(-0.705788\pi\)
−0.602397 + 0.798197i \(0.705788\pi\)
\(720\) 0 0
\(721\) 5.10815 0.190237
\(722\) 2.33819 0.0870186
\(723\) −22.5132 −0.837276
\(724\) −39.8674 −1.48166
\(725\) 0 0
\(726\) −20.7818 −0.771284
\(727\) −13.3705 −0.495883 −0.247941 0.968775i \(-0.579754\pi\)
−0.247941 + 0.968775i \(0.579754\pi\)
\(728\) 0 0
\(729\) −43.8480 −1.62400
\(730\) 0 0
\(731\) 42.1711 1.55975
\(732\) −29.8923 −1.10485
\(733\) −29.5619 −1.09189 −0.545946 0.837820i \(-0.683830\pi\)
−0.545946 + 0.837820i \(0.683830\pi\)
\(734\) 3.17073 0.117034
\(735\) 0 0
\(736\) −30.0505 −1.10767
\(737\) 75.3326 2.77491
\(738\) 8.67832 0.319453
\(739\) 8.79626 0.323576 0.161788 0.986826i \(-0.448274\pi\)
0.161788 + 0.986826i \(0.448274\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.45291 −0.0533382
\(743\) 19.0280 0.698069 0.349035 0.937110i \(-0.386510\pi\)
0.349035 + 0.937110i \(0.386510\pi\)
\(744\) 12.3669 0.453392
\(745\) 0 0
\(746\) −10.4195 −0.381485
\(747\) 29.7090 1.08700
\(748\) 43.1186 1.57657
\(749\) 2.99354 0.109381
\(750\) 0 0
\(751\) 12.7174 0.464066 0.232033 0.972708i \(-0.425462\pi\)
0.232033 + 0.972708i \(0.425462\pi\)
\(752\) 7.08640 0.258415
\(753\) −79.3772 −2.89267
\(754\) 0 0
\(755\) 0 0
\(756\) 4.72721 0.171927
\(757\) −2.74724 −0.0998501 −0.0499251 0.998753i \(-0.515898\pi\)
−0.0499251 + 0.998753i \(0.515898\pi\)
\(758\) 11.2614 0.409034
\(759\) 106.190 3.85445
\(760\) 0 0
\(761\) 29.8209 1.08101 0.540503 0.841342i \(-0.318234\pi\)
0.540503 + 0.841342i \(0.318234\pi\)
\(762\) −11.4698 −0.415506
\(763\) −1.40384 −0.0508225
\(764\) −6.27973 −0.227193
\(765\) 0 0
\(766\) 5.86876 0.212047
\(767\) 0 0
\(768\) 13.4696 0.486043
\(769\) −6.64765 −0.239720 −0.119860 0.992791i \(-0.538245\pi\)
−0.119860 + 0.992791i \(0.538245\pi\)
\(770\) 0 0
\(771\) 30.9494 1.11462
\(772\) 23.6909 0.852655
\(773\) −29.8954 −1.07526 −0.537631 0.843180i \(-0.680681\pi\)
−0.537631 + 0.843180i \(0.680681\pi\)
\(774\) 17.5806 0.631923
\(775\) 0 0
\(776\) 6.90371 0.247829
\(777\) 1.40858 0.0505325
\(778\) 8.34526 0.299192
\(779\) −17.7006 −0.634188
\(780\) 0 0
\(781\) 1.15819 0.0414434
\(782\) 11.8623 0.424194
\(783\) 8.53563 0.305039
\(784\) −20.3916 −0.728273
\(785\) 0 0
\(786\) −0.960538 −0.0342613
\(787\) 42.7877 1.52522 0.762608 0.646861i \(-0.223919\pi\)
0.762608 + 0.646861i \(0.223919\pi\)
\(788\) −11.6145 −0.413750
\(789\) −40.9119 −1.45650
\(790\) 0 0
\(791\) 4.19396 0.149120
\(792\) 37.4729 1.33154
\(793\) 0 0
\(794\) 9.11549 0.323497
\(795\) 0 0
\(796\) −10.9106 −0.386715
\(797\) 30.7061 1.08766 0.543832 0.839194i \(-0.316973\pi\)
0.543832 + 0.839194i \(0.316973\pi\)
\(798\) 2.46117 0.0871245
\(799\) −9.76184 −0.345349
\(800\) 0 0
\(801\) 16.4327 0.580619
\(802\) 6.12362 0.216233
\(803\) 68.3237 2.41109
\(804\) −69.1443 −2.43853
\(805\) 0 0
\(806\) 0 0
\(807\) −52.3681 −1.84345
\(808\) 16.0448 0.564454
\(809\) −26.6310 −0.936296 −0.468148 0.883650i \(-0.655079\pi\)
−0.468148 + 0.883650i \(0.655079\pi\)
\(810\) 0 0
\(811\) −24.8696 −0.873290 −0.436645 0.899634i \(-0.643833\pi\)
−0.436645 + 0.899634i \(0.643833\pi\)
\(812\) 2.43205 0.0853481
\(813\) 21.7686 0.763457
\(814\) 1.77624 0.0622570
\(815\) 0 0
\(816\) −35.9429 −1.25825
\(817\) −35.8580 −1.25451
\(818\) −14.1248 −0.493861
\(819\) 0 0
\(820\) 0 0
\(821\) 44.0239 1.53644 0.768222 0.640184i \(-0.221142\pi\)
0.768222 + 0.640184i \(0.221142\pi\)
\(822\) 2.87857 0.100402
\(823\) −27.4490 −0.956812 −0.478406 0.878139i \(-0.658785\pi\)
−0.478406 + 0.878139i \(0.658785\pi\)
\(824\) −12.3251 −0.429365
\(825\) 0 0
\(826\) 1.29154 0.0449386
\(827\) −15.8828 −0.552299 −0.276150 0.961115i \(-0.589059\pi\)
−0.276150 + 0.961115i \(0.589059\pi\)
\(828\) −58.4201 −2.03024
\(829\) 23.2845 0.808704 0.404352 0.914603i \(-0.367497\pi\)
0.404352 + 0.914603i \(0.367497\pi\)
\(830\) 0 0
\(831\) 87.7188 3.04293
\(832\) 0 0
\(833\) 28.0904 0.973275
\(834\) −15.0380 −0.520722
\(835\) 0 0
\(836\) −36.6636 −1.26804
\(837\) 12.1211 0.418966
\(838\) −11.4221 −0.394569
\(839\) 20.4521 0.706084 0.353042 0.935607i \(-0.385147\pi\)
0.353042 + 0.935607i \(0.385147\pi\)
\(840\) 0 0
\(841\) −24.6086 −0.848573
\(842\) 7.95749 0.274233
\(843\) 41.3868 1.42544
\(844\) −19.3002 −0.664342
\(845\) 0 0
\(846\) −4.06960 −0.139916
\(847\) −12.0986 −0.415711
\(848\) −18.0419 −0.619561
\(849\) −32.9292 −1.13013
\(850\) 0 0
\(851\) −5.77269 −0.197885
\(852\) −1.06305 −0.0364196
\(853\) 38.9677 1.33423 0.667114 0.744956i \(-0.267530\pi\)
0.667114 + 0.744956i \(0.267530\pi\)
\(854\) 1.47311 0.0504088
\(855\) 0 0
\(856\) −7.22289 −0.246873
\(857\) −20.6596 −0.705719 −0.352860 0.935676i \(-0.614791\pi\)
−0.352860 + 0.935676i \(0.614791\pi\)
\(858\) 0 0
\(859\) −7.07452 −0.241380 −0.120690 0.992690i \(-0.538511\pi\)
−0.120690 + 0.992690i \(0.538511\pi\)
\(860\) 0 0
\(861\) 8.42911 0.287263
\(862\) −11.2147 −0.381975
\(863\) 28.3108 0.963710 0.481855 0.876251i \(-0.339963\pi\)
0.481855 + 0.876251i \(0.339963\pi\)
\(864\) −17.3405 −0.589936
\(865\) 0 0
\(866\) 1.88258 0.0639728
\(867\) 2.99232 0.101624
\(868\) 3.45365 0.117224
\(869\) −39.5314 −1.34101
\(870\) 0 0
\(871\) 0 0
\(872\) 3.38723 0.114706
\(873\) 20.4044 0.690584
\(874\) −10.0865 −0.341180
\(875\) 0 0
\(876\) −62.7112 −2.11882
\(877\) 47.3468 1.59879 0.799395 0.600806i \(-0.205154\pi\)
0.799395 + 0.600806i \(0.205154\pi\)
\(878\) −6.34601 −0.214168
\(879\) −63.3562 −2.13695
\(880\) 0 0
\(881\) 34.9584 1.17778 0.588890 0.808213i \(-0.299565\pi\)
0.588890 + 0.808213i \(0.299565\pi\)
\(882\) 11.7106 0.394315
\(883\) 18.1140 0.609583 0.304792 0.952419i \(-0.401413\pi\)
0.304792 + 0.952419i \(0.401413\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.27763 0.0765184
\(887\) 6.12777 0.205751 0.102875 0.994694i \(-0.467196\pi\)
0.102875 + 0.994694i \(0.467196\pi\)
\(888\) −3.39866 −0.114051
\(889\) −6.67737 −0.223952
\(890\) 0 0
\(891\) −12.7491 −0.427112
\(892\) 20.4230 0.683812
\(893\) 8.30047 0.277765
\(894\) −12.3416 −0.412764
\(895\) 0 0
\(896\) −6.47648 −0.216364
\(897\) 0 0
\(898\) 6.50644 0.217123
\(899\) 6.23603 0.207983
\(900\) 0 0
\(901\) 24.8535 0.827991
\(902\) 10.6292 0.353914
\(903\) 17.0758 0.568246
\(904\) −10.1193 −0.336563
\(905\) 0 0
\(906\) −14.2376 −0.473011
\(907\) 11.3755 0.377717 0.188858 0.982004i \(-0.439521\pi\)
0.188858 + 0.982004i \(0.439521\pi\)
\(908\) −42.9429 −1.42511
\(909\) 47.4215 1.57287
\(910\) 0 0
\(911\) −1.21214 −0.0401600 −0.0200800 0.999798i \(-0.506392\pi\)
−0.0200800 + 0.999798i \(0.506392\pi\)
\(912\) 30.5621 1.01201
\(913\) 36.3876 1.20425
\(914\) −8.81922 −0.291714
\(915\) 0 0
\(916\) −13.2588 −0.438082
\(917\) −0.559198 −0.0184663
\(918\) 6.84508 0.225921
\(919\) −44.7911 −1.47752 −0.738761 0.673968i \(-0.764589\pi\)
−0.738761 + 0.673968i \(0.764589\pi\)
\(920\) 0 0
\(921\) −67.5701 −2.22651
\(922\) 4.61704 0.152054
\(923\) 0 0
\(924\) 17.4594 0.574373
\(925\) 0 0
\(926\) 5.44085 0.178798
\(927\) −36.4276 −1.19644
\(928\) −8.92131 −0.292856
\(929\) 1.59021 0.0521731 0.0260865 0.999660i \(-0.491695\pi\)
0.0260865 + 0.999660i \(0.491695\pi\)
\(930\) 0 0
\(931\) −23.8852 −0.782806
\(932\) −6.39349 −0.209426
\(933\) −51.5320 −1.68708
\(934\) 3.87505 0.126795
\(935\) 0 0
\(936\) 0 0
\(937\) 13.6224 0.445025 0.222513 0.974930i \(-0.428574\pi\)
0.222513 + 0.974930i \(0.428574\pi\)
\(938\) 3.40748 0.111258
\(939\) −16.7102 −0.545316
\(940\) 0 0
\(941\) 46.6484 1.52069 0.760346 0.649518i \(-0.225029\pi\)
0.760346 + 0.649518i \(0.225029\pi\)
\(942\) −7.83795 −0.255374
\(943\) −34.5445 −1.12492
\(944\) 16.0380 0.521994
\(945\) 0 0
\(946\) 21.5328 0.700091
\(947\) −0.787397 −0.0255870 −0.0127935 0.999918i \(-0.504072\pi\)
−0.0127935 + 0.999918i \(0.504072\pi\)
\(948\) 36.2841 1.17845
\(949\) 0 0
\(950\) 0 0
\(951\) 24.5602 0.796420
\(952\) 4.06582 0.131774
\(953\) 13.7138 0.444232 0.222116 0.975020i \(-0.428704\pi\)
0.222116 + 0.975020i \(0.428704\pi\)
\(954\) 10.3611 0.335454
\(955\) 0 0
\(956\) 33.9939 1.09944
\(957\) 31.5254 1.01907
\(958\) −1.69944 −0.0549063
\(959\) 1.67582 0.0541150
\(960\) 0 0
\(961\) −22.1445 −0.714338
\(962\) 0 0
\(963\) −21.3477 −0.687922
\(964\) 15.1699 0.488589
\(965\) 0 0
\(966\) 4.80323 0.154541
\(967\) −29.1127 −0.936202 −0.468101 0.883675i \(-0.655062\pi\)
−0.468101 + 0.883675i \(0.655062\pi\)
\(968\) 29.1917 0.938258
\(969\) −42.1007 −1.35247
\(970\) 0 0
\(971\) 3.89669 0.125051 0.0625253 0.998043i \(-0.480085\pi\)
0.0625253 + 0.998043i \(0.480085\pi\)
\(972\) 34.2337 1.09804
\(973\) −8.75468 −0.280662
\(974\) 12.6579 0.405584
\(975\) 0 0
\(976\) 18.2927 0.585535
\(977\) −42.5418 −1.36103 −0.680516 0.732733i \(-0.738244\pi\)
−0.680516 + 0.732733i \(0.738244\pi\)
\(978\) 15.4895 0.495299
\(979\) 20.1267 0.643253
\(980\) 0 0
\(981\) 10.0112 0.319633
\(982\) −6.46782 −0.206396
\(983\) −21.7356 −0.693257 −0.346629 0.938002i \(-0.612674\pi\)
−0.346629 + 0.938002i \(0.612674\pi\)
\(984\) −20.3380 −0.648351
\(985\) 0 0
\(986\) 3.52164 0.112152
\(987\) −3.95273 −0.125817
\(988\) 0 0
\(989\) −69.9806 −2.22525
\(990\) 0 0
\(991\) −46.0574 −1.46306 −0.731530 0.681809i \(-0.761194\pi\)
−0.731530 + 0.681809i \(0.761194\pi\)
\(992\) −12.6688 −0.402234
\(993\) 21.5923 0.685210
\(994\) 0.0523879 0.00166164
\(995\) 0 0
\(996\) −33.3985 −1.05827
\(997\) −40.8120 −1.29253 −0.646265 0.763113i \(-0.723670\pi\)
−0.646265 + 0.763113i \(0.723670\pi\)
\(998\) −5.30867 −0.168043
\(999\) −3.33111 −0.105392
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.cb.1.8 18
5.2 odd 4 845.2.b.h.339.8 yes 18
5.3 odd 4 845.2.b.h.339.11 yes 18
5.4 even 2 inner 4225.2.a.cb.1.11 18
13.12 even 2 4225.2.a.ca.1.11 18
65.2 even 12 845.2.l.g.654.22 72
65.3 odd 12 845.2.n.h.529.8 36
65.7 even 12 845.2.l.g.699.15 72
65.8 even 4 845.2.d.e.844.16 36
65.12 odd 4 845.2.b.g.339.11 yes 18
65.17 odd 12 845.2.n.i.484.11 36
65.18 even 4 845.2.d.e.844.22 36
65.22 odd 12 845.2.n.h.484.8 36
65.23 odd 12 845.2.n.i.529.11 36
65.28 even 12 845.2.l.g.654.15 72
65.32 even 12 845.2.l.g.699.21 72
65.33 even 12 845.2.l.g.699.22 72
65.37 even 12 845.2.l.g.654.16 72
65.38 odd 4 845.2.b.g.339.8 18
65.42 odd 12 845.2.n.h.529.11 36
65.43 odd 12 845.2.n.i.484.8 36
65.47 even 4 845.2.d.e.844.21 36
65.48 odd 12 845.2.n.h.484.11 36
65.57 even 4 845.2.d.e.844.15 36
65.58 even 12 845.2.l.g.699.16 72
65.62 odd 12 845.2.n.i.529.8 36
65.63 even 12 845.2.l.g.654.21 72
65.64 even 2 4225.2.a.ca.1.8 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.8 18 65.38 odd 4
845.2.b.g.339.11 yes 18 65.12 odd 4
845.2.b.h.339.8 yes 18 5.2 odd 4
845.2.b.h.339.11 yes 18 5.3 odd 4
845.2.d.e.844.15 36 65.57 even 4
845.2.d.e.844.16 36 65.8 even 4
845.2.d.e.844.21 36 65.47 even 4
845.2.d.e.844.22 36 65.18 even 4
845.2.l.g.654.15 72 65.28 even 12
845.2.l.g.654.16 72 65.37 even 12
845.2.l.g.654.21 72 65.63 even 12
845.2.l.g.654.22 72 65.2 even 12
845.2.l.g.699.15 72 65.7 even 12
845.2.l.g.699.16 72 65.58 even 12
845.2.l.g.699.21 72 65.32 even 12
845.2.l.g.699.22 72 65.33 even 12
845.2.n.h.484.8 36 65.22 odd 12
845.2.n.h.484.11 36 65.48 odd 12
845.2.n.h.529.8 36 65.3 odd 12
845.2.n.h.529.11 36 65.42 odd 12
845.2.n.i.484.8 36 65.43 odd 12
845.2.n.i.484.11 36 65.17 odd 12
845.2.n.i.529.8 36 65.62 odd 12
845.2.n.i.529.11 36 65.23 odd 12
4225.2.a.ca.1.8 18 65.64 even 2
4225.2.a.ca.1.11 18 13.12 even 2
4225.2.a.cb.1.8 18 1.1 even 1 trivial
4225.2.a.cb.1.11 18 5.4 even 2 inner