Properties

Label 4225.2.a.ca.1.1
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $1$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4225,2,Mod(1,4225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,16,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26x^{16} + 281x^{14} - 1632x^{12} + 5482x^{10} - 10620x^{8} + 11052x^{6} - 5165x^{4} + 760x^{2} - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.51756\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51756 q^{2} +2.61964 q^{3} +4.33809 q^{4} -6.59510 q^{6} +1.23067 q^{7} -5.88628 q^{8} +3.86253 q^{9} -2.94805 q^{11} +11.3643 q^{12} -3.09829 q^{14} +6.14287 q^{16} -5.86924 q^{17} -9.72414 q^{18} -4.76359 q^{19} +3.22393 q^{21} +7.42189 q^{22} +1.69519 q^{23} -15.4200 q^{24} +2.25952 q^{27} +5.33878 q^{28} +4.17106 q^{29} -2.50193 q^{31} -3.69246 q^{32} -7.72284 q^{33} +14.7762 q^{34} +16.7560 q^{36} +3.34159 q^{37} +11.9926 q^{38} -8.95956 q^{41} -8.11642 q^{42} -0.795573 q^{43} -12.7889 q^{44} -4.26775 q^{46} +10.0172 q^{47} +16.0921 q^{48} -5.48544 q^{49} -15.3753 q^{51} -7.14496 q^{53} -5.68847 q^{54} -7.24410 q^{56} -12.4789 q^{57} -10.5009 q^{58} -0.0348174 q^{59} +4.01406 q^{61} +6.29876 q^{62} +4.75352 q^{63} -2.98977 q^{64} +19.4427 q^{66} +7.22249 q^{67} -25.4613 q^{68} +4.44080 q^{69} -14.2161 q^{71} -22.7360 q^{72} +8.45275 q^{73} -8.41266 q^{74} -20.6649 q^{76} -3.62809 q^{77} +7.06674 q^{79} -5.66845 q^{81} +22.5562 q^{82} +3.50072 q^{83} +13.9857 q^{84} +2.00290 q^{86} +10.9267 q^{87} +17.3531 q^{88} -8.89032 q^{89} +7.35391 q^{92} -6.55417 q^{93} -25.2189 q^{94} -9.67292 q^{96} -10.6940 q^{97} +13.8099 q^{98} -11.3869 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 16 q^{4} - 16 q^{6} + 18 q^{9} - 22 q^{11} + 4 q^{14} - 12 q^{16} - 28 q^{19} - 26 q^{21} - 34 q^{24} - 20 q^{29} - 32 q^{31} - 18 q^{34} + 32 q^{36} - 52 q^{41} - 50 q^{44} - 30 q^{46} + 44 q^{49}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.51756 −1.78018 −0.890091 0.455783i \(-0.849359\pi\)
−0.890091 + 0.455783i \(0.849359\pi\)
\(3\) 2.61964 1.51245 0.756226 0.654311i \(-0.227041\pi\)
0.756226 + 0.654311i \(0.227041\pi\)
\(4\) 4.33809 2.16905
\(5\) 0 0
\(6\) −6.59510 −2.69244
\(7\) 1.23067 0.465151 0.232576 0.972578i \(-0.425285\pi\)
0.232576 + 0.972578i \(0.425285\pi\)
\(8\) −5.88628 −2.08112
\(9\) 3.86253 1.28751
\(10\) 0 0
\(11\) −2.94805 −0.888871 −0.444435 0.895811i \(-0.646596\pi\)
−0.444435 + 0.895811i \(0.646596\pi\)
\(12\) 11.3643 3.28058
\(13\) 0 0
\(14\) −3.09829 −0.828054
\(15\) 0 0
\(16\) 6.14287 1.53572
\(17\) −5.86924 −1.42350 −0.711750 0.702433i \(-0.752097\pi\)
−0.711750 + 0.702433i \(0.752097\pi\)
\(18\) −9.72414 −2.29200
\(19\) −4.76359 −1.09284 −0.546422 0.837510i \(-0.684010\pi\)
−0.546422 + 0.837510i \(0.684010\pi\)
\(20\) 0 0
\(21\) 3.22393 0.703519
\(22\) 7.42189 1.58235
\(23\) 1.69519 0.353472 0.176736 0.984258i \(-0.443446\pi\)
0.176736 + 0.984258i \(0.443446\pi\)
\(24\) −15.4200 −3.14759
\(25\) 0 0
\(26\) 0 0
\(27\) 2.25952 0.434845
\(28\) 5.33878 1.00893
\(29\) 4.17106 0.774546 0.387273 0.921965i \(-0.373417\pi\)
0.387273 + 0.921965i \(0.373417\pi\)
\(30\) 0 0
\(31\) −2.50193 −0.449360 −0.224680 0.974433i \(-0.572134\pi\)
−0.224680 + 0.974433i \(0.572134\pi\)
\(32\) −3.69246 −0.652740
\(33\) −7.72284 −1.34437
\(34\) 14.7762 2.53409
\(35\) 0 0
\(36\) 16.7560 2.79267
\(37\) 3.34159 0.549355 0.274677 0.961536i \(-0.411429\pi\)
0.274677 + 0.961536i \(0.411429\pi\)
\(38\) 11.9926 1.94546
\(39\) 0 0
\(40\) 0 0
\(41\) −8.95956 −1.39925 −0.699624 0.714511i \(-0.746649\pi\)
−0.699624 + 0.714511i \(0.746649\pi\)
\(42\) −8.11642 −1.25239
\(43\) −0.795573 −0.121324 −0.0606619 0.998158i \(-0.519321\pi\)
−0.0606619 + 0.998158i \(0.519321\pi\)
\(44\) −12.7889 −1.92800
\(45\) 0 0
\(46\) −4.26775 −0.629245
\(47\) 10.0172 1.46116 0.730580 0.682827i \(-0.239250\pi\)
0.730580 + 0.682827i \(0.239250\pi\)
\(48\) 16.0921 2.32270
\(49\) −5.48544 −0.783634
\(50\) 0 0
\(51\) −15.3753 −2.15298
\(52\) 0 0
\(53\) −7.14496 −0.981436 −0.490718 0.871318i \(-0.663265\pi\)
−0.490718 + 0.871318i \(0.663265\pi\)
\(54\) −5.68847 −0.774103
\(55\) 0 0
\(56\) −7.24410 −0.968034
\(57\) −12.4789 −1.65287
\(58\) −10.5009 −1.37883
\(59\) −0.0348174 −0.00453284 −0.00226642 0.999997i \(-0.500721\pi\)
−0.00226642 + 0.999997i \(0.500721\pi\)
\(60\) 0 0
\(61\) 4.01406 0.513948 0.256974 0.966418i \(-0.417275\pi\)
0.256974 + 0.966418i \(0.417275\pi\)
\(62\) 6.29876 0.799943
\(63\) 4.75352 0.598887
\(64\) −2.98977 −0.373721
\(65\) 0 0
\(66\) 19.4427 2.39323
\(67\) 7.22249 0.882367 0.441184 0.897417i \(-0.354559\pi\)
0.441184 + 0.897417i \(0.354559\pi\)
\(68\) −25.4613 −3.08764
\(69\) 4.44080 0.534610
\(70\) 0 0
\(71\) −14.2161 −1.68714 −0.843572 0.537015i \(-0.819552\pi\)
−0.843572 + 0.537015i \(0.819552\pi\)
\(72\) −22.7360 −2.67946
\(73\) 8.45275 0.989320 0.494660 0.869087i \(-0.335293\pi\)
0.494660 + 0.869087i \(0.335293\pi\)
\(74\) −8.41266 −0.977951
\(75\) 0 0
\(76\) −20.6649 −2.37043
\(77\) −3.62809 −0.413459
\(78\) 0 0
\(79\) 7.06674 0.795070 0.397535 0.917587i \(-0.369866\pi\)
0.397535 + 0.917587i \(0.369866\pi\)
\(80\) 0 0
\(81\) −5.66845 −0.629828
\(82\) 22.5562 2.49092
\(83\) 3.50072 0.384254 0.192127 0.981370i \(-0.438462\pi\)
0.192127 + 0.981370i \(0.438462\pi\)
\(84\) 13.9857 1.52597
\(85\) 0 0
\(86\) 2.00290 0.215978
\(87\) 10.9267 1.17146
\(88\) 17.3531 1.84984
\(89\) −8.89032 −0.942372 −0.471186 0.882034i \(-0.656174\pi\)
−0.471186 + 0.882034i \(0.656174\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.35391 0.766698
\(93\) −6.55417 −0.679636
\(94\) −25.2189 −2.60113
\(95\) 0 0
\(96\) −9.67292 −0.987238
\(97\) −10.6940 −1.08581 −0.542907 0.839793i \(-0.682676\pi\)
−0.542907 + 0.839793i \(0.682676\pi\)
\(98\) 13.8099 1.39501
\(99\) −11.3869 −1.14443
\(100\) 0 0
\(101\) −12.9172 −1.28531 −0.642655 0.766156i \(-0.722167\pi\)
−0.642655 + 0.766156i \(0.722167\pi\)
\(102\) 38.7082 3.83269
\(103\) 5.67077 0.558757 0.279379 0.960181i \(-0.409872\pi\)
0.279379 + 0.960181i \(0.409872\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 17.9878 1.74713
\(107\) −10.4504 −1.01028 −0.505138 0.863038i \(-0.668559\pi\)
−0.505138 + 0.863038i \(0.668559\pi\)
\(108\) 9.80201 0.943199
\(109\) 5.38402 0.515696 0.257848 0.966186i \(-0.416987\pi\)
0.257848 + 0.966186i \(0.416987\pi\)
\(110\) 0 0
\(111\) 8.75379 0.830873
\(112\) 7.55987 0.714341
\(113\) −10.6715 −1.00389 −0.501945 0.864899i \(-0.667382\pi\)
−0.501945 + 0.864899i \(0.667382\pi\)
\(114\) 31.4164 2.94241
\(115\) 0 0
\(116\) 18.0944 1.68003
\(117\) 0 0
\(118\) 0.0876548 0.00806928
\(119\) −7.22313 −0.662143
\(120\) 0 0
\(121\) −2.30900 −0.209909
\(122\) −10.1056 −0.914920
\(123\) −23.4708 −2.11630
\(124\) −10.8536 −0.974684
\(125\) 0 0
\(126\) −11.9673 −1.06613
\(127\) −7.79430 −0.691632 −0.345816 0.938302i \(-0.612398\pi\)
−0.345816 + 0.938302i \(0.612398\pi\)
\(128\) 14.9118 1.31803
\(129\) −2.08412 −0.183496
\(130\) 0 0
\(131\) −14.4962 −1.26654 −0.633270 0.773931i \(-0.718288\pi\)
−0.633270 + 0.773931i \(0.718288\pi\)
\(132\) −33.5024 −2.91601
\(133\) −5.86243 −0.508338
\(134\) −18.1830 −1.57077
\(135\) 0 0
\(136\) 34.5480 2.96247
\(137\) −2.26717 −0.193697 −0.0968486 0.995299i \(-0.530876\pi\)
−0.0968486 + 0.995299i \(0.530876\pi\)
\(138\) −11.1800 −0.951703
\(139\) −11.3578 −0.963356 −0.481678 0.876348i \(-0.659973\pi\)
−0.481678 + 0.876348i \(0.659973\pi\)
\(140\) 0 0
\(141\) 26.2415 2.20993
\(142\) 35.7899 3.00342
\(143\) 0 0
\(144\) 23.7270 1.97725
\(145\) 0 0
\(146\) −21.2803 −1.76117
\(147\) −14.3699 −1.18521
\(148\) 14.4962 1.19158
\(149\) −2.05699 −0.168515 −0.0842577 0.996444i \(-0.526852\pi\)
−0.0842577 + 0.996444i \(0.526852\pi\)
\(150\) 0 0
\(151\) −5.25169 −0.427376 −0.213688 0.976902i \(-0.568548\pi\)
−0.213688 + 0.976902i \(0.568548\pi\)
\(152\) 28.0399 2.27433
\(153\) −22.6701 −1.83277
\(154\) 9.13392 0.736033
\(155\) 0 0
\(156\) 0 0
\(157\) 23.4521 1.87168 0.935842 0.352419i \(-0.114641\pi\)
0.935842 + 0.352419i \(0.114641\pi\)
\(158\) −17.7909 −1.41537
\(159\) −18.7172 −1.48437
\(160\) 0 0
\(161\) 2.08623 0.164418
\(162\) 14.2707 1.12121
\(163\) 7.10599 0.556584 0.278292 0.960496i \(-0.410232\pi\)
0.278292 + 0.960496i \(0.410232\pi\)
\(164\) −38.8674 −3.03503
\(165\) 0 0
\(166\) −8.81326 −0.684041
\(167\) −20.4389 −1.58161 −0.790803 0.612070i \(-0.790337\pi\)
−0.790803 + 0.612070i \(0.790337\pi\)
\(168\) −18.9770 −1.46410
\(169\) 0 0
\(170\) 0 0
\(171\) −18.3995 −1.40705
\(172\) −3.45127 −0.263157
\(173\) −14.7412 −1.12075 −0.560376 0.828238i \(-0.689343\pi\)
−0.560376 + 0.828238i \(0.689343\pi\)
\(174\) −27.5085 −2.08542
\(175\) 0 0
\(176\) −18.1095 −1.36505
\(177\) −0.0912092 −0.00685570
\(178\) 22.3819 1.67759
\(179\) −19.1009 −1.42767 −0.713835 0.700314i \(-0.753043\pi\)
−0.713835 + 0.700314i \(0.753043\pi\)
\(180\) 0 0
\(181\) −12.2161 −0.908012 −0.454006 0.890999i \(-0.650006\pi\)
−0.454006 + 0.890999i \(0.650006\pi\)
\(182\) 0 0
\(183\) 10.5154 0.777321
\(184\) −9.97840 −0.735617
\(185\) 0 0
\(186\) 16.5005 1.20988
\(187\) 17.3028 1.26531
\(188\) 43.4556 3.16933
\(189\) 2.78073 0.202269
\(190\) 0 0
\(191\) 4.01177 0.290282 0.145141 0.989411i \(-0.453636\pi\)
0.145141 + 0.989411i \(0.453636\pi\)
\(192\) −7.83213 −0.565235
\(193\) −23.9928 −1.72704 −0.863520 0.504315i \(-0.831745\pi\)
−0.863520 + 0.504315i \(0.831745\pi\)
\(194\) 26.9228 1.93295
\(195\) 0 0
\(196\) −23.7964 −1.69974
\(197\) −6.93680 −0.494227 −0.247113 0.968987i \(-0.579482\pi\)
−0.247113 + 0.968987i \(0.579482\pi\)
\(198\) 28.6673 2.03729
\(199\) 5.78686 0.410220 0.205110 0.978739i \(-0.434245\pi\)
0.205110 + 0.978739i \(0.434245\pi\)
\(200\) 0 0
\(201\) 18.9203 1.33454
\(202\) 32.5198 2.28809
\(203\) 5.13321 0.360281
\(204\) −66.6996 −4.66990
\(205\) 0 0
\(206\) −14.2765 −0.994690
\(207\) 6.54774 0.455099
\(208\) 0 0
\(209\) 14.0433 0.971397
\(210\) 0 0
\(211\) −16.4258 −1.13080 −0.565398 0.824818i \(-0.691277\pi\)
−0.565398 + 0.824818i \(0.691277\pi\)
\(212\) −30.9955 −2.12878
\(213\) −37.2412 −2.55173
\(214\) 26.3094 1.79848
\(215\) 0 0
\(216\) −13.3002 −0.904963
\(217\) −3.07906 −0.209021
\(218\) −13.5546 −0.918032
\(219\) 22.1432 1.49630
\(220\) 0 0
\(221\) 0 0
\(222\) −22.0382 −1.47910
\(223\) 21.7605 1.45719 0.728596 0.684944i \(-0.240173\pi\)
0.728596 + 0.684944i \(0.240173\pi\)
\(224\) −4.54421 −0.303623
\(225\) 0 0
\(226\) 26.8661 1.78711
\(227\) −16.1145 −1.06955 −0.534777 0.844993i \(-0.679604\pi\)
−0.534777 + 0.844993i \(0.679604\pi\)
\(228\) −54.1347 −3.58516
\(229\) 12.4251 0.821071 0.410536 0.911845i \(-0.365342\pi\)
0.410536 + 0.911845i \(0.365342\pi\)
\(230\) 0 0
\(231\) −9.50430 −0.625337
\(232\) −24.5520 −1.61192
\(233\) 9.05571 0.593259 0.296630 0.954993i \(-0.404137\pi\)
0.296630 + 0.954993i \(0.404137\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.151041 −0.00983194
\(237\) 18.5123 1.20251
\(238\) 18.1846 1.17873
\(239\) 21.4642 1.38841 0.694203 0.719779i \(-0.255757\pi\)
0.694203 + 0.719779i \(0.255757\pi\)
\(240\) 0 0
\(241\) −9.06978 −0.584236 −0.292118 0.956382i \(-0.594360\pi\)
−0.292118 + 0.956382i \(0.594360\pi\)
\(242\) 5.81304 0.373676
\(243\) −21.6279 −1.38743
\(244\) 17.4134 1.11478
\(245\) 0 0
\(246\) 59.0892 3.76739
\(247\) 0 0
\(248\) 14.7271 0.935171
\(249\) 9.17063 0.581165
\(250\) 0 0
\(251\) 25.4920 1.60904 0.804519 0.593926i \(-0.202423\pi\)
0.804519 + 0.593926i \(0.202423\pi\)
\(252\) 20.6212 1.29901
\(253\) −4.99752 −0.314191
\(254\) 19.6226 1.23123
\(255\) 0 0
\(256\) −31.5618 −1.97262
\(257\) 24.8979 1.55309 0.776543 0.630064i \(-0.216972\pi\)
0.776543 + 0.630064i \(0.216972\pi\)
\(258\) 5.24688 0.326657
\(259\) 4.11242 0.255533
\(260\) 0 0
\(261\) 16.1108 0.997235
\(262\) 36.4951 2.25467
\(263\) 15.6411 0.964469 0.482235 0.876042i \(-0.339825\pi\)
0.482235 + 0.876042i \(0.339825\pi\)
\(264\) 45.4588 2.79780
\(265\) 0 0
\(266\) 14.7590 0.904933
\(267\) −23.2895 −1.42529
\(268\) 31.3318 1.91390
\(269\) 23.5391 1.43521 0.717603 0.696453i \(-0.245239\pi\)
0.717603 + 0.696453i \(0.245239\pi\)
\(270\) 0 0
\(271\) 2.80953 0.170667 0.0853333 0.996352i \(-0.472805\pi\)
0.0853333 + 0.996352i \(0.472805\pi\)
\(272\) −36.0540 −2.18609
\(273\) 0 0
\(274\) 5.70772 0.344816
\(275\) 0 0
\(276\) 19.2646 1.15959
\(277\) 10.9594 0.658489 0.329245 0.944245i \(-0.393206\pi\)
0.329245 + 0.944245i \(0.393206\pi\)
\(278\) 28.5939 1.71495
\(279\) −9.66379 −0.578556
\(280\) 0 0
\(281\) −5.44514 −0.324830 −0.162415 0.986723i \(-0.551928\pi\)
−0.162415 + 0.986723i \(0.551928\pi\)
\(282\) −66.0645 −3.93408
\(283\) −6.33040 −0.376303 −0.188152 0.982140i \(-0.560250\pi\)
−0.188152 + 0.982140i \(0.560250\pi\)
\(284\) −61.6709 −3.65950
\(285\) 0 0
\(286\) 0 0
\(287\) −11.0263 −0.650862
\(288\) −14.2622 −0.840410
\(289\) 17.4480 1.02635
\(290\) 0 0
\(291\) −28.0145 −1.64224
\(292\) 36.6688 2.14588
\(293\) 6.03480 0.352557 0.176278 0.984340i \(-0.443594\pi\)
0.176278 + 0.984340i \(0.443594\pi\)
\(294\) 36.1770 2.10989
\(295\) 0 0
\(296\) −19.6696 −1.14327
\(297\) −6.66118 −0.386521
\(298\) 5.17860 0.299988
\(299\) 0 0
\(300\) 0 0
\(301\) −0.979091 −0.0564339
\(302\) 13.2214 0.760808
\(303\) −33.8385 −1.94397
\(304\) −29.2621 −1.67830
\(305\) 0 0
\(306\) 57.0733 3.26266
\(307\) 7.24198 0.413321 0.206661 0.978413i \(-0.433740\pi\)
0.206661 + 0.978413i \(0.433740\pi\)
\(308\) −15.7390 −0.896813
\(309\) 14.8554 0.845093
\(310\) 0 0
\(311\) 7.01177 0.397601 0.198800 0.980040i \(-0.436295\pi\)
0.198800 + 0.980040i \(0.436295\pi\)
\(312\) 0 0
\(313\) 16.5018 0.932739 0.466369 0.884590i \(-0.345562\pi\)
0.466369 + 0.884590i \(0.345562\pi\)
\(314\) −59.0421 −3.33194
\(315\) 0 0
\(316\) 30.6562 1.72455
\(317\) −11.6000 −0.651520 −0.325760 0.945453i \(-0.605620\pi\)
−0.325760 + 0.945453i \(0.605620\pi\)
\(318\) 47.1217 2.64246
\(319\) −12.2965 −0.688471
\(320\) 0 0
\(321\) −27.3763 −1.52799
\(322\) −5.25221 −0.292694
\(323\) 27.9587 1.55566
\(324\) −24.5903 −1.36613
\(325\) 0 0
\(326\) −17.8897 −0.990821
\(327\) 14.1042 0.779965
\(328\) 52.7385 2.91200
\(329\) 12.3279 0.679661
\(330\) 0 0
\(331\) −2.89281 −0.159003 −0.0795017 0.996835i \(-0.525333\pi\)
−0.0795017 + 0.996835i \(0.525333\pi\)
\(332\) 15.1864 0.833464
\(333\) 12.9070 0.707300
\(334\) 51.4560 2.81555
\(335\) 0 0
\(336\) 19.8042 1.08041
\(337\) −24.6017 −1.34014 −0.670071 0.742297i \(-0.733736\pi\)
−0.670071 + 0.742297i \(0.733736\pi\)
\(338\) 0 0
\(339\) −27.9555 −1.51834
\(340\) 0 0
\(341\) 7.37582 0.399423
\(342\) 46.3219 2.50480
\(343\) −15.3655 −0.829660
\(344\) 4.68297 0.252489
\(345\) 0 0
\(346\) 37.1118 1.99514
\(347\) −22.2988 −1.19706 −0.598532 0.801099i \(-0.704249\pi\)
−0.598532 + 0.801099i \(0.704249\pi\)
\(348\) 47.4009 2.54096
\(349\) −0.844306 −0.0451947 −0.0225973 0.999745i \(-0.507194\pi\)
−0.0225973 + 0.999745i \(0.507194\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.8855 0.580202
\(353\) 36.3560 1.93503 0.967517 0.252806i \(-0.0813536\pi\)
0.967517 + 0.252806i \(0.0813536\pi\)
\(354\) 0.229624 0.0122044
\(355\) 0 0
\(356\) −38.5670 −2.04405
\(357\) −18.9220 −1.00146
\(358\) 48.0877 2.54151
\(359\) −13.7611 −0.726281 −0.363140 0.931734i \(-0.618295\pi\)
−0.363140 + 0.931734i \(0.618295\pi\)
\(360\) 0 0
\(361\) 3.69184 0.194307
\(362\) 30.7546 1.61643
\(363\) −6.04875 −0.317477
\(364\) 0 0
\(365\) 0 0
\(366\) −26.4731 −1.38377
\(367\) 12.2882 0.641439 0.320720 0.947174i \(-0.396075\pi\)
0.320720 + 0.947174i \(0.396075\pi\)
\(368\) 10.4134 0.542834
\(369\) −34.6066 −1.80155
\(370\) 0 0
\(371\) −8.79312 −0.456516
\(372\) −28.4326 −1.47416
\(373\) −18.3299 −0.949088 −0.474544 0.880232i \(-0.657387\pi\)
−0.474544 + 0.880232i \(0.657387\pi\)
\(374\) −43.5608 −2.25248
\(375\) 0 0
\(376\) −58.9642 −3.04084
\(377\) 0 0
\(378\) −7.00066 −0.360075
\(379\) 23.3019 1.19694 0.598469 0.801146i \(-0.295776\pi\)
0.598469 + 0.801146i \(0.295776\pi\)
\(380\) 0 0
\(381\) −20.4183 −1.04606
\(382\) −10.0999 −0.516754
\(383\) −17.2654 −0.882223 −0.441112 0.897452i \(-0.645416\pi\)
−0.441112 + 0.897452i \(0.645416\pi\)
\(384\) 39.0637 1.99346
\(385\) 0 0
\(386\) 60.4032 3.07444
\(387\) −3.07292 −0.156206
\(388\) −46.3917 −2.35518
\(389\) 1.50480 0.0762963 0.0381482 0.999272i \(-0.487854\pi\)
0.0381482 + 0.999272i \(0.487854\pi\)
\(390\) 0 0
\(391\) −9.94951 −0.503168
\(392\) 32.2889 1.63083
\(393\) −37.9749 −1.91558
\(394\) 17.4638 0.879813
\(395\) 0 0
\(396\) −49.3976 −2.48232
\(397\) −5.69765 −0.285957 −0.142978 0.989726i \(-0.545668\pi\)
−0.142978 + 0.989726i \(0.545668\pi\)
\(398\) −14.5688 −0.730266
\(399\) −15.3575 −0.768836
\(400\) 0 0
\(401\) −11.8092 −0.589726 −0.294863 0.955540i \(-0.595274\pi\)
−0.294863 + 0.955540i \(0.595274\pi\)
\(402\) −47.6330 −2.37572
\(403\) 0 0
\(404\) −56.0361 −2.78790
\(405\) 0 0
\(406\) −12.9232 −0.641365
\(407\) −9.85119 −0.488305
\(408\) 90.5035 4.48059
\(409\) 7.54827 0.373238 0.186619 0.982432i \(-0.440247\pi\)
0.186619 + 0.982432i \(0.440247\pi\)
\(410\) 0 0
\(411\) −5.93917 −0.292958
\(412\) 24.6003 1.21197
\(413\) −0.0428489 −0.00210846
\(414\) −16.4843 −0.810160
\(415\) 0 0
\(416\) 0 0
\(417\) −29.7534 −1.45703
\(418\) −35.3549 −1.72926
\(419\) 4.05446 0.198073 0.0990367 0.995084i \(-0.468424\pi\)
0.0990367 + 0.995084i \(0.468424\pi\)
\(420\) 0 0
\(421\) 2.77948 0.135464 0.0677318 0.997704i \(-0.478424\pi\)
0.0677318 + 0.997704i \(0.478424\pi\)
\(422\) 41.3528 2.01302
\(423\) 38.6918 1.88126
\(424\) 42.0573 2.04248
\(425\) 0 0
\(426\) 93.7569 4.54253
\(427\) 4.94000 0.239063
\(428\) −45.3347 −2.19134
\(429\) 0 0
\(430\) 0 0
\(431\) 32.3535 1.55841 0.779206 0.626768i \(-0.215623\pi\)
0.779206 + 0.626768i \(0.215623\pi\)
\(432\) 13.8799 0.667799
\(433\) 17.6445 0.847941 0.423971 0.905676i \(-0.360636\pi\)
0.423971 + 0.905676i \(0.360636\pi\)
\(434\) 7.75172 0.372095
\(435\) 0 0
\(436\) 23.3564 1.11857
\(437\) −8.07522 −0.386290
\(438\) −55.7468 −2.66368
\(439\) 20.3325 0.970418 0.485209 0.874398i \(-0.338743\pi\)
0.485209 + 0.874398i \(0.338743\pi\)
\(440\) 0 0
\(441\) −21.1877 −1.00894
\(442\) 0 0
\(443\) −20.4297 −0.970647 −0.485323 0.874335i \(-0.661298\pi\)
−0.485323 + 0.874335i \(0.661298\pi\)
\(444\) 37.9747 1.80220
\(445\) 0 0
\(446\) −54.7833 −2.59407
\(447\) −5.38859 −0.254871
\(448\) −3.67943 −0.173837
\(449\) 15.6858 0.740260 0.370130 0.928980i \(-0.379313\pi\)
0.370130 + 0.928980i \(0.379313\pi\)
\(450\) 0 0
\(451\) 26.4132 1.24375
\(452\) −46.2940 −2.17749
\(453\) −13.7575 −0.646386
\(454\) 40.5691 1.90400
\(455\) 0 0
\(456\) 73.4545 3.43982
\(457\) −26.3611 −1.23312 −0.616561 0.787307i \(-0.711475\pi\)
−0.616561 + 0.787307i \(0.711475\pi\)
\(458\) −31.2808 −1.46166
\(459\) −13.2617 −0.619002
\(460\) 0 0
\(461\) 15.3348 0.714213 0.357107 0.934064i \(-0.383763\pi\)
0.357107 + 0.934064i \(0.383763\pi\)
\(462\) 23.9276 1.11321
\(463\) 14.3752 0.668074 0.334037 0.942560i \(-0.391589\pi\)
0.334037 + 0.942560i \(0.391589\pi\)
\(464\) 25.6223 1.18948
\(465\) 0 0
\(466\) −22.7983 −1.05611
\(467\) −7.66475 −0.354683 −0.177341 0.984149i \(-0.556750\pi\)
−0.177341 + 0.984149i \(0.556750\pi\)
\(468\) 0 0
\(469\) 8.88853 0.410434
\(470\) 0 0
\(471\) 61.4362 2.83083
\(472\) 0.204945 0.00943336
\(473\) 2.34539 0.107841
\(474\) −46.6059 −2.14068
\(475\) 0 0
\(476\) −31.3346 −1.43622
\(477\) −27.5976 −1.26361
\(478\) −54.0374 −2.47162
\(479\) −24.3174 −1.11109 −0.555545 0.831486i \(-0.687490\pi\)
−0.555545 + 0.831486i \(0.687490\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 22.8337 1.04005
\(483\) 5.46518 0.248675
\(484\) −10.0167 −0.455302
\(485\) 0 0
\(486\) 54.4494 2.46988
\(487\) −28.3759 −1.28584 −0.642918 0.765935i \(-0.722276\pi\)
−0.642918 + 0.765935i \(0.722276\pi\)
\(488\) −23.6279 −1.06958
\(489\) 18.6152 0.841807
\(490\) 0 0
\(491\) −1.43614 −0.0648120 −0.0324060 0.999475i \(-0.510317\pi\)
−0.0324060 + 0.999475i \(0.510317\pi\)
\(492\) −101.819 −4.59034
\(493\) −24.4809 −1.10257
\(494\) 0 0
\(495\) 0 0
\(496\) −15.3690 −0.690091
\(497\) −17.4954 −0.784777
\(498\) −23.0876 −1.03458
\(499\) −16.7094 −0.748017 −0.374008 0.927425i \(-0.622017\pi\)
−0.374008 + 0.927425i \(0.622017\pi\)
\(500\) 0 0
\(501\) −53.5425 −2.39210
\(502\) −64.1775 −2.86438
\(503\) 32.2369 1.43737 0.718686 0.695335i \(-0.244744\pi\)
0.718686 + 0.695335i \(0.244744\pi\)
\(504\) −27.9806 −1.24635
\(505\) 0 0
\(506\) 12.5815 0.559318
\(507\) 0 0
\(508\) −33.8124 −1.50018
\(509\) 8.16399 0.361862 0.180931 0.983496i \(-0.442089\pi\)
0.180931 + 0.983496i \(0.442089\pi\)
\(510\) 0 0
\(511\) 10.4026 0.460183
\(512\) 49.6351 2.19358
\(513\) −10.7634 −0.475218
\(514\) −62.6818 −2.76477
\(515\) 0 0
\(516\) −9.04110 −0.398012
\(517\) −29.5312 −1.29878
\(518\) −10.3532 −0.454895
\(519\) −38.6167 −1.69508
\(520\) 0 0
\(521\) 35.3357 1.54808 0.774042 0.633135i \(-0.218232\pi\)
0.774042 + 0.633135i \(0.218232\pi\)
\(522\) −40.5599 −1.77526
\(523\) 30.1497 1.31835 0.659177 0.751988i \(-0.270905\pi\)
0.659177 + 0.751988i \(0.270905\pi\)
\(524\) −62.8860 −2.74719
\(525\) 0 0
\(526\) −39.3773 −1.71693
\(527\) 14.6844 0.639665
\(528\) −47.4404 −2.06458
\(529\) −20.1263 −0.875057
\(530\) 0 0
\(531\) −0.134483 −0.00583608
\(532\) −25.4318 −1.10261
\(533\) 0 0
\(534\) 58.6325 2.53728
\(535\) 0 0
\(536\) −42.5136 −1.83631
\(537\) −50.0376 −2.15928
\(538\) −59.2611 −2.55493
\(539\) 16.1714 0.696550
\(540\) 0 0
\(541\) −17.5295 −0.753650 −0.376825 0.926284i \(-0.622984\pi\)
−0.376825 + 0.926284i \(0.622984\pi\)
\(542\) −7.07314 −0.303817
\(543\) −32.0017 −1.37332
\(544\) 21.6719 0.929176
\(545\) 0 0
\(546\) 0 0
\(547\) −19.5537 −0.836055 −0.418028 0.908434i \(-0.637278\pi\)
−0.418028 + 0.908434i \(0.637278\pi\)
\(548\) −9.83518 −0.420138
\(549\) 15.5044 0.661713
\(550\) 0 0
\(551\) −19.8692 −0.846457
\(552\) −26.1398 −1.11259
\(553\) 8.69686 0.369828
\(554\) −27.5910 −1.17223
\(555\) 0 0
\(556\) −49.2712 −2.08956
\(557\) −21.4861 −0.910393 −0.455197 0.890391i \(-0.650431\pi\)
−0.455197 + 0.890391i \(0.650431\pi\)
\(558\) 24.3291 1.02993
\(559\) 0 0
\(560\) 0 0
\(561\) 45.3272 1.91372
\(562\) 13.7084 0.578256
\(563\) −23.2468 −0.979737 −0.489869 0.871796i \(-0.662955\pi\)
−0.489869 + 0.871796i \(0.662955\pi\)
\(564\) 113.838 4.79345
\(565\) 0 0
\(566\) 15.9371 0.669888
\(567\) −6.97602 −0.292965
\(568\) 83.6802 3.51114
\(569\) −13.9322 −0.584067 −0.292033 0.956408i \(-0.594332\pi\)
−0.292033 + 0.956408i \(0.594332\pi\)
\(570\) 0 0
\(571\) 8.49820 0.355639 0.177819 0.984063i \(-0.443096\pi\)
0.177819 + 0.984063i \(0.443096\pi\)
\(572\) 0 0
\(573\) 10.5094 0.439037
\(574\) 27.7593 1.15865
\(575\) 0 0
\(576\) −11.5481 −0.481170
\(577\) −2.02248 −0.0841967 −0.0420984 0.999113i \(-0.513404\pi\)
−0.0420984 + 0.999113i \(0.513404\pi\)
\(578\) −43.9263 −1.82709
\(579\) −62.8526 −2.61206
\(580\) 0 0
\(581\) 4.30824 0.178736
\(582\) 70.5282 2.92349
\(583\) 21.0637 0.872370
\(584\) −49.7553 −2.05889
\(585\) 0 0
\(586\) −15.1929 −0.627615
\(587\) 6.16793 0.254578 0.127289 0.991866i \(-0.459372\pi\)
0.127289 + 0.991866i \(0.459372\pi\)
\(588\) −62.3380 −2.57077
\(589\) 11.9182 0.491081
\(590\) 0 0
\(591\) −18.1719 −0.747494
\(592\) 20.5270 0.843654
\(593\) −16.6286 −0.682857 −0.341428 0.939908i \(-0.610911\pi\)
−0.341428 + 0.939908i \(0.610911\pi\)
\(594\) 16.7699 0.688078
\(595\) 0 0
\(596\) −8.92343 −0.365518
\(597\) 15.1595 0.620438
\(598\) 0 0
\(599\) 26.1127 1.06694 0.533468 0.845820i \(-0.320888\pi\)
0.533468 + 0.845820i \(0.320888\pi\)
\(600\) 0 0
\(601\) 25.0564 1.02207 0.511036 0.859559i \(-0.329262\pi\)
0.511036 + 0.859559i \(0.329262\pi\)
\(602\) 2.46492 0.100463
\(603\) 27.8971 1.13606
\(604\) −22.7823 −0.926999
\(605\) 0 0
\(606\) 85.1903 3.46062
\(607\) 2.29492 0.0931479 0.0465740 0.998915i \(-0.485170\pi\)
0.0465740 + 0.998915i \(0.485170\pi\)
\(608\) 17.5894 0.713343
\(609\) 13.4472 0.544907
\(610\) 0 0
\(611\) 0 0
\(612\) −98.3451 −3.97537
\(613\) −46.0296 −1.85912 −0.929559 0.368674i \(-0.879812\pi\)
−0.929559 + 0.368674i \(0.879812\pi\)
\(614\) −18.2321 −0.735787
\(615\) 0 0
\(616\) 21.3560 0.860457
\(617\) 27.1168 1.09168 0.545841 0.837889i \(-0.316210\pi\)
0.545841 + 0.837889i \(0.316210\pi\)
\(618\) −37.3993 −1.50442
\(619\) −12.8016 −0.514539 −0.257270 0.966340i \(-0.582823\pi\)
−0.257270 + 0.966340i \(0.582823\pi\)
\(620\) 0 0
\(621\) 3.83033 0.153706
\(622\) −17.6525 −0.707802
\(623\) −10.9411 −0.438345
\(624\) 0 0
\(625\) 0 0
\(626\) −41.5443 −1.66044
\(627\) 36.7885 1.46919
\(628\) 101.738 4.05977
\(629\) −19.6126 −0.782007
\(630\) 0 0
\(631\) −27.3951 −1.09058 −0.545290 0.838248i \(-0.683580\pi\)
−0.545290 + 0.838248i \(0.683580\pi\)
\(632\) −41.5968 −1.65463
\(633\) −43.0296 −1.71027
\(634\) 29.2036 1.15982
\(635\) 0 0
\(636\) −81.1972 −3.21968
\(637\) 0 0
\(638\) 30.9571 1.22560
\(639\) −54.9103 −2.17222
\(640\) 0 0
\(641\) −28.2600 −1.11620 −0.558102 0.829772i \(-0.688470\pi\)
−0.558102 + 0.829772i \(0.688470\pi\)
\(642\) 68.9213 2.72011
\(643\) −3.87348 −0.152755 −0.0763776 0.997079i \(-0.524335\pi\)
−0.0763776 + 0.997079i \(0.524335\pi\)
\(644\) 9.05027 0.356631
\(645\) 0 0
\(646\) −70.3876 −2.76936
\(647\) −1.15655 −0.0454688 −0.0227344 0.999742i \(-0.507237\pi\)
−0.0227344 + 0.999742i \(0.507237\pi\)
\(648\) 33.3661 1.31075
\(649\) 0.102643 0.00402911
\(650\) 0 0
\(651\) −8.06605 −0.316133
\(652\) 30.8265 1.20726
\(653\) 14.4727 0.566360 0.283180 0.959067i \(-0.408611\pi\)
0.283180 + 0.959067i \(0.408611\pi\)
\(654\) −35.5082 −1.38848
\(655\) 0 0
\(656\) −55.0374 −2.14885
\(657\) 32.6490 1.27376
\(658\) −31.0363 −1.20992
\(659\) 9.18903 0.357954 0.178977 0.983853i \(-0.442721\pi\)
0.178977 + 0.983853i \(0.442721\pi\)
\(660\) 0 0
\(661\) −20.6507 −0.803219 −0.401610 0.915811i \(-0.631549\pi\)
−0.401610 + 0.915811i \(0.631549\pi\)
\(662\) 7.28282 0.283055
\(663\) 0 0
\(664\) −20.6062 −0.799676
\(665\) 0 0
\(666\) −32.4941 −1.25912
\(667\) 7.07075 0.273781
\(668\) −88.6657 −3.43058
\(669\) 57.0048 2.20393
\(670\) 0 0
\(671\) −11.8336 −0.456833
\(672\) −11.9042 −0.459215
\(673\) 33.5772 1.29431 0.647153 0.762360i \(-0.275960\pi\)
0.647153 + 0.762360i \(0.275960\pi\)
\(674\) 61.9363 2.38570
\(675\) 0 0
\(676\) 0 0
\(677\) 26.9980 1.03762 0.518809 0.854890i \(-0.326375\pi\)
0.518809 + 0.854890i \(0.326375\pi\)
\(678\) 70.3797 2.70291
\(679\) −13.1609 −0.505068
\(680\) 0 0
\(681\) −42.2141 −1.61765
\(682\) −18.5691 −0.711046
\(683\) −47.5322 −1.81877 −0.909385 0.415956i \(-0.863447\pi\)
−0.909385 + 0.415956i \(0.863447\pi\)
\(684\) −79.8189 −3.05195
\(685\) 0 0
\(686\) 38.6836 1.47694
\(687\) 32.5492 1.24183
\(688\) −4.88710 −0.186319
\(689\) 0 0
\(690\) 0 0
\(691\) 3.65882 0.139188 0.0695941 0.997575i \(-0.477830\pi\)
0.0695941 + 0.997575i \(0.477830\pi\)
\(692\) −63.9487 −2.43096
\(693\) −14.0136 −0.532333
\(694\) 56.1386 2.13099
\(695\) 0 0
\(696\) −64.3175 −2.43795
\(697\) 52.5858 1.99183
\(698\) 2.12559 0.0804547
\(699\) 23.7227 0.897276
\(700\) 0 0
\(701\) 22.4645 0.848471 0.424235 0.905552i \(-0.360543\pi\)
0.424235 + 0.905552i \(0.360543\pi\)
\(702\) 0 0
\(703\) −15.9180 −0.600359
\(704\) 8.81399 0.332190
\(705\) 0 0
\(706\) −91.5283 −3.44471
\(707\) −15.8969 −0.597864
\(708\) −0.395674 −0.0148703
\(709\) 29.0023 1.08920 0.544602 0.838695i \(-0.316681\pi\)
0.544602 + 0.838695i \(0.316681\pi\)
\(710\) 0 0
\(711\) 27.2955 1.02366
\(712\) 52.3309 1.96118
\(713\) −4.24126 −0.158837
\(714\) 47.6372 1.78278
\(715\) 0 0
\(716\) −82.8616 −3.09668
\(717\) 56.2286 2.09990
\(718\) 34.6443 1.29291
\(719\) −42.1565 −1.57217 −0.786086 0.618118i \(-0.787896\pi\)
−0.786086 + 0.618118i \(0.787896\pi\)
\(720\) 0 0
\(721\) 6.97887 0.259907
\(722\) −9.29441 −0.345902
\(723\) −23.7596 −0.883629
\(724\) −52.9944 −1.96952
\(725\) 0 0
\(726\) 15.2281 0.565167
\(727\) −22.1957 −0.823192 −0.411596 0.911366i \(-0.635029\pi\)
−0.411596 + 0.911366i \(0.635029\pi\)
\(728\) 0 0
\(729\) −39.6520 −1.46859
\(730\) 0 0
\(731\) 4.66941 0.172704
\(732\) 45.6168 1.68605
\(733\) −46.0958 −1.70259 −0.851293 0.524690i \(-0.824181\pi\)
−0.851293 + 0.524690i \(0.824181\pi\)
\(734\) −30.9363 −1.14188
\(735\) 0 0
\(736\) −6.25943 −0.230726
\(737\) −21.2923 −0.784310
\(738\) 87.1240 3.20708
\(739\) 41.6553 1.53232 0.766158 0.642652i \(-0.222166\pi\)
0.766158 + 0.642652i \(0.222166\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 22.1372 0.812682
\(743\) 37.6731 1.38209 0.691046 0.722811i \(-0.257150\pi\)
0.691046 + 0.722811i \(0.257150\pi\)
\(744\) 38.5797 1.41440
\(745\) 0 0
\(746\) 46.1467 1.68955
\(747\) 13.5216 0.494730
\(748\) 75.0613 2.74451
\(749\) −12.8610 −0.469931
\(750\) 0 0
\(751\) 20.5336 0.749282 0.374641 0.927170i \(-0.377766\pi\)
0.374641 + 0.927170i \(0.377766\pi\)
\(752\) 61.5344 2.24393
\(753\) 66.7799 2.43359
\(754\) 0 0
\(755\) 0 0
\(756\) 12.0631 0.438730
\(757\) −31.6073 −1.14879 −0.574394 0.818579i \(-0.694762\pi\)
−0.574394 + 0.818579i \(0.694762\pi\)
\(758\) −58.6638 −2.13077
\(759\) −13.0917 −0.475199
\(760\) 0 0
\(761\) −5.08920 −0.184483 −0.0922417 0.995737i \(-0.529403\pi\)
−0.0922417 + 0.995737i \(0.529403\pi\)
\(762\) 51.4042 1.86218
\(763\) 6.62598 0.239876
\(764\) 17.4035 0.629635
\(765\) 0 0
\(766\) 43.4668 1.57052
\(767\) 0 0
\(768\) −82.6808 −2.98348
\(769\) 27.5583 0.993776 0.496888 0.867815i \(-0.334476\pi\)
0.496888 + 0.867815i \(0.334476\pi\)
\(770\) 0 0
\(771\) 65.2235 2.34897
\(772\) −104.083 −3.74603
\(773\) 16.0622 0.577716 0.288858 0.957372i \(-0.406725\pi\)
0.288858 + 0.957372i \(0.406725\pi\)
\(774\) 7.73626 0.278074
\(775\) 0 0
\(776\) 62.9481 2.25970
\(777\) 10.7731 0.386481
\(778\) −3.78842 −0.135821
\(779\) 42.6797 1.52916
\(780\) 0 0
\(781\) 41.9099 1.49965
\(782\) 25.0484 0.895731
\(783\) 9.42459 0.336807
\(784\) −33.6963 −1.20344
\(785\) 0 0
\(786\) 95.6040 3.41008
\(787\) 22.6903 0.808821 0.404410 0.914578i \(-0.367477\pi\)
0.404410 + 0.914578i \(0.367477\pi\)
\(788\) −30.0925 −1.07200
\(789\) 40.9740 1.45871
\(790\) 0 0
\(791\) −13.1331 −0.466961
\(792\) 67.0267 2.38169
\(793\) 0 0
\(794\) 14.3442 0.509055
\(795\) 0 0
\(796\) 25.1040 0.889786
\(797\) 48.4419 1.71590 0.857950 0.513734i \(-0.171738\pi\)
0.857950 + 0.513734i \(0.171738\pi\)
\(798\) 38.6633 1.36867
\(799\) −58.7934 −2.07996
\(800\) 0 0
\(801\) −34.3391 −1.21331
\(802\) 29.7305 1.04982
\(803\) −24.9191 −0.879378
\(804\) 82.0782 2.89468
\(805\) 0 0
\(806\) 0 0
\(807\) 61.6641 2.17068
\(808\) 76.0344 2.67488
\(809\) 13.4880 0.474214 0.237107 0.971484i \(-0.423801\pi\)
0.237107 + 0.971484i \(0.423801\pi\)
\(810\) 0 0
\(811\) −8.29712 −0.291351 −0.145676 0.989332i \(-0.546536\pi\)
−0.145676 + 0.989332i \(0.546536\pi\)
\(812\) 22.2684 0.781466
\(813\) 7.35995 0.258125
\(814\) 24.8009 0.869272
\(815\) 0 0
\(816\) −94.4486 −3.30636
\(817\) 3.78979 0.132588
\(818\) −19.0032 −0.664431
\(819\) 0 0
\(820\) 0 0
\(821\) −5.55527 −0.193880 −0.0969401 0.995290i \(-0.530906\pi\)
−0.0969401 + 0.995290i \(0.530906\pi\)
\(822\) 14.9522 0.521518
\(823\) 36.1618 1.26052 0.630261 0.776383i \(-0.282948\pi\)
0.630261 + 0.776383i \(0.282948\pi\)
\(824\) −33.3798 −1.16284
\(825\) 0 0
\(826\) 0.107875 0.00375343
\(827\) −44.8578 −1.55986 −0.779930 0.625867i \(-0.784745\pi\)
−0.779930 + 0.625867i \(0.784745\pi\)
\(828\) 28.4047 0.987132
\(829\) −43.9706 −1.52716 −0.763581 0.645712i \(-0.776561\pi\)
−0.763581 + 0.645712i \(0.776561\pi\)
\(830\) 0 0
\(831\) 28.7098 0.995933
\(832\) 0 0
\(833\) 32.1954 1.11550
\(834\) 74.9058 2.59378
\(835\) 0 0
\(836\) 60.9212 2.10700
\(837\) −5.65317 −0.195402
\(838\) −10.2073 −0.352607
\(839\) −44.9857 −1.55308 −0.776539 0.630069i \(-0.783027\pi\)
−0.776539 + 0.630069i \(0.783027\pi\)
\(840\) 0 0
\(841\) −11.6023 −0.400079
\(842\) −6.99751 −0.241150
\(843\) −14.2643 −0.491289
\(844\) −71.2565 −2.45275
\(845\) 0 0
\(846\) −97.4088 −3.34898
\(847\) −2.84163 −0.0976394
\(848\) −43.8906 −1.50721
\(849\) −16.5834 −0.569141
\(850\) 0 0
\(851\) 5.66465 0.194182
\(852\) −161.556 −5.53481
\(853\) 22.7812 0.780012 0.390006 0.920812i \(-0.372473\pi\)
0.390006 + 0.920812i \(0.372473\pi\)
\(854\) −12.4367 −0.425576
\(855\) 0 0
\(856\) 61.5139 2.10250
\(857\) 47.5063 1.62278 0.811391 0.584503i \(-0.198711\pi\)
0.811391 + 0.584503i \(0.198711\pi\)
\(858\) 0 0
\(859\) −1.32832 −0.0453215 −0.0226608 0.999743i \(-0.507214\pi\)
−0.0226608 + 0.999743i \(0.507214\pi\)
\(860\) 0 0
\(861\) −28.8850 −0.984397
\(862\) −81.4517 −2.77426
\(863\) 32.7971 1.11643 0.558213 0.829698i \(-0.311487\pi\)
0.558213 + 0.829698i \(0.311487\pi\)
\(864\) −8.34318 −0.283841
\(865\) 0 0
\(866\) −44.4211 −1.50949
\(867\) 45.7075 1.55231
\(868\) −13.3573 −0.453375
\(869\) −20.8331 −0.706715
\(870\) 0 0
\(871\) 0 0
\(872\) −31.6919 −1.07322
\(873\) −41.3060 −1.39800
\(874\) 20.3298 0.687667
\(875\) 0 0
\(876\) 96.0593 3.24554
\(877\) 11.6053 0.391884 0.195942 0.980615i \(-0.437224\pi\)
0.195942 + 0.980615i \(0.437224\pi\)
\(878\) −51.1883 −1.72752
\(879\) 15.8090 0.533225
\(880\) 0 0
\(881\) −54.9898 −1.85265 −0.926326 0.376723i \(-0.877051\pi\)
−0.926326 + 0.376723i \(0.877051\pi\)
\(882\) 53.3412 1.79609
\(883\) 37.4501 1.26030 0.630148 0.776475i \(-0.282994\pi\)
0.630148 + 0.776475i \(0.282994\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 51.4331 1.72793
\(887\) −9.48028 −0.318317 −0.159158 0.987253i \(-0.550878\pi\)
−0.159158 + 0.987253i \(0.550878\pi\)
\(888\) −51.5273 −1.72914
\(889\) −9.59224 −0.321713
\(890\) 0 0
\(891\) 16.7109 0.559836
\(892\) 94.3992 3.16072
\(893\) −47.7179 −1.59682
\(894\) 13.5661 0.453718
\(895\) 0 0
\(896\) 18.3516 0.613084
\(897\) 0 0
\(898\) −39.4900 −1.31780
\(899\) −10.4357 −0.348050
\(900\) 0 0
\(901\) 41.9355 1.39707
\(902\) −66.4968 −2.21410
\(903\) −2.56487 −0.0853535
\(904\) 62.8155 2.08921
\(905\) 0 0
\(906\) 34.6354 1.15068
\(907\) −19.8560 −0.659308 −0.329654 0.944102i \(-0.606932\pi\)
−0.329654 + 0.944102i \(0.606932\pi\)
\(908\) −69.9060 −2.31991
\(909\) −49.8931 −1.65485
\(910\) 0 0
\(911\) 34.4106 1.14007 0.570037 0.821619i \(-0.306929\pi\)
0.570037 + 0.821619i \(0.306929\pi\)
\(912\) −76.6564 −2.53835
\(913\) −10.3203 −0.341552
\(914\) 66.3657 2.19518
\(915\) 0 0
\(916\) 53.9011 1.78094
\(917\) −17.8401 −0.589133
\(918\) 33.3870 1.10194
\(919\) −13.1333 −0.433228 −0.216614 0.976257i \(-0.569501\pi\)
−0.216614 + 0.976257i \(0.569501\pi\)
\(920\) 0 0
\(921\) 18.9714 0.625129
\(922\) −38.6063 −1.27143
\(923\) 0 0
\(924\) −41.2306 −1.35639
\(925\) 0 0
\(926\) −36.1905 −1.18929
\(927\) 21.9035 0.719406
\(928\) −15.4014 −0.505577
\(929\) −32.7415 −1.07421 −0.537107 0.843514i \(-0.680483\pi\)
−0.537107 + 0.843514i \(0.680483\pi\)
\(930\) 0 0
\(931\) 26.1304 0.856390
\(932\) 39.2845 1.28681
\(933\) 18.3683 0.601352
\(934\) 19.2965 0.631399
\(935\) 0 0
\(936\) 0 0
\(937\) −38.4788 −1.25705 −0.628524 0.777790i \(-0.716341\pi\)
−0.628524 + 0.777790i \(0.716341\pi\)
\(938\) −22.3774 −0.730647
\(939\) 43.2289 1.41072
\(940\) 0 0
\(941\) 2.78860 0.0909057 0.0454528 0.998966i \(-0.485527\pi\)
0.0454528 + 0.998966i \(0.485527\pi\)
\(942\) −154.669 −5.03940
\(943\) −15.1882 −0.494596
\(944\) −0.213879 −0.00696116
\(945\) 0 0
\(946\) −5.90465 −0.191977
\(947\) 23.7581 0.772034 0.386017 0.922492i \(-0.373851\pi\)
0.386017 + 0.922492i \(0.373851\pi\)
\(948\) 80.3083 2.60829
\(949\) 0 0
\(950\) 0 0
\(951\) −30.3878 −0.985392
\(952\) 42.5174 1.37800
\(953\) 21.8702 0.708446 0.354223 0.935161i \(-0.384745\pi\)
0.354223 + 0.935161i \(0.384745\pi\)
\(954\) 69.4786 2.24945
\(955\) 0 0
\(956\) 93.1139 3.01152
\(957\) −32.2124 −1.04128
\(958\) 61.2205 1.97794
\(959\) −2.79014 −0.0900985
\(960\) 0 0
\(961\) −24.7403 −0.798075
\(962\) 0 0
\(963\) −40.3649 −1.30074
\(964\) −39.3456 −1.26724
\(965\) 0 0
\(966\) −13.7589 −0.442686
\(967\) 19.4851 0.626600 0.313300 0.949654i \(-0.398566\pi\)
0.313300 + 0.949654i \(0.398566\pi\)
\(968\) 13.5914 0.436845
\(969\) 73.2418 2.35287
\(970\) 0 0
\(971\) −55.2070 −1.77168 −0.885839 0.463993i \(-0.846416\pi\)
−0.885839 + 0.463993i \(0.846416\pi\)
\(972\) −93.8238 −3.00940
\(973\) −13.9778 −0.448106
\(974\) 71.4380 2.28902
\(975\) 0 0
\(976\) 24.6578 0.789278
\(977\) −11.0757 −0.354345 −0.177172 0.984180i \(-0.556695\pi\)
−0.177172 + 0.984180i \(0.556695\pi\)
\(978\) −46.8647 −1.49857
\(979\) 26.2091 0.837646
\(980\) 0 0
\(981\) 20.7959 0.663963
\(982\) 3.61556 0.115377
\(983\) 17.0548 0.543965 0.271982 0.962302i \(-0.412321\pi\)
0.271982 + 0.962302i \(0.412321\pi\)
\(984\) 138.156 4.40426
\(985\) 0 0
\(986\) 61.6321 1.96277
\(987\) 32.2948 1.02795
\(988\) 0 0
\(989\) −1.34865 −0.0428846
\(990\) 0 0
\(991\) 56.6005 1.79797 0.898987 0.437975i \(-0.144304\pi\)
0.898987 + 0.437975i \(0.144304\pi\)
\(992\) 9.23828 0.293316
\(993\) −7.57814 −0.240485
\(994\) 44.0458 1.39705
\(995\) 0 0
\(996\) 39.7831 1.26057
\(997\) 55.2477 1.74971 0.874855 0.484384i \(-0.160956\pi\)
0.874855 + 0.484384i \(0.160956\pi\)
\(998\) 42.0669 1.33161
\(999\) 7.55040 0.238884
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.ca.1.1 18
5.2 odd 4 845.2.b.g.339.1 18
5.3 odd 4 845.2.b.g.339.18 yes 18
5.4 even 2 inner 4225.2.a.ca.1.18 18
13.12 even 2 4225.2.a.cb.1.18 18
65.2 even 12 845.2.l.g.654.36 72
65.3 odd 12 845.2.n.i.529.1 36
65.7 even 12 845.2.l.g.699.1 72
65.8 even 4 845.2.d.e.844.2 36
65.12 odd 4 845.2.b.h.339.18 yes 18
65.17 odd 12 845.2.n.h.484.18 36
65.18 even 4 845.2.d.e.844.36 36
65.22 odd 12 845.2.n.i.484.1 36
65.23 odd 12 845.2.n.h.529.18 36
65.28 even 12 845.2.l.g.654.1 72
65.32 even 12 845.2.l.g.699.35 72
65.33 even 12 845.2.l.g.699.36 72
65.37 even 12 845.2.l.g.654.2 72
65.38 odd 4 845.2.b.h.339.1 yes 18
65.42 odd 12 845.2.n.i.529.18 36
65.43 odd 12 845.2.n.h.484.1 36
65.47 even 4 845.2.d.e.844.35 36
65.48 odd 12 845.2.n.i.484.18 36
65.57 even 4 845.2.d.e.844.1 36
65.58 even 12 845.2.l.g.699.2 72
65.62 odd 12 845.2.n.h.529.1 36
65.63 even 12 845.2.l.g.654.35 72
65.64 even 2 4225.2.a.cb.1.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.1 18 5.2 odd 4
845.2.b.g.339.18 yes 18 5.3 odd 4
845.2.b.h.339.1 yes 18 65.38 odd 4
845.2.b.h.339.18 yes 18 65.12 odd 4
845.2.d.e.844.1 36 65.57 even 4
845.2.d.e.844.2 36 65.8 even 4
845.2.d.e.844.35 36 65.47 even 4
845.2.d.e.844.36 36 65.18 even 4
845.2.l.g.654.1 72 65.28 even 12
845.2.l.g.654.2 72 65.37 even 12
845.2.l.g.654.35 72 65.63 even 12
845.2.l.g.654.36 72 65.2 even 12
845.2.l.g.699.1 72 65.7 even 12
845.2.l.g.699.2 72 65.58 even 12
845.2.l.g.699.35 72 65.32 even 12
845.2.l.g.699.36 72 65.33 even 12
845.2.n.h.484.1 36 65.43 odd 12
845.2.n.h.484.18 36 65.17 odd 12
845.2.n.h.529.1 36 65.62 odd 12
845.2.n.h.529.18 36 65.23 odd 12
845.2.n.i.484.1 36 65.22 odd 12
845.2.n.i.484.18 36 65.48 odd 12
845.2.n.i.529.1 36 65.3 odd 12
845.2.n.i.529.18 36 65.42 odd 12
4225.2.a.ca.1.1 18 1.1 even 1 trivial
4225.2.a.ca.1.18 18 5.4 even 2 inner
4225.2.a.cb.1.1 18 65.64 even 2
4225.2.a.cb.1.18 18 13.12 even 2