Properties

Label 4225.2.a.bu.1.4
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $1$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4225,2,Mod(1,4225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-6,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 16x^{8} + 84x^{6} - 163x^{4} + 118x^{2} - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 325)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.887996\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.887996 q^{2} -3.06193 q^{3} -1.21146 q^{4} +2.71898 q^{6} +3.56304 q^{7} +2.85177 q^{8} +6.37543 q^{9} -0.942991 q^{11} +3.70942 q^{12} -3.16396 q^{14} -0.109431 q^{16} +0.959900 q^{17} -5.66135 q^{18} +3.33965 q^{19} -10.9098 q^{21} +0.837373 q^{22} -6.59999 q^{23} -8.73191 q^{24} -10.3353 q^{27} -4.31649 q^{28} +8.39726 q^{29} -4.13976 q^{31} -5.60636 q^{32} +2.88738 q^{33} -0.852387 q^{34} -7.72359 q^{36} -7.97574 q^{37} -2.96560 q^{38} +0.797392 q^{41} +9.68784 q^{42} -9.00874 q^{43} +1.14240 q^{44} +5.86076 q^{46} -10.5985 q^{47} +0.335071 q^{48} +5.69524 q^{49} -2.93915 q^{51} +7.44476 q^{53} +9.17773 q^{54} +10.1610 q^{56} -10.2258 q^{57} -7.45673 q^{58} +1.00360 q^{59} +4.52656 q^{61} +3.67609 q^{62} +22.7159 q^{63} +5.19729 q^{64} -2.56398 q^{66} +1.11972 q^{67} -1.16288 q^{68} +20.2087 q^{69} +1.85378 q^{71} +18.1812 q^{72} -4.69721 q^{73} +7.08243 q^{74} -4.04586 q^{76} -3.35991 q^{77} +5.64117 q^{79} +12.5198 q^{81} -0.708081 q^{82} -0.187778 q^{83} +13.2168 q^{84} +7.99972 q^{86} -25.7118 q^{87} -2.68919 q^{88} -9.48713 q^{89} +7.99564 q^{92} +12.6757 q^{93} +9.41144 q^{94} +17.1663 q^{96} +16.5439 q^{97} -5.05735 q^{98} -6.01197 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{3} + 12 q^{4} + 16 q^{9} - 28 q^{12} - 8 q^{14} + 24 q^{16} - 16 q^{17} - 24 q^{22} - 26 q^{23} - 30 q^{27} - 14 q^{29} - 6 q^{36} - 62 q^{38} + 64 q^{42} - 8 q^{43} - 52 q^{48} - 2 q^{49} - 16 q^{51}+ \cdots - 10 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.887996 −0.627908 −0.313954 0.949438i \(-0.601654\pi\)
−0.313954 + 0.949438i \(0.601654\pi\)
\(3\) −3.06193 −1.76781 −0.883904 0.467669i \(-0.845094\pi\)
−0.883904 + 0.467669i \(0.845094\pi\)
\(4\) −1.21146 −0.605732
\(5\) 0 0
\(6\) 2.71898 1.11002
\(7\) 3.56304 1.34670 0.673351 0.739323i \(-0.264854\pi\)
0.673351 + 0.739323i \(0.264854\pi\)
\(8\) 2.85177 1.00825
\(9\) 6.37543 2.12514
\(10\) 0 0
\(11\) −0.942991 −0.284323 −0.142161 0.989844i \(-0.545405\pi\)
−0.142161 + 0.989844i \(0.545405\pi\)
\(12\) 3.70942 1.07082
\(13\) 0 0
\(14\) −3.16396 −0.845605
\(15\) 0 0
\(16\) −0.109431 −0.0273578
\(17\) 0.959900 0.232810 0.116405 0.993202i \(-0.462863\pi\)
0.116405 + 0.993202i \(0.462863\pi\)
\(18\) −5.66135 −1.33439
\(19\) 3.33965 0.766169 0.383084 0.923713i \(-0.374862\pi\)
0.383084 + 0.923713i \(0.374862\pi\)
\(20\) 0 0
\(21\) −10.9098 −2.38071
\(22\) 0.837373 0.178528
\(23\) −6.59999 −1.37619 −0.688096 0.725620i \(-0.741553\pi\)
−0.688096 + 0.725620i \(0.741553\pi\)
\(24\) −8.73191 −1.78239
\(25\) 0 0
\(26\) 0 0
\(27\) −10.3353 −1.98903
\(28\) −4.31649 −0.815740
\(29\) 8.39726 1.55933 0.779666 0.626196i \(-0.215389\pi\)
0.779666 + 0.626196i \(0.215389\pi\)
\(30\) 0 0
\(31\) −4.13976 −0.743524 −0.371762 0.928328i \(-0.621246\pi\)
−0.371762 + 0.928328i \(0.621246\pi\)
\(32\) −5.60636 −0.991074
\(33\) 2.88738 0.502627
\(34\) −0.852387 −0.146183
\(35\) 0 0
\(36\) −7.72359 −1.28727
\(37\) −7.97574 −1.31120 −0.655602 0.755107i \(-0.727585\pi\)
−0.655602 + 0.755107i \(0.727585\pi\)
\(38\) −2.96560 −0.481083
\(39\) 0 0
\(40\) 0 0
\(41\) 0.797392 0.124532 0.0622659 0.998060i \(-0.480167\pi\)
0.0622659 + 0.998060i \(0.480167\pi\)
\(42\) 9.68784 1.49487
\(43\) −9.00874 −1.37382 −0.686910 0.726743i \(-0.741033\pi\)
−0.686910 + 0.726743i \(0.741033\pi\)
\(44\) 1.14240 0.172223
\(45\) 0 0
\(46\) 5.86076 0.864122
\(47\) −10.5985 −1.54595 −0.772976 0.634435i \(-0.781233\pi\)
−0.772976 + 0.634435i \(0.781233\pi\)
\(48\) 0.335071 0.0483633
\(49\) 5.69524 0.813606
\(50\) 0 0
\(51\) −2.93915 −0.411563
\(52\) 0 0
\(53\) 7.44476 1.02262 0.511308 0.859397i \(-0.329161\pi\)
0.511308 + 0.859397i \(0.329161\pi\)
\(54\) 9.17773 1.24893
\(55\) 0 0
\(56\) 10.1610 1.35781
\(57\) −10.2258 −1.35444
\(58\) −7.45673 −0.979117
\(59\) 1.00360 0.130657 0.0653287 0.997864i \(-0.479190\pi\)
0.0653287 + 0.997864i \(0.479190\pi\)
\(60\) 0 0
\(61\) 4.52656 0.579567 0.289784 0.957092i \(-0.406417\pi\)
0.289784 + 0.957092i \(0.406417\pi\)
\(62\) 3.67609 0.466864
\(63\) 22.7159 2.86193
\(64\) 5.19729 0.649661
\(65\) 0 0
\(66\) −2.56398 −0.315604
\(67\) 1.11972 0.136795 0.0683975 0.997658i \(-0.478211\pi\)
0.0683975 + 0.997658i \(0.478211\pi\)
\(68\) −1.16288 −0.141020
\(69\) 20.2087 2.43284
\(70\) 0 0
\(71\) 1.85378 0.220003 0.110002 0.993931i \(-0.464914\pi\)
0.110002 + 0.993931i \(0.464914\pi\)
\(72\) 18.1812 2.14268
\(73\) −4.69721 −0.549767 −0.274884 0.961478i \(-0.588639\pi\)
−0.274884 + 0.961478i \(0.588639\pi\)
\(74\) 7.08243 0.823315
\(75\) 0 0
\(76\) −4.04586 −0.464092
\(77\) −3.35991 −0.382898
\(78\) 0 0
\(79\) 5.64117 0.634681 0.317340 0.948312i \(-0.397210\pi\)
0.317340 + 0.948312i \(0.397210\pi\)
\(80\) 0 0
\(81\) 12.5198 1.39109
\(82\) −0.708081 −0.0781945
\(83\) −0.187778 −0.0206114 −0.0103057 0.999947i \(-0.503280\pi\)
−0.0103057 + 0.999947i \(0.503280\pi\)
\(84\) 13.2168 1.44207
\(85\) 0 0
\(86\) 7.99972 0.862632
\(87\) −25.7118 −2.75660
\(88\) −2.68919 −0.286669
\(89\) −9.48713 −1.00563 −0.502817 0.864393i \(-0.667703\pi\)
−0.502817 + 0.864393i \(0.667703\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.99564 0.833603
\(93\) 12.6757 1.31441
\(94\) 9.41144 0.970715
\(95\) 0 0
\(96\) 17.1663 1.75203
\(97\) 16.5439 1.67977 0.839887 0.542761i \(-0.182621\pi\)
0.839887 + 0.542761i \(0.182621\pi\)
\(98\) −5.05735 −0.510870
\(99\) −6.01197 −0.604226
\(100\) 0 0
\(101\) −5.50581 −0.547849 −0.273924 0.961751i \(-0.588322\pi\)
−0.273924 + 0.961751i \(0.588322\pi\)
\(102\) 2.60995 0.258424
\(103\) 3.49795 0.344664 0.172332 0.985039i \(-0.444870\pi\)
0.172332 + 0.985039i \(0.444870\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −6.61092 −0.642109
\(107\) 5.74274 0.555172 0.277586 0.960701i \(-0.410466\pi\)
0.277586 + 0.960701i \(0.410466\pi\)
\(108\) 12.5209 1.20482
\(109\) 10.9903 1.05268 0.526339 0.850275i \(-0.323564\pi\)
0.526339 + 0.850275i \(0.323564\pi\)
\(110\) 0 0
\(111\) 24.4212 2.31796
\(112\) −0.389908 −0.0368428
\(113\) −13.7168 −1.29037 −0.645185 0.764027i \(-0.723220\pi\)
−0.645185 + 0.764027i \(0.723220\pi\)
\(114\) 9.08046 0.850463
\(115\) 0 0
\(116\) −10.1730 −0.944536
\(117\) 0 0
\(118\) −0.891191 −0.0820408
\(119\) 3.42016 0.313526
\(120\) 0 0
\(121\) −10.1108 −0.919161
\(122\) −4.01957 −0.363915
\(123\) −2.44156 −0.220148
\(124\) 5.01517 0.450376
\(125\) 0 0
\(126\) −20.1716 −1.79703
\(127\) 3.51347 0.311770 0.155885 0.987775i \(-0.450177\pi\)
0.155885 + 0.987775i \(0.450177\pi\)
\(128\) 6.59755 0.583146
\(129\) 27.5841 2.42865
\(130\) 0 0
\(131\) −18.0781 −1.57949 −0.789744 0.613437i \(-0.789787\pi\)
−0.789744 + 0.613437i \(0.789787\pi\)
\(132\) −3.49795 −0.304457
\(133\) 11.8993 1.03180
\(134\) −0.994303 −0.0858947
\(135\) 0 0
\(136\) 2.73741 0.234731
\(137\) −0.780211 −0.0666579 −0.0333290 0.999444i \(-0.510611\pi\)
−0.0333290 + 0.999444i \(0.510611\pi\)
\(138\) −17.9453 −1.52760
\(139\) 0.278836 0.0236506 0.0118253 0.999930i \(-0.496236\pi\)
0.0118253 + 0.999930i \(0.496236\pi\)
\(140\) 0 0
\(141\) 32.4519 2.73294
\(142\) −1.64615 −0.138142
\(143\) 0 0
\(144\) −0.697671 −0.0581392
\(145\) 0 0
\(146\) 4.17111 0.345203
\(147\) −17.4384 −1.43830
\(148\) 9.66232 0.794238
\(149\) 0.0102038 0.000835928 0 0.000417964 1.00000i \(-0.499867\pi\)
0.000417964 1.00000i \(0.499867\pi\)
\(150\) 0 0
\(151\) 0.408335 0.0332298 0.0166149 0.999862i \(-0.494711\pi\)
0.0166149 + 0.999862i \(0.494711\pi\)
\(152\) 9.52391 0.772491
\(153\) 6.11977 0.494754
\(154\) 2.98359 0.240425
\(155\) 0 0
\(156\) 0 0
\(157\) −0.950895 −0.0758897 −0.0379448 0.999280i \(-0.512081\pi\)
−0.0379448 + 0.999280i \(0.512081\pi\)
\(158\) −5.00933 −0.398521
\(159\) −22.7953 −1.80779
\(160\) 0 0
\(161\) −23.5160 −1.85332
\(162\) −11.1175 −0.873475
\(163\) 10.5013 0.822528 0.411264 0.911516i \(-0.365087\pi\)
0.411264 + 0.911516i \(0.365087\pi\)
\(164\) −0.966011 −0.0754328
\(165\) 0 0
\(166\) 0.166746 0.0129420
\(167\) 7.97013 0.616747 0.308374 0.951265i \(-0.400215\pi\)
0.308374 + 0.951265i \(0.400215\pi\)
\(168\) −31.1121 −2.40035
\(169\) 0 0
\(170\) 0 0
\(171\) 21.2917 1.62822
\(172\) 10.9138 0.832166
\(173\) −9.93290 −0.755184 −0.377592 0.925972i \(-0.623248\pi\)
−0.377592 + 0.925972i \(0.623248\pi\)
\(174\) 22.8320 1.73089
\(175\) 0 0
\(176\) 0.103193 0.00777844
\(177\) −3.07295 −0.230977
\(178\) 8.42453 0.631445
\(179\) −10.6286 −0.794419 −0.397209 0.917728i \(-0.630021\pi\)
−0.397209 + 0.917728i \(0.630021\pi\)
\(180\) 0 0
\(181\) −8.66166 −0.643816 −0.321908 0.946771i \(-0.604324\pi\)
−0.321908 + 0.946771i \(0.604324\pi\)
\(182\) 0 0
\(183\) −13.8600 −1.02456
\(184\) −18.8216 −1.38755
\(185\) 0 0
\(186\) −11.2560 −0.825326
\(187\) −0.905177 −0.0661931
\(188\) 12.8397 0.936432
\(189\) −36.8252 −2.67864
\(190\) 0 0
\(191\) 10.6087 0.767620 0.383810 0.923412i \(-0.374612\pi\)
0.383810 + 0.923412i \(0.374612\pi\)
\(192\) −15.9137 −1.14848
\(193\) −20.4437 −1.47157 −0.735784 0.677216i \(-0.763186\pi\)
−0.735784 + 0.677216i \(0.763186\pi\)
\(194\) −14.6909 −1.05474
\(195\) 0 0
\(196\) −6.89957 −0.492827
\(197\) −11.4967 −0.819107 −0.409553 0.912286i \(-0.634315\pi\)
−0.409553 + 0.912286i \(0.634315\pi\)
\(198\) 5.33861 0.379398
\(199\) −9.95544 −0.705723 −0.352861 0.935676i \(-0.614791\pi\)
−0.352861 + 0.935676i \(0.614791\pi\)
\(200\) 0 0
\(201\) −3.42849 −0.241827
\(202\) 4.88914 0.343999
\(203\) 29.9198 2.09995
\(204\) 3.56067 0.249297
\(205\) 0 0
\(206\) −3.10617 −0.216417
\(207\) −42.0777 −2.92460
\(208\) 0 0
\(209\) −3.14926 −0.217839
\(210\) 0 0
\(211\) 11.4570 0.788730 0.394365 0.918954i \(-0.370965\pi\)
0.394365 + 0.918954i \(0.370965\pi\)
\(212\) −9.01905 −0.619431
\(213\) −5.67615 −0.388923
\(214\) −5.09953 −0.348597
\(215\) 0 0
\(216\) −29.4739 −2.00545
\(217\) −14.7501 −1.00130
\(218\) −9.75933 −0.660985
\(219\) 14.3825 0.971883
\(220\) 0 0
\(221\) 0 0
\(222\) −21.6859 −1.45546
\(223\) 4.92872 0.330051 0.165026 0.986289i \(-0.447229\pi\)
0.165026 + 0.986289i \(0.447229\pi\)
\(224\) −19.9757 −1.33468
\(225\) 0 0
\(226\) 12.1805 0.810233
\(227\) −24.2768 −1.61131 −0.805653 0.592388i \(-0.798185\pi\)
−0.805653 + 0.592388i \(0.798185\pi\)
\(228\) 12.3882 0.820426
\(229\) 28.3643 1.87437 0.937183 0.348837i \(-0.113423\pi\)
0.937183 + 0.348837i \(0.113423\pi\)
\(230\) 0 0
\(231\) 10.2878 0.676889
\(232\) 23.9470 1.57220
\(233\) 12.6827 0.830869 0.415435 0.909623i \(-0.363629\pi\)
0.415435 + 0.909623i \(0.363629\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.21582 −0.0791432
\(237\) −17.2729 −1.12199
\(238\) −3.03709 −0.196865
\(239\) −29.4374 −1.90415 −0.952073 0.305872i \(-0.901052\pi\)
−0.952073 + 0.305872i \(0.901052\pi\)
\(240\) 0 0
\(241\) −12.0818 −0.778255 −0.389128 0.921184i \(-0.627223\pi\)
−0.389128 + 0.921184i \(0.627223\pi\)
\(242\) 8.97832 0.577148
\(243\) −7.32875 −0.470140
\(244\) −5.48376 −0.351062
\(245\) 0 0
\(246\) 2.16810 0.138233
\(247\) 0 0
\(248\) −11.8056 −0.749659
\(249\) 0.574965 0.0364369
\(250\) 0 0
\(251\) 3.92605 0.247810 0.123905 0.992294i \(-0.460458\pi\)
0.123905 + 0.992294i \(0.460458\pi\)
\(252\) −27.5195 −1.73356
\(253\) 6.22373 0.391283
\(254\) −3.11994 −0.195763
\(255\) 0 0
\(256\) −16.2532 −1.01582
\(257\) −20.0600 −1.25131 −0.625654 0.780100i \(-0.715168\pi\)
−0.625654 + 0.780100i \(0.715168\pi\)
\(258\) −24.4946 −1.52497
\(259\) −28.4179 −1.76580
\(260\) 0 0
\(261\) 53.5361 3.31380
\(262\) 16.0533 0.991773
\(263\) −15.9452 −0.983223 −0.491612 0.870815i \(-0.663592\pi\)
−0.491612 + 0.870815i \(0.663592\pi\)
\(264\) 8.23412 0.506775
\(265\) 0 0
\(266\) −10.5665 −0.647876
\(267\) 29.0489 1.77777
\(268\) −1.35649 −0.0828611
\(269\) 20.8060 1.26856 0.634282 0.773101i \(-0.281296\pi\)
0.634282 + 0.773101i \(0.281296\pi\)
\(270\) 0 0
\(271\) 8.70079 0.528535 0.264268 0.964449i \(-0.414870\pi\)
0.264268 + 0.964449i \(0.414870\pi\)
\(272\) −0.105043 −0.00636917
\(273\) 0 0
\(274\) 0.692824 0.0418550
\(275\) 0 0
\(276\) −24.4821 −1.47365
\(277\) 8.64034 0.519148 0.259574 0.965723i \(-0.416418\pi\)
0.259574 + 0.965723i \(0.416418\pi\)
\(278\) −0.247605 −0.0148504
\(279\) −26.3928 −1.58009
\(280\) 0 0
\(281\) 12.5197 0.746862 0.373431 0.927658i \(-0.378181\pi\)
0.373431 + 0.927658i \(0.378181\pi\)
\(282\) −28.8172 −1.71604
\(283\) −20.3296 −1.20847 −0.604236 0.796806i \(-0.706521\pi\)
−0.604236 + 0.796806i \(0.706521\pi\)
\(284\) −2.24579 −0.133263
\(285\) 0 0
\(286\) 0 0
\(287\) 2.84114 0.167707
\(288\) −35.7429 −2.10617
\(289\) −16.0786 −0.945800
\(290\) 0 0
\(291\) −50.6562 −2.96952
\(292\) 5.69050 0.333011
\(293\) 25.8016 1.50734 0.753672 0.657250i \(-0.228281\pi\)
0.753672 + 0.657250i \(0.228281\pi\)
\(294\) 15.4853 0.903119
\(295\) 0 0
\(296\) −22.7450 −1.32202
\(297\) 9.74612 0.565527
\(298\) −0.00906094 −0.000524886 0
\(299\) 0 0
\(300\) 0 0
\(301\) −32.0985 −1.85012
\(302\) −0.362600 −0.0208653
\(303\) 16.8584 0.968491
\(304\) −0.365462 −0.0209607
\(305\) 0 0
\(306\) −5.43433 −0.310660
\(307\) −5.73478 −0.327301 −0.163650 0.986518i \(-0.552327\pi\)
−0.163650 + 0.986518i \(0.552327\pi\)
\(308\) 4.07041 0.231933
\(309\) −10.7105 −0.609299
\(310\) 0 0
\(311\) 16.1145 0.913771 0.456886 0.889525i \(-0.348965\pi\)
0.456886 + 0.889525i \(0.348965\pi\)
\(312\) 0 0
\(313\) −20.6515 −1.16729 −0.583646 0.812008i \(-0.698374\pi\)
−0.583646 + 0.812008i \(0.698374\pi\)
\(314\) 0.844391 0.0476517
\(315\) 0 0
\(316\) −6.83406 −0.384446
\(317\) 19.2638 1.08196 0.540981 0.841035i \(-0.318053\pi\)
0.540981 + 0.841035i \(0.318053\pi\)
\(318\) 20.2422 1.13512
\(319\) −7.91854 −0.443353
\(320\) 0 0
\(321\) −17.5839 −0.981436
\(322\) 20.8821 1.16371
\(323\) 3.20573 0.178372
\(324\) −15.1673 −0.842625
\(325\) 0 0
\(326\) −9.32514 −0.516472
\(327\) −33.6515 −1.86093
\(328\) 2.27398 0.125559
\(329\) −37.7629 −2.08194
\(330\) 0 0
\(331\) −19.8891 −1.09320 −0.546602 0.837392i \(-0.684079\pi\)
−0.546602 + 0.837392i \(0.684079\pi\)
\(332\) 0.227487 0.0124849
\(333\) −50.8488 −2.78649
\(334\) −7.07744 −0.387261
\(335\) 0 0
\(336\) 1.19387 0.0651310
\(337\) 14.2197 0.774599 0.387299 0.921954i \(-0.373408\pi\)
0.387299 + 0.921954i \(0.373408\pi\)
\(338\) 0 0
\(339\) 42.0000 2.28112
\(340\) 0 0
\(341\) 3.90376 0.211401
\(342\) −18.9069 −1.02237
\(343\) −4.64891 −0.251017
\(344\) −25.6908 −1.38516
\(345\) 0 0
\(346\) 8.82037 0.474186
\(347\) −5.48270 −0.294327 −0.147163 0.989112i \(-0.547014\pi\)
−0.147163 + 0.989112i \(0.547014\pi\)
\(348\) 31.1489 1.66976
\(349\) −5.37900 −0.287931 −0.143966 0.989583i \(-0.545986\pi\)
−0.143966 + 0.989583i \(0.545986\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.28675 0.281785
\(353\) −0.238408 −0.0126892 −0.00634460 0.999980i \(-0.502020\pi\)
−0.00634460 + 0.999980i \(0.502020\pi\)
\(354\) 2.72877 0.145032
\(355\) 0 0
\(356\) 11.4933 0.609144
\(357\) −10.4723 −0.554253
\(358\) 9.43815 0.498822
\(359\) −0.536191 −0.0282991 −0.0141495 0.999900i \(-0.504504\pi\)
−0.0141495 + 0.999900i \(0.504504\pi\)
\(360\) 0 0
\(361\) −7.84673 −0.412986
\(362\) 7.69152 0.404257
\(363\) 30.9585 1.62490
\(364\) 0 0
\(365\) 0 0
\(366\) 12.3077 0.643331
\(367\) −10.0441 −0.524299 −0.262149 0.965027i \(-0.584431\pi\)
−0.262149 + 0.965027i \(0.584431\pi\)
\(368\) 0.722244 0.0376496
\(369\) 5.08372 0.264648
\(370\) 0 0
\(371\) 26.5260 1.37716
\(372\) −15.3561 −0.796177
\(373\) −4.46872 −0.231382 −0.115691 0.993285i \(-0.536908\pi\)
−0.115691 + 0.993285i \(0.536908\pi\)
\(374\) 0.803794 0.0415632
\(375\) 0 0
\(376\) −30.2245 −1.55871
\(377\) 0 0
\(378\) 32.7006 1.68194
\(379\) 26.0561 1.33841 0.669205 0.743078i \(-0.266635\pi\)
0.669205 + 0.743078i \(0.266635\pi\)
\(380\) 0 0
\(381\) −10.7580 −0.551149
\(382\) −9.42050 −0.481995
\(383\) −31.8585 −1.62789 −0.813947 0.580939i \(-0.802686\pi\)
−0.813947 + 0.580939i \(0.802686\pi\)
\(384\) −20.2012 −1.03089
\(385\) 0 0
\(386\) 18.1539 0.924009
\(387\) −57.4345 −2.91956
\(388\) −20.0423 −1.01749
\(389\) 11.6351 0.589923 0.294962 0.955509i \(-0.404693\pi\)
0.294962 + 0.955509i \(0.404693\pi\)
\(390\) 0 0
\(391\) −6.33533 −0.320391
\(392\) 16.2415 0.820319
\(393\) 55.3538 2.79223
\(394\) 10.2090 0.514324
\(395\) 0 0
\(396\) 7.28328 0.365999
\(397\) −8.07621 −0.405334 −0.202667 0.979248i \(-0.564961\pi\)
−0.202667 + 0.979248i \(0.564961\pi\)
\(398\) 8.84039 0.443129
\(399\) −36.4349 −1.82402
\(400\) 0 0
\(401\) −31.2240 −1.55925 −0.779625 0.626246i \(-0.784591\pi\)
−0.779625 + 0.626246i \(0.784591\pi\)
\(402\) 3.04449 0.151845
\(403\) 0 0
\(404\) 6.67009 0.331849
\(405\) 0 0
\(406\) −26.5686 −1.31858
\(407\) 7.52106 0.372805
\(408\) −8.38176 −0.414959
\(409\) 32.1963 1.59201 0.796003 0.605293i \(-0.206944\pi\)
0.796003 + 0.605293i \(0.206944\pi\)
\(410\) 0 0
\(411\) 2.38895 0.117838
\(412\) −4.23764 −0.208774
\(413\) 3.57586 0.175956
\(414\) 37.3649 1.83638
\(415\) 0 0
\(416\) 0 0
\(417\) −0.853777 −0.0418096
\(418\) 2.79653 0.136783
\(419\) −21.8280 −1.06637 −0.533185 0.845999i \(-0.679005\pi\)
−0.533185 + 0.845999i \(0.679005\pi\)
\(420\) 0 0
\(421\) −4.55712 −0.222100 −0.111050 0.993815i \(-0.535421\pi\)
−0.111050 + 0.993815i \(0.535421\pi\)
\(422\) −10.1737 −0.495250
\(423\) −67.5700 −3.28537
\(424\) 21.2307 1.03105
\(425\) 0 0
\(426\) 5.04040 0.244208
\(427\) 16.1283 0.780504
\(428\) −6.95712 −0.336285
\(429\) 0 0
\(430\) 0 0
\(431\) −29.7238 −1.43174 −0.715871 0.698232i \(-0.753970\pi\)
−0.715871 + 0.698232i \(0.753970\pi\)
\(432\) 1.13101 0.0544156
\(433\) 7.78222 0.373990 0.186995 0.982361i \(-0.440125\pi\)
0.186995 + 0.982361i \(0.440125\pi\)
\(434\) 13.0981 0.628727
\(435\) 0 0
\(436\) −13.3143 −0.637641
\(437\) −22.0417 −1.05440
\(438\) −12.7716 −0.610253
\(439\) 4.19882 0.200399 0.100199 0.994967i \(-0.468052\pi\)
0.100199 + 0.994967i \(0.468052\pi\)
\(440\) 0 0
\(441\) 36.3096 1.72903
\(442\) 0 0
\(443\) 21.5287 1.02286 0.511430 0.859325i \(-0.329116\pi\)
0.511430 + 0.859325i \(0.329116\pi\)
\(444\) −29.5854 −1.40406
\(445\) 0 0
\(446\) −4.37668 −0.207242
\(447\) −0.0312433 −0.00147776
\(448\) 18.5181 0.874899
\(449\) −24.0900 −1.13688 −0.568439 0.822726i \(-0.692452\pi\)
−0.568439 + 0.822726i \(0.692452\pi\)
\(450\) 0 0
\(451\) −0.751934 −0.0354072
\(452\) 16.6174 0.781618
\(453\) −1.25029 −0.0587439
\(454\) 21.5577 1.01175
\(455\) 0 0
\(456\) −29.1615 −1.36561
\(457\) 32.8242 1.53545 0.767726 0.640779i \(-0.221388\pi\)
0.767726 + 0.640779i \(0.221388\pi\)
\(458\) −25.1874 −1.17693
\(459\) −9.92088 −0.463067
\(460\) 0 0
\(461\) −24.2274 −1.12838 −0.564191 0.825644i \(-0.690812\pi\)
−0.564191 + 0.825644i \(0.690812\pi\)
\(462\) −9.13555 −0.425024
\(463\) −3.28092 −0.152477 −0.0762385 0.997090i \(-0.524291\pi\)
−0.0762385 + 0.997090i \(0.524291\pi\)
\(464\) −0.918922 −0.0426599
\(465\) 0 0
\(466\) −11.2622 −0.521709
\(467\) 7.88097 0.364688 0.182344 0.983235i \(-0.441632\pi\)
0.182344 + 0.983235i \(0.441632\pi\)
\(468\) 0 0
\(469\) 3.98959 0.184222
\(470\) 0 0
\(471\) 2.91158 0.134158
\(472\) 2.86203 0.131735
\(473\) 8.49516 0.390608
\(474\) 15.3382 0.704509
\(475\) 0 0
\(476\) −4.14340 −0.189912
\(477\) 47.4635 2.17320
\(478\) 26.1403 1.19563
\(479\) 33.2549 1.51945 0.759727 0.650243i \(-0.225333\pi\)
0.759727 + 0.650243i \(0.225333\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 10.7286 0.488673
\(483\) 72.0044 3.27631
\(484\) 12.2488 0.556765
\(485\) 0 0
\(486\) 6.50790 0.295204
\(487\) −3.18231 −0.144204 −0.0721022 0.997397i \(-0.522971\pi\)
−0.0721022 + 0.997397i \(0.522971\pi\)
\(488\) 12.9087 0.584349
\(489\) −32.1544 −1.45407
\(490\) 0 0
\(491\) 32.5839 1.47049 0.735245 0.677802i \(-0.237067\pi\)
0.735245 + 0.677802i \(0.237067\pi\)
\(492\) 2.95786 0.133351
\(493\) 8.06053 0.363028
\(494\) 0 0
\(495\) 0 0
\(496\) 0.453019 0.0203412
\(497\) 6.60509 0.296279
\(498\) −0.510566 −0.0228790
\(499\) 9.77164 0.437439 0.218719 0.975788i \(-0.429812\pi\)
0.218719 + 0.975788i \(0.429812\pi\)
\(500\) 0 0
\(501\) −24.4040 −1.09029
\(502\) −3.48632 −0.155602
\(503\) 18.5746 0.828201 0.414100 0.910231i \(-0.364096\pi\)
0.414100 + 0.910231i \(0.364096\pi\)
\(504\) 64.7804 2.88555
\(505\) 0 0
\(506\) −5.52665 −0.245689
\(507\) 0 0
\(508\) −4.25644 −0.188849
\(509\) 1.96638 0.0871584 0.0435792 0.999050i \(-0.486124\pi\)
0.0435792 + 0.999050i \(0.486124\pi\)
\(510\) 0 0
\(511\) −16.7364 −0.740373
\(512\) 1.23765 0.0546971
\(513\) −34.5164 −1.52394
\(514\) 17.8132 0.785707
\(515\) 0 0
\(516\) −33.4172 −1.47111
\(517\) 9.99430 0.439549
\(518\) 25.2350 1.10876
\(519\) 30.4139 1.33502
\(520\) 0 0
\(521\) −21.0065 −0.920312 −0.460156 0.887838i \(-0.652206\pi\)
−0.460156 + 0.887838i \(0.652206\pi\)
\(522\) −47.5399 −2.08076
\(523\) −20.2897 −0.887206 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(524\) 21.9009 0.956746
\(525\) 0 0
\(526\) 14.1593 0.617374
\(527\) −3.97376 −0.173100
\(528\) −0.315969 −0.0137508
\(529\) 20.5598 0.893905
\(530\) 0 0
\(531\) 6.39836 0.277665
\(532\) −14.4156 −0.624994
\(533\) 0 0
\(534\) −25.7953 −1.11627
\(535\) 0 0
\(536\) 3.19317 0.137924
\(537\) 32.5440 1.40438
\(538\) −18.4757 −0.796542
\(539\) −5.37056 −0.231326
\(540\) 0 0
\(541\) 42.0546 1.80807 0.904035 0.427458i \(-0.140591\pi\)
0.904035 + 0.427458i \(0.140591\pi\)
\(542\) −7.72627 −0.331872
\(543\) 26.5214 1.13814
\(544\) −5.38154 −0.230732
\(545\) 0 0
\(546\) 0 0
\(547\) 31.0572 1.32791 0.663956 0.747772i \(-0.268876\pi\)
0.663956 + 0.747772i \(0.268876\pi\)
\(548\) 0.945197 0.0403768
\(549\) 28.8588 1.23166
\(550\) 0 0
\(551\) 28.0439 1.19471
\(552\) 57.6305 2.45292
\(553\) 20.0997 0.854726
\(554\) −7.67259 −0.325977
\(555\) 0 0
\(556\) −0.337799 −0.0143259
\(557\) −3.28840 −0.139334 −0.0696669 0.997570i \(-0.522194\pi\)
−0.0696669 + 0.997570i \(0.522194\pi\)
\(558\) 23.4367 0.992153
\(559\) 0 0
\(560\) 0 0
\(561\) 2.77159 0.117017
\(562\) −11.1174 −0.468961
\(563\) −36.5000 −1.53829 −0.769147 0.639072i \(-0.779318\pi\)
−0.769147 + 0.639072i \(0.779318\pi\)
\(564\) −39.3143 −1.65543
\(565\) 0 0
\(566\) 18.0526 0.758809
\(567\) 44.6085 1.87338
\(568\) 5.28655 0.221819
\(569\) −12.4563 −0.522194 −0.261097 0.965313i \(-0.584084\pi\)
−0.261097 + 0.965313i \(0.584084\pi\)
\(570\) 0 0
\(571\) −12.8215 −0.536565 −0.268282 0.963340i \(-0.586456\pi\)
−0.268282 + 0.963340i \(0.586456\pi\)
\(572\) 0 0
\(573\) −32.4832 −1.35700
\(574\) −2.52292 −0.105305
\(575\) 0 0
\(576\) 33.1349 1.38062
\(577\) 22.7641 0.947681 0.473841 0.880611i \(-0.342867\pi\)
0.473841 + 0.880611i \(0.342867\pi\)
\(578\) 14.2777 0.593875
\(579\) 62.5972 2.60145
\(580\) 0 0
\(581\) −0.669061 −0.0277573
\(582\) 44.9825 1.86458
\(583\) −7.02034 −0.290753
\(584\) −13.3954 −0.554304
\(585\) 0 0
\(586\) −22.9117 −0.946474
\(587\) 18.5958 0.767533 0.383766 0.923430i \(-0.374627\pi\)
0.383766 + 0.923430i \(0.374627\pi\)
\(588\) 21.1260 0.871223
\(589\) −13.8254 −0.569664
\(590\) 0 0
\(591\) 35.2021 1.44802
\(592\) 0.872795 0.0358717
\(593\) 36.4829 1.49817 0.749086 0.662473i \(-0.230493\pi\)
0.749086 + 0.662473i \(0.230493\pi\)
\(594\) −8.65452 −0.355099
\(595\) 0 0
\(596\) −0.0123615 −0.000506348 0
\(597\) 30.4829 1.24758
\(598\) 0 0
\(599\) −46.6153 −1.90465 −0.952324 0.305089i \(-0.901314\pi\)
−0.952324 + 0.305089i \(0.901314\pi\)
\(600\) 0 0
\(601\) −2.75628 −0.112431 −0.0562155 0.998419i \(-0.517903\pi\)
−0.0562155 + 0.998419i \(0.517903\pi\)
\(602\) 28.5033 1.16171
\(603\) 7.13867 0.290709
\(604\) −0.494683 −0.0201283
\(605\) 0 0
\(606\) −14.9702 −0.608123
\(607\) 7.97853 0.323839 0.161919 0.986804i \(-0.448232\pi\)
0.161919 + 0.986804i \(0.448232\pi\)
\(608\) −18.7233 −0.759329
\(609\) −91.6122 −3.71232
\(610\) 0 0
\(611\) 0 0
\(612\) −7.41388 −0.299688
\(613\) −28.3639 −1.14561 −0.572804 0.819693i \(-0.694144\pi\)
−0.572804 + 0.819693i \(0.694144\pi\)
\(614\) 5.09246 0.205515
\(615\) 0 0
\(616\) −9.58169 −0.386057
\(617\) 28.8176 1.16015 0.580075 0.814563i \(-0.303023\pi\)
0.580075 + 0.814563i \(0.303023\pi\)
\(618\) 9.51088 0.382584
\(619\) −11.8346 −0.475671 −0.237836 0.971305i \(-0.576438\pi\)
−0.237836 + 0.971305i \(0.576438\pi\)
\(620\) 0 0
\(621\) 68.2130 2.73729
\(622\) −14.3096 −0.573764
\(623\) −33.8030 −1.35429
\(624\) 0 0
\(625\) 0 0
\(626\) 18.3385 0.732952
\(627\) 9.64283 0.385097
\(628\) 1.15197 0.0459688
\(629\) −7.65592 −0.305261
\(630\) 0 0
\(631\) 22.0122 0.876290 0.438145 0.898904i \(-0.355636\pi\)
0.438145 + 0.898904i \(0.355636\pi\)
\(632\) 16.0873 0.639918
\(633\) −35.0804 −1.39432
\(634\) −17.1062 −0.679373
\(635\) 0 0
\(636\) 27.6157 1.09503
\(637\) 0 0
\(638\) 7.03163 0.278385
\(639\) 11.8186 0.467538
\(640\) 0 0
\(641\) −2.36286 −0.0933272 −0.0466636 0.998911i \(-0.514859\pi\)
−0.0466636 + 0.998911i \(0.514859\pi\)
\(642\) 15.6144 0.616252
\(643\) −28.6095 −1.12825 −0.564125 0.825689i \(-0.690786\pi\)
−0.564125 + 0.825689i \(0.690786\pi\)
\(644\) 28.4888 1.12261
\(645\) 0 0
\(646\) −2.84668 −0.112001
\(647\) −31.0046 −1.21892 −0.609458 0.792818i \(-0.708613\pi\)
−0.609458 + 0.792818i \(0.708613\pi\)
\(648\) 35.7035 1.40257
\(649\) −0.946384 −0.0371488
\(650\) 0 0
\(651\) 45.1639 1.77011
\(652\) −12.7220 −0.498231
\(653\) −19.7419 −0.772559 −0.386279 0.922382i \(-0.626240\pi\)
−0.386279 + 0.922382i \(0.626240\pi\)
\(654\) 29.8824 1.16849
\(655\) 0 0
\(656\) −0.0872596 −0.00340691
\(657\) −29.9467 −1.16833
\(658\) 33.5333 1.30726
\(659\) −34.3831 −1.33937 −0.669687 0.742643i \(-0.733572\pi\)
−0.669687 + 0.742643i \(0.733572\pi\)
\(660\) 0 0
\(661\) −2.91906 −0.113538 −0.0567692 0.998387i \(-0.518080\pi\)
−0.0567692 + 0.998387i \(0.518080\pi\)
\(662\) 17.6615 0.686432
\(663\) 0 0
\(664\) −0.535500 −0.0207814
\(665\) 0 0
\(666\) 45.1535 1.74966
\(667\) −55.4218 −2.14594
\(668\) −9.65552 −0.373583
\(669\) −15.0914 −0.583467
\(670\) 0 0
\(671\) −4.26851 −0.164784
\(672\) 61.1641 2.35946
\(673\) −36.1865 −1.39489 −0.697444 0.716640i \(-0.745679\pi\)
−0.697444 + 0.716640i \(0.745679\pi\)
\(674\) −12.6271 −0.486377
\(675\) 0 0
\(676\) 0 0
\(677\) 17.8383 0.685580 0.342790 0.939412i \(-0.388628\pi\)
0.342790 + 0.939412i \(0.388628\pi\)
\(678\) −37.2958 −1.43234
\(679\) 58.9464 2.26216
\(680\) 0 0
\(681\) 74.3338 2.84848
\(682\) −3.46653 −0.132740
\(683\) −47.9902 −1.83629 −0.918147 0.396240i \(-0.870315\pi\)
−0.918147 + 0.396240i \(0.870315\pi\)
\(684\) −25.7941 −0.986262
\(685\) 0 0
\(686\) 4.12821 0.157616
\(687\) −86.8496 −3.31352
\(688\) 0.985837 0.0375847
\(689\) 0 0
\(690\) 0 0
\(691\) 30.7768 1.17081 0.585403 0.810742i \(-0.300936\pi\)
0.585403 + 0.810742i \(0.300936\pi\)
\(692\) 12.0333 0.457439
\(693\) −21.4209 −0.813712
\(694\) 4.86861 0.184810
\(695\) 0 0
\(696\) −73.3241 −2.77934
\(697\) 0.765417 0.0289922
\(698\) 4.77653 0.180794
\(699\) −38.8335 −1.46882
\(700\) 0 0
\(701\) −6.69487 −0.252862 −0.126431 0.991975i \(-0.540352\pi\)
−0.126431 + 0.991975i \(0.540352\pi\)
\(702\) 0 0
\(703\) −26.6362 −1.00460
\(704\) −4.90100 −0.184713
\(705\) 0 0
\(706\) 0.211706 0.00796765
\(707\) −19.6174 −0.737789
\(708\) 3.72276 0.139910
\(709\) 14.5935 0.548071 0.274036 0.961720i \(-0.411641\pi\)
0.274036 + 0.961720i \(0.411641\pi\)
\(710\) 0 0
\(711\) 35.9648 1.34879
\(712\) −27.0551 −1.01393
\(713\) 27.3224 1.02323
\(714\) 9.29936 0.348020
\(715\) 0 0
\(716\) 12.8762 0.481204
\(717\) 90.1352 3.36616
\(718\) 0.476136 0.0177692
\(719\) −15.0560 −0.561493 −0.280746 0.959782i \(-0.590582\pi\)
−0.280746 + 0.959782i \(0.590582\pi\)
\(720\) 0 0
\(721\) 12.4633 0.464159
\(722\) 6.96787 0.259317
\(723\) 36.9936 1.37581
\(724\) 10.4933 0.389980
\(725\) 0 0
\(726\) −27.4910 −1.02029
\(727\) −38.0451 −1.41102 −0.705508 0.708702i \(-0.749281\pi\)
−0.705508 + 0.708702i \(0.749281\pi\)
\(728\) 0 0
\(729\) −15.1192 −0.559971
\(730\) 0 0
\(731\) −8.64749 −0.319839
\(732\) 16.7909 0.620610
\(733\) −1.60488 −0.0592776 −0.0296388 0.999561i \(-0.509436\pi\)
−0.0296388 + 0.999561i \(0.509436\pi\)
\(734\) 8.91914 0.329211
\(735\) 0 0
\(736\) 37.0019 1.36391
\(737\) −1.05588 −0.0388939
\(738\) −4.51432 −0.166174
\(739\) −37.6687 −1.38567 −0.692833 0.721098i \(-0.743638\pi\)
−0.692833 + 0.721098i \(0.743638\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −23.5549 −0.864729
\(743\) −45.6903 −1.67621 −0.838106 0.545507i \(-0.816337\pi\)
−0.838106 + 0.545507i \(0.816337\pi\)
\(744\) 36.1481 1.32525
\(745\) 0 0
\(746\) 3.96821 0.145286
\(747\) −1.19717 −0.0438021
\(748\) 1.09659 0.0400953
\(749\) 20.4616 0.747651
\(750\) 0 0
\(751\) −38.3301 −1.39868 −0.699342 0.714787i \(-0.746524\pi\)
−0.699342 + 0.714787i \(0.746524\pi\)
\(752\) 1.15981 0.0422938
\(753\) −12.0213 −0.438081
\(754\) 0 0
\(755\) 0 0
\(756\) 44.6123 1.62253
\(757\) 36.1056 1.31228 0.656141 0.754639i \(-0.272188\pi\)
0.656141 + 0.754639i \(0.272188\pi\)
\(758\) −23.1377 −0.840398
\(759\) −19.0566 −0.691712
\(760\) 0 0
\(761\) −11.4601 −0.415428 −0.207714 0.978190i \(-0.566602\pi\)
−0.207714 + 0.978190i \(0.566602\pi\)
\(762\) 9.55306 0.346071
\(763\) 39.1588 1.41764
\(764\) −12.8521 −0.464972
\(765\) 0 0
\(766\) 28.2902 1.02217
\(767\) 0 0
\(768\) 49.7661 1.79578
\(769\) 19.8697 0.716521 0.358260 0.933622i \(-0.383370\pi\)
0.358260 + 0.933622i \(0.383370\pi\)
\(770\) 0 0
\(771\) 61.4224 2.21207
\(772\) 24.7668 0.891375
\(773\) −46.3506 −1.66712 −0.833558 0.552432i \(-0.813700\pi\)
−0.833558 + 0.552432i \(0.813700\pi\)
\(774\) 51.0016 1.83322
\(775\) 0 0
\(776\) 47.1792 1.69364
\(777\) 87.0136 3.12160
\(778\) −10.3319 −0.370417
\(779\) 2.66301 0.0954123
\(780\) 0 0
\(781\) −1.74810 −0.0625519
\(782\) 5.62575 0.201176
\(783\) −86.7884 −3.10156
\(784\) −0.623237 −0.0222585
\(785\) 0 0
\(786\) −49.1540 −1.75326
\(787\) −35.5663 −1.26780 −0.633901 0.773414i \(-0.718547\pi\)
−0.633901 + 0.773414i \(0.718547\pi\)
\(788\) 13.9278 0.496159
\(789\) 48.8231 1.73815
\(790\) 0 0
\(791\) −48.8735 −1.73774
\(792\) −17.1447 −0.609212
\(793\) 0 0
\(794\) 7.17165 0.254512
\(795\) 0 0
\(796\) 12.0607 0.427478
\(797\) 15.7100 0.556478 0.278239 0.960512i \(-0.410249\pi\)
0.278239 + 0.960512i \(0.410249\pi\)
\(798\) 32.3540 1.14532
\(799\) −10.1735 −0.359913
\(800\) 0 0
\(801\) −60.4845 −2.13711
\(802\) 27.7268 0.979066
\(803\) 4.42943 0.156311
\(804\) 4.15349 0.146482
\(805\) 0 0
\(806\) 0 0
\(807\) −63.7066 −2.24258
\(808\) −15.7013 −0.552369
\(809\) −49.8734 −1.75346 −0.876728 0.480987i \(-0.840278\pi\)
−0.876728 + 0.480987i \(0.840278\pi\)
\(810\) 0 0
\(811\) −38.3395 −1.34628 −0.673141 0.739514i \(-0.735055\pi\)
−0.673141 + 0.739514i \(0.735055\pi\)
\(812\) −36.2467 −1.27201
\(813\) −26.6412 −0.934349
\(814\) −6.67867 −0.234087
\(815\) 0 0
\(816\) 0.321635 0.0112595
\(817\) −30.0860 −1.05258
\(818\) −28.5902 −0.999633
\(819\) 0 0
\(820\) 0 0
\(821\) −32.1738 −1.12287 −0.561436 0.827520i \(-0.689751\pi\)
−0.561436 + 0.827520i \(0.689751\pi\)
\(822\) −2.12138 −0.0739916
\(823\) 11.2002 0.390413 0.195207 0.980762i \(-0.437462\pi\)
0.195207 + 0.980762i \(0.437462\pi\)
\(824\) 9.97535 0.347508
\(825\) 0 0
\(826\) −3.17535 −0.110484
\(827\) −8.21374 −0.285620 −0.142810 0.989750i \(-0.545614\pi\)
−0.142810 + 0.989750i \(0.545614\pi\)
\(828\) 50.9756 1.77153
\(829\) 35.0948 1.21889 0.609447 0.792827i \(-0.291391\pi\)
0.609447 + 0.792827i \(0.291391\pi\)
\(830\) 0 0
\(831\) −26.4561 −0.917753
\(832\) 0 0
\(833\) 5.46686 0.189416
\(834\) 0.758150 0.0262526
\(835\) 0 0
\(836\) 3.81521 0.131952
\(837\) 42.7858 1.47889
\(838\) 19.3832 0.669582
\(839\) 17.7011 0.611108 0.305554 0.952175i \(-0.401158\pi\)
0.305554 + 0.952175i \(0.401158\pi\)
\(840\) 0 0
\(841\) 41.5140 1.43152
\(842\) 4.04670 0.139459
\(843\) −38.3345 −1.32031
\(844\) −13.8797 −0.477759
\(845\) 0 0
\(846\) 60.0019 2.06291
\(847\) −36.0250 −1.23784
\(848\) −0.814689 −0.0279765
\(849\) 62.2479 2.13634
\(850\) 0 0
\(851\) 52.6398 1.80447
\(852\) 6.87644 0.235583
\(853\) −20.4558 −0.700394 −0.350197 0.936676i \(-0.613885\pi\)
−0.350197 + 0.936676i \(0.613885\pi\)
\(854\) −14.3219 −0.490085
\(855\) 0 0
\(856\) 16.3770 0.559753
\(857\) 36.3625 1.24212 0.621060 0.783763i \(-0.286702\pi\)
0.621060 + 0.783763i \(0.286702\pi\)
\(858\) 0 0
\(859\) −51.0474 −1.74172 −0.870858 0.491534i \(-0.836436\pi\)
−0.870858 + 0.491534i \(0.836436\pi\)
\(860\) 0 0
\(861\) −8.69937 −0.296474
\(862\) 26.3946 0.899003
\(863\) 24.9638 0.849776 0.424888 0.905246i \(-0.360313\pi\)
0.424888 + 0.905246i \(0.360313\pi\)
\(864\) 57.9435 1.97128
\(865\) 0 0
\(866\) −6.91058 −0.234831
\(867\) 49.2316 1.67199
\(868\) 17.8692 0.606522
\(869\) −5.31957 −0.180454
\(870\) 0 0
\(871\) 0 0
\(872\) 31.3417 1.06137
\(873\) 105.474 3.56976
\(874\) 19.5729 0.662063
\(875\) 0 0
\(876\) −17.4239 −0.588700
\(877\) 35.9738 1.21475 0.607374 0.794416i \(-0.292223\pi\)
0.607374 + 0.794416i \(0.292223\pi\)
\(878\) −3.72854 −0.125832
\(879\) −79.0027 −2.66469
\(880\) 0 0
\(881\) −7.77696 −0.262013 −0.131006 0.991382i \(-0.541821\pi\)
−0.131006 + 0.991382i \(0.541821\pi\)
\(882\) −32.2428 −1.08567
\(883\) 38.0635 1.28094 0.640470 0.767983i \(-0.278740\pi\)
0.640470 + 0.767983i \(0.278740\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −19.1174 −0.642262
\(887\) −22.3640 −0.750910 −0.375455 0.926841i \(-0.622514\pi\)
−0.375455 + 0.926841i \(0.622514\pi\)
\(888\) 69.6435 2.33708
\(889\) 12.5186 0.419861
\(890\) 0 0
\(891\) −11.8060 −0.395518
\(892\) −5.97096 −0.199922
\(893\) −35.3953 −1.18446
\(894\) 0.0277440 0.000927897 0
\(895\) 0 0
\(896\) 23.5073 0.785324
\(897\) 0 0
\(898\) 21.3918 0.713855
\(899\) −34.7627 −1.15940
\(900\) 0 0
\(901\) 7.14622 0.238075
\(902\) 0.667714 0.0222325
\(903\) 98.2833 3.27066
\(904\) −39.1172 −1.30102
\(905\) 0 0
\(906\) 1.11026 0.0368858
\(907\) 39.4230 1.30902 0.654510 0.756053i \(-0.272875\pi\)
0.654510 + 0.756053i \(0.272875\pi\)
\(908\) 29.4104 0.976019
\(909\) −35.1019 −1.16426
\(910\) 0 0
\(911\) −32.8525 −1.08845 −0.544227 0.838938i \(-0.683177\pi\)
−0.544227 + 0.838938i \(0.683177\pi\)
\(912\) 1.11902 0.0370544
\(913\) 0.177073 0.00586027
\(914\) −29.1478 −0.964122
\(915\) 0 0
\(916\) −34.3623 −1.13536
\(917\) −64.4128 −2.12710
\(918\) 8.80970 0.290764
\(919\) 8.54325 0.281816 0.140908 0.990023i \(-0.454998\pi\)
0.140908 + 0.990023i \(0.454998\pi\)
\(920\) 0 0
\(921\) 17.5595 0.578605
\(922\) 21.5138 0.708520
\(923\) 0 0
\(924\) −12.4633 −0.410013
\(925\) 0 0
\(926\) 2.91344 0.0957416
\(927\) 22.3010 0.732459
\(928\) −47.0780 −1.54541
\(929\) 0.365640 0.0119962 0.00599812 0.999982i \(-0.498091\pi\)
0.00599812 + 0.999982i \(0.498091\pi\)
\(930\) 0 0
\(931\) 19.0201 0.623359
\(932\) −15.3646 −0.503284
\(933\) −49.3416 −1.61537
\(934\) −6.99827 −0.228990
\(935\) 0 0
\(936\) 0 0
\(937\) 9.19666 0.300442 0.150221 0.988652i \(-0.452001\pi\)
0.150221 + 0.988652i \(0.452001\pi\)
\(938\) −3.54274 −0.115675
\(939\) 63.2335 2.06355
\(940\) 0 0
\(941\) −3.66316 −0.119416 −0.0597078 0.998216i \(-0.519017\pi\)
−0.0597078 + 0.998216i \(0.519017\pi\)
\(942\) −2.58547 −0.0842391
\(943\) −5.26278 −0.171380
\(944\) −0.109825 −0.00357450
\(945\) 0 0
\(946\) −7.54367 −0.245266
\(947\) 30.6437 0.995787 0.497893 0.867238i \(-0.334107\pi\)
0.497893 + 0.867238i \(0.334107\pi\)
\(948\) 20.9254 0.679627
\(949\) 0 0
\(950\) 0 0
\(951\) −58.9844 −1.91270
\(952\) 9.75350 0.316113
\(953\) −5.94775 −0.192667 −0.0963333 0.995349i \(-0.530711\pi\)
−0.0963333 + 0.995349i \(0.530711\pi\)
\(954\) −42.1474 −1.36457
\(955\) 0 0
\(956\) 35.6623 1.15340
\(957\) 24.2460 0.783763
\(958\) −29.5302 −0.954077
\(959\) −2.77992 −0.0897683
\(960\) 0 0
\(961\) −13.8623 −0.447173
\(962\) 0 0
\(963\) 36.6124 1.17982
\(964\) 14.6366 0.471414
\(965\) 0 0
\(966\) −63.9396 −2.05722
\(967\) −1.71181 −0.0550482 −0.0275241 0.999621i \(-0.508762\pi\)
−0.0275241 + 0.999621i \(0.508762\pi\)
\(968\) −28.8335 −0.926745
\(969\) −9.81573 −0.315327
\(970\) 0 0
\(971\) −14.2668 −0.457844 −0.228922 0.973445i \(-0.573520\pi\)
−0.228922 + 0.973445i \(0.573520\pi\)
\(972\) 8.87851 0.284778
\(973\) 0.993503 0.0318502
\(974\) 2.82588 0.0905471
\(975\) 0 0
\(976\) −0.495347 −0.0158557
\(977\) −47.5178 −1.52023 −0.760115 0.649788i \(-0.774858\pi\)
−0.760115 + 0.649788i \(0.774858\pi\)
\(978\) 28.5530 0.913023
\(979\) 8.94628 0.285924
\(980\) 0 0
\(981\) 70.0678 2.23709
\(982\) −28.9344 −0.923332
\(983\) −35.3161 −1.12641 −0.563204 0.826318i \(-0.690432\pi\)
−0.563204 + 0.826318i \(0.690432\pi\)
\(984\) −6.96276 −0.221965
\(985\) 0 0
\(986\) −7.15772 −0.227948
\(987\) 115.627 3.68046
\(988\) 0 0
\(989\) 59.4575 1.89064
\(990\) 0 0
\(991\) −61.3288 −1.94817 −0.974087 0.226173i \(-0.927378\pi\)
−0.974087 + 0.226173i \(0.927378\pi\)
\(992\) 23.2090 0.736887
\(993\) 60.8991 1.93258
\(994\) −5.86529 −0.186036
\(995\) 0 0
\(996\) −0.696548 −0.0220710
\(997\) −20.6596 −0.654295 −0.327148 0.944973i \(-0.606087\pi\)
−0.327148 + 0.944973i \(0.606087\pi\)
\(998\) −8.67717 −0.274671
\(999\) 82.4319 2.60803
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bu.1.4 10
5.4 even 2 4225.2.a.bv.1.7 10
13.2 odd 12 325.2.n.f.251.2 yes 10
13.7 odd 12 325.2.n.f.101.2 yes 10
13.12 even 2 inner 4225.2.a.bu.1.7 10
65.2 even 12 325.2.m.d.199.7 20
65.7 even 12 325.2.m.d.49.4 20
65.28 even 12 325.2.m.d.199.4 20
65.33 even 12 325.2.m.d.49.7 20
65.54 odd 12 325.2.n.e.251.4 yes 10
65.59 odd 12 325.2.n.e.101.4 10
65.64 even 2 4225.2.a.bv.1.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.m.d.49.4 20 65.7 even 12
325.2.m.d.49.7 20 65.33 even 12
325.2.m.d.199.4 20 65.28 even 12
325.2.m.d.199.7 20 65.2 even 12
325.2.n.e.101.4 10 65.59 odd 12
325.2.n.e.251.4 yes 10 65.54 odd 12
325.2.n.f.101.2 yes 10 13.7 odd 12
325.2.n.f.251.2 yes 10 13.2 odd 12
4225.2.a.bu.1.4 10 1.1 even 1 trivial
4225.2.a.bu.1.7 10 13.12 even 2 inner
4225.2.a.bv.1.4 10 65.64 even 2
4225.2.a.bv.1.7 10 5.4 even 2