Properties

Label 4212.2.b.i.649.11
Level $4212$
Weight $2$
Character 4212.649
Analytic conductor $33.633$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(649,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6x^{14} + 75x^{12} + 877x^{10} - 1707x^{8} + 34683x^{6} + 343849x^{4} + 12936x^{2} + 76176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.11
Root \(-0.481191 + 0.489116i\) of defining polynomial
Character \(\chi\) \(=\) 4212.649
Dual form 4212.2.b.i.649.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46208i q^{5} -2.26664i q^{7} +5.62029i q^{11} +(-3.17749 + 1.70399i) q^{13} -4.83263 q^{17} +1.39107i q^{19} +4.74426 q^{23} +2.86233 q^{25} -6.47631 q^{29} -0.875576i q^{31} +3.31401 q^{35} -10.0004i q^{37} +4.44070i q^{41} +0.0153803 q^{43} +1.69435i q^{47} +1.86233 q^{49} -6.38795 q^{53} -8.21730 q^{55} +0.514758i q^{59} -11.2327 q^{61} +(-2.49136 - 4.64574i) q^{65} -5.94036i q^{67} -5.44248i q^{71} -15.4092i q^{73} +12.7392 q^{77} -14.7253 q^{79} -16.5741i q^{83} -7.06568i q^{85} -2.69189i q^{89} +(3.86233 + 7.20223i) q^{91} -2.03385 q^{95} +2.78213i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{13} - 24 q^{25} - 24 q^{43} - 40 q^{49} + 36 q^{55} + 12 q^{61} - 16 q^{79} - 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.46208i 0.653861i 0.945048 + 0.326931i \(0.106014\pi\)
−0.945048 + 0.326931i \(0.893986\pi\)
\(6\) 0 0
\(7\) 2.26664i 0.856711i −0.903610 0.428355i \(-0.859093\pi\)
0.903610 0.428355i \(-0.140907\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.62029i 1.69458i 0.531130 + 0.847291i \(0.321768\pi\)
−0.531130 + 0.847291i \(0.678232\pi\)
\(12\) 0 0
\(13\) −3.17749 + 1.70399i −0.881277 + 0.472600i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.83263 −1.17208 −0.586042 0.810280i \(-0.699315\pi\)
−0.586042 + 0.810280i \(0.699315\pi\)
\(18\) 0 0
\(19\) 1.39107i 0.319133i 0.987187 + 0.159566i \(0.0510096\pi\)
−0.987187 + 0.159566i \(0.948990\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.74426 0.989247 0.494624 0.869107i \(-0.335306\pi\)
0.494624 + 0.869107i \(0.335306\pi\)
\(24\) 0 0
\(25\) 2.86233 0.572465
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.47631 −1.20262 −0.601311 0.799015i \(-0.705355\pi\)
−0.601311 + 0.799015i \(0.705355\pi\)
\(30\) 0 0
\(31\) 0.875576i 0.157258i −0.996904 0.0786291i \(-0.974946\pi\)
0.996904 0.0786291i \(-0.0250543\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.31401 0.560170
\(36\) 0 0
\(37\) 10.0004i 1.64405i −0.569450 0.822026i \(-0.692844\pi\)
0.569450 0.822026i \(-0.307156\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.44070i 0.693521i 0.937954 + 0.346760i \(0.112718\pi\)
−0.937954 + 0.346760i \(0.887282\pi\)
\(42\) 0 0
\(43\) 0.0153803 0.00234548 0.00117274 0.999999i \(-0.499627\pi\)
0.00117274 + 0.999999i \(0.499627\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.69435i 0.247146i 0.992335 + 0.123573i \(0.0394353\pi\)
−0.992335 + 0.123573i \(0.960565\pi\)
\(48\) 0 0
\(49\) 1.86233 0.266047
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.38795 −0.877452 −0.438726 0.898621i \(-0.644570\pi\)
−0.438726 + 0.898621i \(0.644570\pi\)
\(54\) 0 0
\(55\) −8.21730 −1.10802
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.514758i 0.0670157i 0.999438 + 0.0335079i \(0.0106679\pi\)
−0.999438 + 0.0335079i \(0.989332\pi\)
\(60\) 0 0
\(61\) −11.2327 −1.43820 −0.719099 0.694908i \(-0.755445\pi\)
−0.719099 + 0.694908i \(0.755445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.49136 4.64574i −0.309015 0.576233i
\(66\) 0 0
\(67\) 5.94036i 0.725731i −0.931842 0.362866i \(-0.881798\pi\)
0.931842 0.362866i \(-0.118202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.44248i 0.645904i −0.946415 0.322952i \(-0.895325\pi\)
0.946415 0.322952i \(-0.104675\pi\)
\(72\) 0 0
\(73\) 15.4092i 1.80352i −0.432242 0.901758i \(-0.642277\pi\)
0.432242 0.901758i \(-0.357723\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.7392 1.45177
\(78\) 0 0
\(79\) −14.7253 −1.65673 −0.828365 0.560189i \(-0.810729\pi\)
−0.828365 + 0.560189i \(0.810729\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 16.5741i 1.81925i −0.415433 0.909624i \(-0.636370\pi\)
0.415433 0.909624i \(-0.363630\pi\)
\(84\) 0 0
\(85\) 7.06568i 0.766381i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.69189i 0.285339i −0.989770 0.142670i \(-0.954431\pi\)
0.989770 0.142670i \(-0.0455687\pi\)
\(90\) 0 0
\(91\) 3.86233 + 7.20223i 0.404882 + 0.754999i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.03385 −0.208669
\(96\) 0 0
\(97\) 2.78213i 0.282483i 0.989975 + 0.141241i \(0.0451094\pi\)
−0.989975 + 0.141241i \(0.954891\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.67753 0.365928 0.182964 0.983120i \(-0.441431\pi\)
0.182964 + 0.983120i \(0.441431\pi\)
\(102\) 0 0
\(103\) −6.21730 −0.612609 −0.306305 0.951934i \(-0.599093\pi\)
−0.306305 + 0.951934i \(0.599093\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.63141 −0.737756 −0.368878 0.929478i \(-0.620258\pi\)
−0.368878 + 0.929478i \(0.620258\pi\)
\(108\) 0 0
\(109\) 16.0613i 1.53839i 0.639013 + 0.769196i \(0.279343\pi\)
−0.639013 + 0.769196i \(0.720657\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.1077 1.32714 0.663571 0.748113i \(-0.269040\pi\)
0.663571 + 0.748113i \(0.269040\pi\)
\(114\) 0 0
\(115\) 6.93648i 0.646830i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.9538i 1.00414i
\(120\) 0 0
\(121\) −20.5877 −1.87161
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.4953i 1.02817i
\(126\) 0 0
\(127\) −16.7100 −1.48277 −0.741384 0.671081i \(-0.765830\pi\)
−0.741384 + 0.671081i \(0.765830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0955 0.969419 0.484710 0.874675i \(-0.338925\pi\)
0.484710 + 0.874675i \(0.338925\pi\)
\(132\) 0 0
\(133\) 3.15305 0.273404
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.7357i 1.34440i −0.740372 0.672198i \(-0.765350\pi\)
0.740372 0.672198i \(-0.234650\pi\)
\(138\) 0 0
\(139\) −8.20192 −0.695678 −0.347839 0.937554i \(-0.613084\pi\)
−0.347839 + 0.937554i \(0.613084\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.57689 17.8584i −0.800860 1.49340i
\(144\) 0 0
\(145\) 9.46888i 0.786348i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.6030i 1.60594i 0.596021 + 0.802969i \(0.296748\pi\)
−0.596021 + 0.802969i \(0.703252\pi\)
\(150\) 0 0
\(151\) 1.61460i 0.131394i −0.997840 0.0656971i \(-0.979073\pi\)
0.997840 0.0656971i \(-0.0209271\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.28016 0.102825
\(156\) 0 0
\(157\) 11.2327 0.896466 0.448233 0.893917i \(-0.352054\pi\)
0.448233 + 0.893917i \(0.352054\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.7536i 0.847499i
\(162\) 0 0
\(163\) 10.4027i 0.814801i 0.913250 + 0.407400i \(0.133565\pi\)
−0.913250 + 0.407400i \(0.866435\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.6831i 1.29097i 0.763771 + 0.645487i \(0.223346\pi\)
−0.763771 + 0.645487i \(0.776654\pi\)
\(168\) 0 0
\(169\) 7.19287 10.8288i 0.553298 0.832984i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.4935 −0.797808 −0.398904 0.916993i \(-0.630609\pi\)
−0.398904 + 0.916993i \(0.630609\pi\)
\(174\) 0 0
\(175\) 6.48788i 0.490437i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.6969 −1.32273 −0.661364 0.750065i \(-0.730022\pi\)
−0.661364 + 0.750065i \(0.730022\pi\)
\(180\) 0 0
\(181\) −5.35498 −0.398032 −0.199016 0.979996i \(-0.563775\pi\)
−0.199016 + 0.979996i \(0.563775\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.6213 1.07498
\(186\) 0 0
\(187\) 27.1608i 1.98619i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.38510 0.606724 0.303362 0.952875i \(-0.401891\pi\)
0.303362 + 0.952875i \(0.401891\pi\)
\(192\) 0 0
\(193\) 23.2562i 1.67402i 0.547191 + 0.837008i \(0.315697\pi\)
−0.547191 + 0.837008i \(0.684303\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.63988i 0.116837i 0.998292 + 0.0584184i \(0.0186058\pi\)
−0.998292 + 0.0584184i \(0.981394\pi\)
\(198\) 0 0
\(199\) −20.7253 −1.46918 −0.734590 0.678511i \(-0.762625\pi\)
−0.734590 + 0.678511i \(0.762625\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.6795i 1.03030i
\(204\) 0 0
\(205\) −6.49265 −0.453466
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.81820 −0.540796
\(210\) 0 0
\(211\) −0.508031 −0.0349743 −0.0174871 0.999847i \(-0.505567\pi\)
−0.0174871 + 0.999847i \(0.505567\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.0224872i 0.00153362i
\(216\) 0 0
\(217\) −1.98462 −0.134725
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 15.3556 8.23473i 1.03293 0.553928i
\(222\) 0 0
\(223\) 8.85905i 0.593246i 0.954995 + 0.296623i \(0.0958605\pi\)
−0.954995 + 0.296623i \(0.904140\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.59645i 0.636939i 0.947933 + 0.318469i \(0.103169\pi\)
−0.947933 + 0.318469i \(0.896831\pi\)
\(228\) 0 0
\(229\) 5.88214i 0.388703i −0.980932 0.194351i \(-0.937740\pi\)
0.980932 0.194351i \(-0.0622602\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.76590 0.246712 0.123356 0.992362i \(-0.460634\pi\)
0.123356 + 0.992362i \(0.460634\pi\)
\(234\) 0 0
\(235\) −2.47727 −0.161599
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.4794i 1.38939i −0.719307 0.694693i \(-0.755540\pi\)
0.719307 0.694693i \(-0.244460\pi\)
\(240\) 0 0
\(241\) 26.5349i 1.70927i −0.519233 0.854633i \(-0.673782\pi\)
0.519233 0.854633i \(-0.326218\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.72287i 0.173958i
\(246\) 0 0
\(247\) −2.37036 4.42010i −0.150822 0.281244i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.5330 −0.917313 −0.458657 0.888614i \(-0.651669\pi\)
−0.458657 + 0.888614i \(0.651669\pi\)
\(252\) 0 0
\(253\) 26.6641i 1.67636i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.878755 −0.0548152 −0.0274076 0.999624i \(-0.508725\pi\)
−0.0274076 + 0.999624i \(0.508725\pi\)
\(258\) 0 0
\(259\) −22.6673 −1.40848
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.7774 −1.15786 −0.578932 0.815376i \(-0.696530\pi\)
−0.578932 + 0.815376i \(0.696530\pi\)
\(264\) 0 0
\(265\) 9.33968i 0.573732i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.8909 −0.785972 −0.392986 0.919544i \(-0.628558\pi\)
−0.392986 + 0.919544i \(0.628558\pi\)
\(270\) 0 0
\(271\) 32.7411i 1.98888i −0.105318 0.994439i \(-0.533586\pi\)
0.105318 0.994439i \(-0.466414\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.0871i 0.970089i
\(276\) 0 0
\(277\) −0.660403 −0.0396798 −0.0198399 0.999803i \(-0.506316\pi\)
−0.0198399 + 0.999803i \(0.506316\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.4679i 0.803429i −0.915765 0.401715i \(-0.868414\pi\)
0.915765 0.401715i \(-0.131586\pi\)
\(282\) 0 0
\(283\) −24.4346 −1.45249 −0.726243 0.687438i \(-0.758735\pi\)
−0.726243 + 0.687438i \(0.758735\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.0655 0.594147
\(288\) 0 0
\(289\) 6.35430 0.373782
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.6542i 0.797688i −0.917019 0.398844i \(-0.869411\pi\)
0.917019 0.398844i \(-0.130589\pi\)
\(294\) 0 0
\(295\) −0.752616 −0.0438190
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −15.0748 + 8.08415i −0.871801 + 0.467519i
\(300\) 0 0
\(301\) 0.0348617i 0.00200940i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.4231i 0.940382i
\(306\) 0 0
\(307\) 28.5358i 1.62863i −0.580426 0.814313i \(-0.697114\pi\)
0.580426 0.814313i \(-0.302886\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 14.9865 0.849805 0.424903 0.905239i \(-0.360308\pi\)
0.424903 + 0.905239i \(0.360308\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.03062i 0.226382i −0.993573 0.113191i \(-0.963893\pi\)
0.993573 0.113191i \(-0.0361073\pi\)
\(318\) 0 0
\(319\) 36.3988i 2.03794i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.72251i 0.374050i
\(324\) 0 0
\(325\) −9.09501 + 4.87736i −0.504500 + 0.270547i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.84048 0.211733
\(330\) 0 0
\(331\) 8.41453i 0.462504i 0.972894 + 0.231252i \(0.0742823\pi\)
−0.972894 + 0.231252i \(0.925718\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.68528 0.474527
\(336\) 0 0
\(337\) 9.74003 0.530573 0.265287 0.964170i \(-0.414533\pi\)
0.265287 + 0.964170i \(0.414533\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.92099 0.266487
\(342\) 0 0
\(343\) 20.0877i 1.08464i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.46410 −0.185963 −0.0929814 0.995668i \(-0.529640\pi\)
−0.0929814 + 0.995668i \(0.529640\pi\)
\(348\) 0 0
\(349\) 25.9091i 1.38688i 0.720513 + 0.693441i \(0.243906\pi\)
−0.720513 + 0.693441i \(0.756094\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.4704i 0.663732i −0.943327 0.331866i \(-0.892322\pi\)
0.943327 0.331866i \(-0.107678\pi\)
\(354\) 0 0
\(355\) 7.95734 0.422332
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.0794i 1.74586i 0.487842 + 0.872932i \(0.337784\pi\)
−0.487842 + 0.872932i \(0.662216\pi\)
\(360\) 0 0
\(361\) 17.0649 0.898154
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.5295 1.17925
\(366\) 0 0
\(367\) −3.00068 −0.156634 −0.0783171 0.996928i \(-0.524955\pi\)
−0.0783171 + 0.996928i \(0.524955\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.4792i 0.751723i
\(372\) 0 0
\(373\) 9.55690 0.494838 0.247419 0.968909i \(-0.420418\pi\)
0.247419 + 0.968909i \(0.420418\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.5784 11.0355i 1.05984 0.568359i
\(378\) 0 0
\(379\) 13.7713i 0.707383i 0.935362 + 0.353691i \(0.115074\pi\)
−0.935362 + 0.353691i \(0.884926\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.8348i 0.553630i −0.960923 0.276815i \(-0.910721\pi\)
0.960923 0.276815i \(-0.0892789\pi\)
\(384\) 0 0
\(385\) 18.6257i 0.949254i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.4138 −1.74485 −0.872425 0.488749i \(-0.837453\pi\)
−0.872425 + 0.488749i \(0.837453\pi\)
\(390\) 0 0
\(391\) −22.9273 −1.15948
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 21.5296i 1.08327i
\(396\) 0 0
\(397\) 10.3445i 0.519173i −0.965720 0.259587i \(-0.916414\pi\)
0.965720 0.259587i \(-0.0835863\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.0652i 0.502634i 0.967905 + 0.251317i \(0.0808637\pi\)
−0.967905 + 0.251317i \(0.919136\pi\)
\(402\) 0 0
\(403\) 1.49197 + 2.78213i 0.0743203 + 0.138588i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 56.2050 2.78598
\(408\) 0 0
\(409\) 22.0365i 1.08964i −0.838555 0.544818i \(-0.816599\pi\)
0.838555 0.544818i \(-0.183401\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.16677 0.0574131
\(414\) 0 0
\(415\) 24.2327 1.18954
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.35507 0.359319 0.179659 0.983729i \(-0.442500\pi\)
0.179659 + 0.983729i \(0.442500\pi\)
\(420\) 0 0
\(421\) 9.50374i 0.463184i −0.972813 0.231592i \(-0.925607\pi\)
0.972813 0.231592i \(-0.0743934\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.8326 −0.670978
\(426\) 0 0
\(427\) 25.4605i 1.23212i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0610i 0.484621i 0.970199 + 0.242310i \(0.0779052\pi\)
−0.970199 + 0.242310i \(0.922095\pi\)
\(432\) 0 0
\(433\) 5.74072 0.275881 0.137941 0.990441i \(-0.455952\pi\)
0.137941 + 0.990441i \(0.455952\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.59959i 0.315701i
\(438\) 0 0
\(439\) −19.7093 −0.940672 −0.470336 0.882487i \(-0.655867\pi\)
−0.470336 + 0.882487i \(0.655867\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 21.6875 1.03040 0.515201 0.857069i \(-0.327717\pi\)
0.515201 + 0.857069i \(0.327717\pi\)
\(444\) 0 0
\(445\) 3.93575 0.186572
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.1112i 0.477177i 0.971121 + 0.238589i \(0.0766848\pi\)
−0.971121 + 0.238589i \(0.923315\pi\)
\(450\) 0 0
\(451\) −24.9580 −1.17523
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.5302 + 5.64702i −0.493665 + 0.264737i
\(456\) 0 0
\(457\) 3.93947i 0.184281i 0.995746 + 0.0921403i \(0.0293708\pi\)
−0.995746 + 0.0921403i \(0.970629\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 34.3781i 1.60115i 0.599235 + 0.800573i \(0.295472\pi\)
−0.599235 + 0.800573i \(0.704528\pi\)
\(462\) 0 0
\(463\) 9.39055i 0.436416i 0.975902 + 0.218208i \(0.0700211\pi\)
−0.975902 + 0.218208i \(0.929979\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.6179 −1.04663 −0.523315 0.852139i \(-0.675305\pi\)
−0.523315 + 0.852139i \(0.675305\pi\)
\(468\) 0 0
\(469\) −13.4647 −0.621742
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.0864419i 0.00397460i
\(474\) 0 0
\(475\) 3.98169i 0.182692i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.10375i 0.187505i −0.995596 0.0937525i \(-0.970114\pi\)
0.995596 0.0937525i \(-0.0298862\pi\)
\(480\) 0 0
\(481\) 17.0405 + 31.7761i 0.776980 + 1.44886i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.06770 −0.184705
\(486\) 0 0
\(487\) 2.19567i 0.0994955i −0.998762 0.0497478i \(-0.984158\pi\)
0.998762 0.0497478i \(-0.0158417\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −24.9519 −1.12606 −0.563032 0.826435i \(-0.690365\pi\)
−0.563032 + 0.826435i \(0.690365\pi\)
\(492\) 0 0
\(493\) 31.2976 1.40957
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.3362 −0.553353
\(498\) 0 0
\(499\) 8.13604i 0.364219i 0.983278 + 0.182110i \(0.0582926\pi\)
−0.983278 + 0.182110i \(0.941707\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.2738 −0.814791 −0.407395 0.913252i \(-0.633563\pi\)
−0.407395 + 0.913252i \(0.633563\pi\)
\(504\) 0 0
\(505\) 5.37684i 0.239266i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.4135i 0.594541i 0.954793 + 0.297271i \(0.0960764\pi\)
−0.954793 + 0.297271i \(0.903924\pi\)
\(510\) 0 0
\(511\) −34.9273 −1.54509
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.09019i 0.400561i
\(516\) 0 0
\(517\) −9.52273 −0.418809
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.540255 −0.0236690 −0.0118345 0.999930i \(-0.503767\pi\)
−0.0118345 + 0.999930i \(0.503767\pi\)
\(522\) 0 0
\(523\) 39.4507 1.72506 0.862529 0.506008i \(-0.168879\pi\)
0.862529 + 0.506008i \(0.168879\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.23134i 0.184320i
\(528\) 0 0
\(529\) −0.491969 −0.0213900
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.56689 14.1103i −0.327758 0.611184i
\(534\) 0 0
\(535\) 11.1577i 0.482390i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.4668i 0.450838i
\(540\) 0 0
\(541\) 15.5618i 0.669054i 0.942386 + 0.334527i \(0.108577\pi\)
−0.942386 + 0.334527i \(0.891423\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −23.4829 −1.00590
\(546\) 0 0
\(547\) 33.4507 1.43025 0.715124 0.698998i \(-0.246370\pi\)
0.715124 + 0.698998i \(0.246370\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.00899i 0.383796i
\(552\) 0 0
\(553\) 33.3771i 1.41934i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10.8994i 0.461822i −0.972975 0.230911i \(-0.925829\pi\)
0.972975 0.230911i \(-0.0741706\pi\)
\(558\) 0 0
\(559\) −0.0488708 + 0.0262078i −0.00206701 + 0.00110847i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.0043 −0.843080 −0.421540 0.906810i \(-0.638510\pi\)
−0.421540 + 0.906810i \(0.638510\pi\)
\(564\) 0 0
\(565\) 20.6266i 0.867767i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.63205 −0.194186 −0.0970929 0.995275i \(-0.530954\pi\)
−0.0970929 + 0.995275i \(0.530954\pi\)
\(570\) 0 0
\(571\) 22.4192 0.938216 0.469108 0.883141i \(-0.344576\pi\)
0.469108 + 0.883141i \(0.344576\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.5796 0.566310
\(576\) 0 0
\(577\) 16.6609i 0.693603i 0.937939 + 0.346801i \(0.112732\pi\)
−0.937939 + 0.346801i \(0.887268\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −37.5677 −1.55857
\(582\) 0 0
\(583\) 35.9021i 1.48691i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.5650i 1.42665i 0.700834 + 0.713324i \(0.252811\pi\)
−0.700834 + 0.713324i \(0.747189\pi\)
\(588\) 0 0
\(589\) 1.21799 0.0501862
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 3.62097i 0.148695i −0.997232 0.0743476i \(-0.976313\pi\)
0.997232 0.0743476i \(-0.0236874\pi\)
\(594\) 0 0
\(595\) −16.0154 −0.656567
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −44.6588 −1.82471 −0.912355 0.409400i \(-0.865738\pi\)
−0.912355 + 0.409400i \(0.865738\pi\)
\(600\) 0 0
\(601\) 46.1292 1.88165 0.940824 0.338895i \(-0.110053\pi\)
0.940824 + 0.338895i \(0.110053\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 30.1008i 1.22377i
\(606\) 0 0
\(607\) −19.5087 −0.791834 −0.395917 0.918286i \(-0.629573\pi\)
−0.395917 + 0.918286i \(0.629573\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.88714 5.38377i −0.116801 0.217804i
\(612\) 0 0
\(613\) 0.907597i 0.0366575i 0.999832 + 0.0183287i \(0.00583455\pi\)
−0.999832 + 0.0183287i \(0.994165\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 41.3414i 1.66434i 0.554520 + 0.832170i \(0.312902\pi\)
−0.554520 + 0.832170i \(0.687098\pi\)
\(618\) 0 0
\(619\) 45.2738i 1.81971i −0.414928 0.909854i \(-0.636193\pi\)
0.414928 0.909854i \(-0.363807\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.10155 −0.244453
\(624\) 0 0
\(625\) −2.49545 −0.0998180
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 48.3281i 1.92697i
\(630\) 0 0
\(631\) 16.3980i 0.652794i 0.945233 + 0.326397i \(0.105835\pi\)
−0.945233 + 0.326397i \(0.894165\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.4313i 0.969525i
\(636\) 0 0
\(637\) −5.91752 + 3.17338i −0.234461 + 0.125734i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28.0146 1.10651 0.553255 0.833012i \(-0.313385\pi\)
0.553255 + 0.833012i \(0.313385\pi\)
\(642\) 0 0
\(643\) 29.3926i 1.15913i 0.814926 + 0.579565i \(0.196777\pi\)
−0.814926 + 0.579565i \(0.803223\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.7852 1.05303 0.526517 0.850164i \(-0.323498\pi\)
0.526517 + 0.850164i \(0.323498\pi\)
\(648\) 0 0
\(649\) −2.89309 −0.113564
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 48.1734 1.88517 0.942585 0.333965i \(-0.108387\pi\)
0.942585 + 0.333965i \(0.108387\pi\)
\(654\) 0 0
\(655\) 16.2225i 0.633866i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 41.0152 1.59772 0.798862 0.601514i \(-0.205436\pi\)
0.798862 + 0.601514i \(0.205436\pi\)
\(660\) 0 0
\(661\) 2.46142i 0.0957383i −0.998854 0.0478692i \(-0.984757\pi\)
0.998854 0.0478692i \(-0.0152431\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.61001i 0.178769i
\(666\) 0 0
\(667\) −30.7253 −1.18969
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 63.1309i 2.43714i
\(672\) 0 0
\(673\) −16.7554 −0.645874 −0.322937 0.946421i \(-0.604670\pi\)
−0.322937 + 0.946421i \(0.604670\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −30.4894 −1.17180 −0.585901 0.810383i \(-0.699259\pi\)
−0.585901 + 0.810383i \(0.699259\pi\)
\(678\) 0 0
\(679\) 6.30611 0.242006
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.5702i 1.78196i 0.454042 + 0.890980i \(0.349981\pi\)
−0.454042 + 0.890980i \(0.650019\pi\)
\(684\) 0 0
\(685\) 23.0069 0.879048
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.2976 10.8850i 0.773278 0.414684i
\(690\) 0 0
\(691\) 15.7139i 0.597787i 0.954287 + 0.298893i \(0.0966175\pi\)
−0.954287 + 0.298893i \(0.903383\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.9919i 0.454877i
\(696\) 0 0
\(697\) 21.4603i 0.812865i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.6840 1.00784 0.503920 0.863750i \(-0.331891\pi\)
0.503920 + 0.863750i \(0.331891\pi\)
\(702\) 0 0
\(703\) 13.9112 0.524671
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8.33566i 0.313495i
\(708\) 0 0
\(709\) 37.8842i 1.42277i 0.702803 + 0.711385i \(0.251932\pi\)
−0.702803 + 0.711385i \(0.748068\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.15396i 0.155567i
\(714\) 0 0
\(715\) 26.1104 14.0022i 0.976473 0.523651i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 30.9259 1.15334 0.576670 0.816977i \(-0.304352\pi\)
0.576670 + 0.816977i \(0.304352\pi\)
\(720\) 0 0
\(721\) 14.0924i 0.524829i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −18.5373 −0.688459
\(726\) 0 0
\(727\) 21.2474 0.788022 0.394011 0.919106i \(-0.371087\pi\)
0.394011 + 0.919106i \(0.371087\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.0743274 −0.00274910
\(732\) 0 0
\(733\) 16.2935i 0.601813i 0.953654 + 0.300907i \(0.0972892\pi\)
−0.953654 + 0.300907i \(0.902711\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.3866 1.22981
\(738\) 0 0
\(739\) 35.8644i 1.31929i 0.751576 + 0.659647i \(0.229294\pi\)
−0.751576 + 0.659647i \(0.770706\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.3369i 1.25970i −0.776717 0.629850i \(-0.783116\pi\)
0.776717 0.629850i \(-0.216884\pi\)
\(744\) 0 0
\(745\) −28.6611 −1.05006
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.2977i 0.632043i
\(750\) 0 0
\(751\) 14.9580 0.545826 0.272913 0.962039i \(-0.412013\pi\)
0.272913 + 0.962039i \(0.412013\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.36067 0.0859136
\(756\) 0 0
\(757\) 31.5723 1.14751 0.573757 0.819026i \(-0.305485\pi\)
0.573757 + 0.819026i \(0.305485\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.9918i 1.08720i 0.839343 + 0.543602i \(0.182940\pi\)
−0.839343 + 0.543602i \(0.817060\pi\)
\(762\) 0 0
\(763\) 36.4052 1.31796
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.877139 1.63564i −0.0316717 0.0590594i
\(768\) 0 0
\(769\) 26.1064i 0.941422i −0.882288 0.470711i \(-0.843997\pi\)
0.882288 0.470711i \(-0.156003\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.9858i 0.395133i 0.980290 + 0.197566i \(0.0633038\pi\)
−0.980290 + 0.197566i \(0.936696\pi\)
\(774\) 0 0
\(775\) 2.50619i 0.0900249i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.17731 −0.221325
\(780\) 0 0
\(781\) 30.5883 1.09454
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.4231i 0.586164i
\(786\) 0 0
\(787\) 17.0500i 0.607769i −0.952709 0.303884i \(-0.901716\pi\)
0.952709 0.303884i \(-0.0982836\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 31.9772i 1.13698i
\(792\) 0 0
\(793\) 35.6917 19.1403i 1.26745 0.679693i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −49.7287 −1.76148 −0.880741 0.473599i \(-0.842955\pi\)
−0.880741 + 0.473599i \(0.842955\pi\)
\(798\) 0 0
\(799\) 8.18816i 0.289676i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 86.6044 3.05620
\(804\) 0 0
\(805\) 15.7225 0.554147
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39.8362 1.40057 0.700284 0.713864i \(-0.253057\pi\)
0.700284 + 0.713864i \(0.253057\pi\)
\(810\) 0 0
\(811\) 41.7046i 1.46445i −0.681064 0.732224i \(-0.738482\pi\)
0.681064 0.732224i \(-0.261518\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.2095 −0.532767
\(816\) 0 0
\(817\) 0.0213951i 0.000748518i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4953i 0.401190i −0.979674 0.200595i \(-0.935712\pi\)
0.979674 0.200595i \(-0.0642875\pi\)
\(822\) 0 0
\(823\) −19.7093 −0.687022 −0.343511 0.939149i \(-0.611616\pi\)
−0.343511 + 0.939149i \(0.611616\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 52.0404i 1.80962i −0.425812 0.904812i \(-0.640011\pi\)
0.425812 0.904812i \(-0.359989\pi\)
\(828\) 0 0
\(829\) −13.0915 −0.454688 −0.227344 0.973815i \(-0.573004\pi\)
−0.227344 + 0.973815i \(0.573004\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.99993 −0.311829
\(834\) 0 0
\(835\) −24.3919 −0.844118
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.58542i 0.0547348i −0.999625 0.0273674i \(-0.991288\pi\)
0.999625 0.0273674i \(-0.00871239\pi\)
\(840\) 0 0
\(841\) 12.9426 0.446298
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.8325 + 10.5165i 0.544656 + 0.361780i
\(846\) 0 0
\(847\) 46.6649i 1.60342i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 47.4444i 1.62637i
\(852\) 0 0
\(853\) 8.61667i 0.295029i −0.989060 0.147515i \(-0.952873\pi\)
0.989060 0.147515i \(-0.0471273\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.2158 −1.16879 −0.584394 0.811470i \(-0.698668\pi\)
−0.584394 + 0.811470i \(0.698668\pi\)
\(858\) 0 0
\(859\) −0.0888022 −0.00302989 −0.00151495 0.999999i \(-0.500482\pi\)
−0.00151495 + 0.999999i \(0.500482\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.2874i 0.554430i −0.960808 0.277215i \(-0.910589\pi\)
0.960808 0.277215i \(-0.0894114\pi\)
\(864\) 0 0
\(865\) 15.3424i 0.521656i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 82.7607i 2.80746i
\(870\) 0 0
\(871\) 10.1223 + 18.8754i 0.342981 + 0.639570i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 26.0558 0.880848
\(876\) 0 0
\(877\) 42.7226i 1.44264i −0.692602 0.721319i \(-0.743536\pi\)
0.692602 0.721319i \(-0.256464\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27.2625 −0.918498 −0.459249 0.888308i \(-0.651881\pi\)
−0.459249 + 0.888308i \(0.651881\pi\)
\(882\) 0 0
\(883\) −14.1593 −0.476497 −0.238249 0.971204i \(-0.576573\pi\)
−0.238249 + 0.971204i \(0.576573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.1860 −1.11428 −0.557138 0.830420i \(-0.688101\pi\)
−0.557138 + 0.830420i \(0.688101\pi\)
\(888\) 0 0
\(889\) 37.8755i 1.27030i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.35695 −0.0788724
\(894\) 0 0
\(895\) 25.8742i 0.864880i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.67051i 0.189122i
\(900\) 0 0
\(901\) 30.8706 1.02845
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.82940i 0.260258i
\(906\) 0 0
\(907\) 22.6519 0.752144 0.376072 0.926590i \(-0.377274\pi\)
0.376072 + 0.926590i \(0.377274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −20.3077 −0.672824 −0.336412 0.941715i \(-0.609213\pi\)
−0.336412 + 0.941715i \(0.609213\pi\)
\(912\) 0 0
\(913\) 93.1515 3.08286
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 25.1496i 0.830512i
\(918\) 0 0
\(919\) −3.98462 −0.131440 −0.0657202 0.997838i \(-0.520934\pi\)
−0.0657202 + 0.997838i \(0.520934\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.27391 + 17.2934i 0.305255 + 0.569220i
\(924\) 0 0
\(925\) 28.6244i 0.941163i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.819733i 0.0268946i −0.999910 0.0134473i \(-0.995719\pi\)
0.999910 0.0134473i \(-0.00428053\pi\)
\(930\) 0 0
\(931\) 2.59062i 0.0849042i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 39.7112 1.29869
\(936\) 0 0
\(937\) 29.8043 0.973664 0.486832 0.873496i \(-0.338152\pi\)
0.486832 + 0.873496i \(0.338152\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 29.8604i 0.973422i 0.873563 + 0.486711i \(0.161804\pi\)
−0.873563 + 0.486711i \(0.838196\pi\)
\(942\) 0 0
\(943\) 21.0678i 0.686063i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.0129i 0.422862i 0.977393 + 0.211431i \(0.0678123\pi\)
−0.977393 + 0.211431i \(0.932188\pi\)
\(948\) 0 0
\(949\) 26.2571 + 48.9627i 0.852342 + 1.58940i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −18.4857 −0.598809 −0.299405 0.954126i \(-0.596788\pi\)
−0.299405 + 0.954126i \(0.596788\pi\)
\(954\) 0 0
\(955\) 12.2597i 0.396713i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −35.6673 −1.15176
\(960\) 0 0
\(961\) 30.2334 0.975270
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −34.0023 −1.09457
\(966\) 0 0
\(967\) 49.5487i 1.59338i 0.604389 + 0.796690i \(0.293417\pi\)
−0.604389 + 0.796690i \(0.706583\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −42.2752 −1.35668 −0.678338 0.734750i \(-0.737300\pi\)
−0.678338 + 0.734750i \(0.737300\pi\)
\(972\) 0 0
\(973\) 18.5908i 0.595995i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.3687i 0.651651i −0.945430 0.325826i \(-0.894358\pi\)
0.945430 0.325826i \(-0.105642\pi\)
\(978\) 0 0
\(979\) 15.1292 0.483531
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.28003i 0.0408265i 0.999792 + 0.0204132i \(0.00649819\pi\)
−0.999792 + 0.0204132i \(0.993502\pi\)
\(984\) 0 0
\(985\) −2.39764 −0.0763951
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.0729683 0.00232026
\(990\) 0 0
\(991\) −15.4199 −0.489830 −0.244915 0.969545i \(-0.578760\pi\)
−0.244915 + 0.969545i \(0.578760\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.3021i 0.960640i
\(996\) 0 0
\(997\) −8.49197 −0.268943 −0.134472 0.990917i \(-0.542934\pi\)
−0.134472 + 0.990917i \(0.542934\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.b.i.649.11 yes 16
3.2 odd 2 inner 4212.2.b.i.649.5 16
13.12 even 2 inner 4212.2.b.i.649.6 yes 16
39.38 odd 2 inner 4212.2.b.i.649.12 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4212.2.b.i.649.5 16 3.2 odd 2 inner
4212.2.b.i.649.6 yes 16 13.12 even 2 inner
4212.2.b.i.649.11 yes 16 1.1 even 1 trivial
4212.2.b.i.649.12 yes 16 39.38 odd 2 inner