Properties

Label 4212.2.a.j.1.5
Level $4212$
Weight $2$
Character 4212.1
Self dual yes
Analytic conductor $33.633$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,7,0,-2,0,0,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.8655345.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 10x^{3} + 11x^{2} + 24x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 468)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.45396\) of defining polynomial
Character \(\chi\) \(=\) 4212.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.45396 q^{5} -4.47585 q^{7} -4.34442 q^{11} +1.00000 q^{13} +2.89047 q^{17} +5.31660 q^{19} +0.599782 q^{23} +14.8377 q^{25} -0.635109 q^{29} +2.63511 q^{31} -19.9353 q^{35} -1.47585 q^{37} -5.93828 q^{41} -3.51215 q^{43} +3.85417 q^{47} +13.0333 q^{49} +1.32698 q^{53} -19.3499 q^{55} +3.38072 q^{59} -0.512149 q^{61} +4.45396 q^{65} -5.59881 q^{67} +11.9079 q^{71} +5.96371 q^{73} +19.4450 q^{77} +15.1906 q^{79} +7.56349 q^{83} +12.8740 q^{85} +6.88454 q^{89} -4.47585 q^{91} +23.6799 q^{95} +10.7511 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 7 q^{5} - 2 q^{7} - 5 q^{11} + 5 q^{13} + 13 q^{17} + q^{19} + 8 q^{25} + 12 q^{29} - 2 q^{31} - 5 q^{35} + 13 q^{37} + 4 q^{41} - 8 q^{43} + 7 q^{47} + 15 q^{49} + 19 q^{53} - 21 q^{55} + 11 q^{59}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.45396 1.99187 0.995935 0.0900774i \(-0.0287114\pi\)
0.995935 + 0.0900774i \(0.0287114\pi\)
\(6\) 0 0
\(7\) −4.47585 −1.69171 −0.845857 0.533410i \(-0.820910\pi\)
−0.845857 + 0.533410i \(0.820910\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.34442 −1.30989 −0.654946 0.755675i \(-0.727309\pi\)
−0.654946 + 0.755675i \(0.727309\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.89047 0.701041 0.350521 0.936555i \(-0.386005\pi\)
0.350521 + 0.936555i \(0.386005\pi\)
\(18\) 0 0
\(19\) 5.31660 1.21971 0.609856 0.792512i \(-0.291227\pi\)
0.609856 + 0.792512i \(0.291227\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.599782 0.125063 0.0625316 0.998043i \(-0.480083\pi\)
0.0625316 + 0.998043i \(0.480083\pi\)
\(24\) 0 0
\(25\) 14.8377 2.96754
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.635109 −0.117937 −0.0589684 0.998260i \(-0.518781\pi\)
−0.0589684 + 0.998260i \(0.518781\pi\)
\(30\) 0 0
\(31\) 2.63511 0.473280 0.236640 0.971597i \(-0.423954\pi\)
0.236640 + 0.971597i \(0.423954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −19.9353 −3.36967
\(36\) 0 0
\(37\) −1.47585 −0.242629 −0.121314 0.992614i \(-0.538711\pi\)
−0.121314 + 0.992614i \(0.538711\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.93828 −0.927404 −0.463702 0.885991i \(-0.653479\pi\)
−0.463702 + 0.885991i \(0.653479\pi\)
\(42\) 0 0
\(43\) −3.51215 −0.535598 −0.267799 0.963475i \(-0.586296\pi\)
−0.267799 + 0.963475i \(0.586296\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.85417 0.562189 0.281094 0.959680i \(-0.409303\pi\)
0.281094 + 0.959680i \(0.409303\pi\)
\(48\) 0 0
\(49\) 13.0333 1.86190
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.32698 0.182275 0.0911374 0.995838i \(-0.470950\pi\)
0.0911374 + 0.995838i \(0.470950\pi\)
\(54\) 0 0
\(55\) −19.3499 −2.60914
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.38072 0.440132 0.220066 0.975485i \(-0.429373\pi\)
0.220066 + 0.975485i \(0.429373\pi\)
\(60\) 0 0
\(61\) −0.512149 −0.0655739 −0.0327870 0.999462i \(-0.510438\pi\)
−0.0327870 + 0.999462i \(0.510438\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.45396 0.552445
\(66\) 0 0
\(67\) −5.59881 −0.684004 −0.342002 0.939699i \(-0.611105\pi\)
−0.342002 + 0.939699i \(0.611105\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.9079 1.41321 0.706605 0.707609i \(-0.250226\pi\)
0.706605 + 0.707609i \(0.250226\pi\)
\(72\) 0 0
\(73\) 5.96371 0.697999 0.348999 0.937123i \(-0.386521\pi\)
0.348999 + 0.937123i \(0.386521\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.4450 2.21596
\(78\) 0 0
\(79\) 15.1906 1.70908 0.854539 0.519387i \(-0.173840\pi\)
0.854539 + 0.519387i \(0.173840\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.56349 0.830201 0.415100 0.909776i \(-0.363746\pi\)
0.415100 + 0.909776i \(0.363746\pi\)
\(84\) 0 0
\(85\) 12.8740 1.39638
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.88454 0.729760 0.364880 0.931055i \(-0.381110\pi\)
0.364880 + 0.931055i \(0.381110\pi\)
\(90\) 0 0
\(91\) −4.47585 −0.469197
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 23.6799 2.42951
\(96\) 0 0
\(97\) 10.7511 1.09160 0.545802 0.837914i \(-0.316225\pi\)
0.545802 + 0.837914i \(0.316225\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.08701 −0.904191 −0.452096 0.891970i \(-0.649323\pi\)
−0.452096 + 0.891970i \(0.649323\pi\)
\(102\) 0 0
\(103\) 2.15925 0.212758 0.106379 0.994326i \(-0.466074\pi\)
0.106379 + 0.994326i \(0.466074\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.59386 0.444105 0.222052 0.975035i \(-0.428724\pi\)
0.222052 + 0.975035i \(0.428724\pi\)
\(108\) 0 0
\(109\) −12.1663 −1.16532 −0.582661 0.812715i \(-0.697988\pi\)
−0.582661 + 0.812715i \(0.697988\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.67140 0.533521 0.266760 0.963763i \(-0.414047\pi\)
0.266760 + 0.963763i \(0.414047\pi\)
\(114\) 0 0
\(115\) 2.67140 0.249110
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.9373 −1.18596
\(120\) 0 0
\(121\) 7.87402 0.715820
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 43.8168 3.91909
\(126\) 0 0
\(127\) 5.54155 0.491733 0.245867 0.969304i \(-0.420928\pi\)
0.245867 + 0.969304i \(0.420928\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −16.7162 −1.46050 −0.730250 0.683180i \(-0.760597\pi\)
−0.730250 + 0.683180i \(0.760597\pi\)
\(132\) 0 0
\(133\) −23.7963 −2.06340
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0528 1.54235 0.771176 0.636622i \(-0.219669\pi\)
0.771176 + 0.636622i \(0.219669\pi\)
\(138\) 0 0
\(139\) 2.07769 0.176228 0.0881138 0.996110i \(-0.471916\pi\)
0.0881138 + 0.996110i \(0.471916\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.34442 −0.363299
\(144\) 0 0
\(145\) −2.82875 −0.234915
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.1573 1.24174 0.620869 0.783914i \(-0.286780\pi\)
0.620869 + 0.783914i \(0.286780\pi\)
\(150\) 0 0
\(151\) −14.6785 −1.19452 −0.597258 0.802049i \(-0.703743\pi\)
−0.597258 + 0.802049i \(0.703743\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.7367 0.942711
\(156\) 0 0
\(157\) −8.86504 −0.707507 −0.353754 0.935339i \(-0.615095\pi\)
−0.353754 + 0.935339i \(0.615095\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.68454 −0.211571
\(162\) 0 0
\(163\) −0.273242 −0.0214020 −0.0107010 0.999943i \(-0.503406\pi\)
−0.0107010 + 0.999943i \(0.503406\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.267316 0.0206856 0.0103428 0.999947i \(-0.496708\pi\)
0.0103428 + 0.999947i \(0.496708\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.486381 0.0369788 0.0184894 0.999829i \(-0.494114\pi\)
0.0184894 + 0.999829i \(0.494114\pi\)
\(174\) 0 0
\(175\) −66.4115 −5.02024
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.4579 −0.781662 −0.390831 0.920462i \(-0.627812\pi\)
−0.390831 + 0.920462i \(0.627812\pi\)
\(180\) 0 0
\(181\) 17.8620 1.32767 0.663837 0.747878i \(-0.268927\pi\)
0.663837 + 0.747878i \(0.268927\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.57339 −0.483285
\(186\) 0 0
\(187\) −12.5574 −0.918289
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.98546 0.722522 0.361261 0.932465i \(-0.382346\pi\)
0.361261 + 0.932465i \(0.382346\pi\)
\(192\) 0 0
\(193\) −3.00897 −0.216591 −0.108295 0.994119i \(-0.534539\pi\)
−0.108295 + 0.994119i \(0.534539\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.6271 1.04214 0.521070 0.853514i \(-0.325533\pi\)
0.521070 + 0.853514i \(0.325533\pi\)
\(198\) 0 0
\(199\) −15.8014 −1.12013 −0.560067 0.828448i \(-0.689225\pi\)
−0.560067 + 0.828448i \(0.689225\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.84266 0.199515
\(204\) 0 0
\(205\) −26.4488 −1.84727
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −23.0976 −1.59769
\(210\) 0 0
\(211\) −21.7256 −1.49566 −0.747828 0.663893i \(-0.768903\pi\)
−0.747828 + 0.663893i \(0.768903\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.6430 −1.06684
\(216\) 0 0
\(217\) −11.7944 −0.800654
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.89047 0.194434
\(222\) 0 0
\(223\) 17.7704 1.18999 0.594996 0.803729i \(-0.297154\pi\)
0.594996 + 0.803729i \(0.297154\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.1880 1.00807 0.504033 0.863685i \(-0.331849\pi\)
0.504033 + 0.863685i \(0.331849\pi\)
\(228\) 0 0
\(229\) 26.0403 1.72079 0.860397 0.509625i \(-0.170216\pi\)
0.860397 + 0.509625i \(0.170216\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.2563 −1.06499 −0.532493 0.846434i \(-0.678745\pi\)
−0.532493 + 0.846434i \(0.678745\pi\)
\(234\) 0 0
\(235\) 17.1663 1.11981
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.0907 0.652712 0.326356 0.945247i \(-0.394179\pi\)
0.326356 + 0.945247i \(0.394179\pi\)
\(240\) 0 0
\(241\) −14.2026 −0.914871 −0.457435 0.889243i \(-0.651232\pi\)
−0.457435 + 0.889243i \(0.651232\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 58.0496 3.70865
\(246\) 0 0
\(247\) 5.31660 0.338287
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.60872 0.227780 0.113890 0.993493i \(-0.463669\pi\)
0.113890 + 0.993493i \(0.463669\pi\)
\(252\) 0 0
\(253\) −2.60571 −0.163819
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.5202 0.968122 0.484061 0.875034i \(-0.339161\pi\)
0.484061 + 0.875034i \(0.339161\pi\)
\(258\) 0 0
\(259\) 6.60571 0.410459
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.0507 0.989729 0.494865 0.868970i \(-0.335218\pi\)
0.494865 + 0.868970i \(0.335218\pi\)
\(264\) 0 0
\(265\) 5.91031 0.363067
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.59224 −0.158052 −0.0790258 0.996873i \(-0.525181\pi\)
−0.0790258 + 0.996873i \(0.525181\pi\)
\(270\) 0 0
\(271\) 17.0302 1.03451 0.517257 0.855830i \(-0.326953\pi\)
0.517257 + 0.855830i \(0.326953\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −64.4613 −3.88717
\(276\) 0 0
\(277\) −5.02318 −0.301814 −0.150907 0.988548i \(-0.548219\pi\)
−0.150907 + 0.988548i \(0.548219\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.7730 1.35852 0.679260 0.733897i \(-0.262301\pi\)
0.679260 + 0.733897i \(0.262301\pi\)
\(282\) 0 0
\(283\) −9.19364 −0.546505 −0.273253 0.961942i \(-0.588099\pi\)
−0.273253 + 0.961942i \(0.588099\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 26.5789 1.56890
\(288\) 0 0
\(289\) −8.64520 −0.508541
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.70629 −0.158103 −0.0790516 0.996871i \(-0.525189\pi\)
−0.0790516 + 0.996871i \(0.525189\pi\)
\(294\) 0 0
\(295\) 15.0576 0.876685
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.599782 0.0346863
\(300\) 0 0
\(301\) 15.7199 0.906078
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.28109 −0.130615
\(306\) 0 0
\(307\) 23.4524 1.33850 0.669250 0.743038i \(-0.266616\pi\)
0.669250 + 0.743038i \(0.266616\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.4325 −0.761688 −0.380844 0.924639i \(-0.624367\pi\)
−0.380844 + 0.924639i \(0.624367\pi\)
\(312\) 0 0
\(313\) 2.58141 0.145910 0.0729550 0.997335i \(-0.476757\pi\)
0.0729550 + 0.997335i \(0.476757\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −34.3478 −1.92917 −0.964583 0.263778i \(-0.915031\pi\)
−0.964583 + 0.263778i \(0.915031\pi\)
\(318\) 0 0
\(319\) 2.75918 0.154485
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.3675 0.855068
\(324\) 0 0
\(325\) 14.8377 0.823049
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.2507 −0.951063
\(330\) 0 0
\(331\) −34.0384 −1.87092 −0.935460 0.353431i \(-0.885015\pi\)
−0.935460 + 0.353431i \(0.885015\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −24.9369 −1.36245
\(336\) 0 0
\(337\) −5.78348 −0.315046 −0.157523 0.987515i \(-0.550351\pi\)
−0.157523 + 0.987515i \(0.550351\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11.4480 −0.619946
\(342\) 0 0
\(343\) −27.0040 −1.45808
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.29563 0.391650 0.195825 0.980639i \(-0.437262\pi\)
0.195825 + 0.980639i \(0.437262\pi\)
\(348\) 0 0
\(349\) 8.45377 0.452520 0.226260 0.974067i \(-0.427350\pi\)
0.226260 + 0.974067i \(0.427350\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −19.2389 −1.02398 −0.511991 0.858991i \(-0.671092\pi\)
−0.511991 + 0.858991i \(0.671092\pi\)
\(354\) 0 0
\(355\) 53.0373 2.81493
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.3588 −1.44394 −0.721972 0.691922i \(-0.756764\pi\)
−0.721972 + 0.691922i \(0.756764\pi\)
\(360\) 0 0
\(361\) 9.26623 0.487696
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 26.5621 1.39032
\(366\) 0 0
\(367\) −20.3345 −1.06145 −0.530727 0.847543i \(-0.678081\pi\)
−0.530727 + 0.847543i \(0.678081\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.93937 −0.308357
\(372\) 0 0
\(373\) −31.9820 −1.65596 −0.827981 0.560756i \(-0.810511\pi\)
−0.827981 + 0.560756i \(0.810511\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.635109 −0.0327098
\(378\) 0 0
\(379\) 25.8053 1.32553 0.662765 0.748828i \(-0.269383\pi\)
0.662765 + 0.748828i \(0.269383\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.9866 −0.765781 −0.382891 0.923794i \(-0.625071\pi\)
−0.382891 + 0.923794i \(0.625071\pi\)
\(384\) 0 0
\(385\) 86.6072 4.41391
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −35.5650 −1.80322 −0.901608 0.432555i \(-0.857612\pi\)
−0.901608 + 0.432555i \(0.857612\pi\)
\(390\) 0 0
\(391\) 1.73365 0.0876745
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 67.6583 3.40426
\(396\) 0 0
\(397\) 19.7793 0.992697 0.496348 0.868123i \(-0.334674\pi\)
0.496348 + 0.868123i \(0.334674\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.88391 0.393704 0.196852 0.980433i \(-0.436928\pi\)
0.196852 + 0.980433i \(0.436928\pi\)
\(402\) 0 0
\(403\) 2.63511 0.131264
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.41174 0.317818
\(408\) 0 0
\(409\) −36.7794 −1.81862 −0.909312 0.416115i \(-0.863391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.1316 −0.744577
\(414\) 0 0
\(415\) 33.6874 1.65365
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −25.3744 −1.23962 −0.619809 0.784753i \(-0.712790\pi\)
−0.619809 + 0.784753i \(0.712790\pi\)
\(420\) 0 0
\(421\) −27.7832 −1.35407 −0.677035 0.735950i \(-0.736736\pi\)
−0.677035 + 0.735950i \(0.736736\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 42.8880 2.08037
\(426\) 0 0
\(427\) 2.29230 0.110932
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −15.5256 −0.747841 −0.373920 0.927461i \(-0.621987\pi\)
−0.373920 + 0.927461i \(0.621987\pi\)
\(432\) 0 0
\(433\) 16.4033 0.788291 0.394145 0.919048i \(-0.371041\pi\)
0.394145 + 0.919048i \(0.371041\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.18880 0.152541
\(438\) 0 0
\(439\) 25.1644 1.20103 0.600516 0.799613i \(-0.294962\pi\)
0.600516 + 0.799613i \(0.294962\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.5446 0.691037 0.345518 0.938412i \(-0.387703\pi\)
0.345518 + 0.938412i \(0.387703\pi\)
\(444\) 0 0
\(445\) 30.6634 1.45359
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.1553 1.04557 0.522786 0.852464i \(-0.324893\pi\)
0.522786 + 0.852464i \(0.324893\pi\)
\(450\) 0 0
\(451\) 25.7984 1.21480
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −19.9353 −0.934579
\(456\) 0 0
\(457\) −32.9850 −1.54297 −0.771486 0.636246i \(-0.780486\pi\)
−0.771486 + 0.636246i \(0.780486\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.5031 1.00150 0.500749 0.865593i \(-0.333058\pi\)
0.500749 + 0.865593i \(0.333058\pi\)
\(462\) 0 0
\(463\) 9.08268 0.422108 0.211054 0.977474i \(-0.432310\pi\)
0.211054 + 0.977474i \(0.432310\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.9795 −1.20219 −0.601095 0.799178i \(-0.705269\pi\)
−0.601095 + 0.799178i \(0.705269\pi\)
\(468\) 0 0
\(469\) 25.0595 1.15714
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.2583 0.701576
\(474\) 0 0
\(475\) 78.8862 3.61955
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.09402 0.232752 0.116376 0.993205i \(-0.462872\pi\)
0.116376 + 0.993205i \(0.462872\pi\)
\(480\) 0 0
\(481\) −1.47585 −0.0672932
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 47.8847 2.17433
\(486\) 0 0
\(487\) −17.7197 −0.802956 −0.401478 0.915869i \(-0.631503\pi\)
−0.401478 + 0.915869i \(0.631503\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.1783 0.865506 0.432753 0.901512i \(-0.357542\pi\)
0.432753 + 0.901512i \(0.357542\pi\)
\(492\) 0 0
\(493\) −1.83576 −0.0826786
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −53.2981 −2.39075
\(498\) 0 0
\(499\) 12.6703 0.567202 0.283601 0.958942i \(-0.408471\pi\)
0.283601 + 0.958942i \(0.408471\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 5.51793 0.246032 0.123016 0.992405i \(-0.460743\pi\)
0.123016 + 0.992405i \(0.460743\pi\)
\(504\) 0 0
\(505\) −40.4731 −1.80103
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 39.7735 1.76293 0.881464 0.472251i \(-0.156559\pi\)
0.881464 + 0.472251i \(0.156559\pi\)
\(510\) 0 0
\(511\) −26.6927 −1.18081
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.61723 0.423786
\(516\) 0 0
\(517\) −16.7442 −0.736407
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.8222 0.736993 0.368497 0.929629i \(-0.379873\pi\)
0.368497 + 0.929629i \(0.379873\pi\)
\(522\) 0 0
\(523\) −19.3488 −0.846062 −0.423031 0.906115i \(-0.639034\pi\)
−0.423031 + 0.906115i \(0.639034\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.61670 0.331789
\(528\) 0 0
\(529\) −22.6403 −0.984359
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.93828 −0.257215
\(534\) 0 0
\(535\) 20.4608 0.884599
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −56.6220 −2.43888
\(540\) 0 0
\(541\) −36.3519 −1.56289 −0.781446 0.623973i \(-0.785518\pi\)
−0.781446 + 0.623973i \(0.785518\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −54.1882 −2.32117
\(546\) 0 0
\(547\) 20.0485 0.857210 0.428605 0.903492i \(-0.359005\pi\)
0.428605 + 0.903492i \(0.359005\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.37662 −0.143849
\(552\) 0 0
\(553\) −67.9910 −2.89127
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.5616 0.659364 0.329682 0.944092i \(-0.393058\pi\)
0.329682 + 0.944092i \(0.393058\pi\)
\(558\) 0 0
\(559\) −3.51215 −0.148548
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.0845 1.81580 0.907898 0.419192i \(-0.137687\pi\)
0.907898 + 0.419192i \(0.137687\pi\)
\(564\) 0 0
\(565\) 25.2602 1.06270
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.6100 −0.989783 −0.494891 0.868955i \(-0.664792\pi\)
−0.494891 + 0.868955i \(0.664792\pi\)
\(570\) 0 0
\(571\) 41.1060 1.72023 0.860117 0.510097i \(-0.170391\pi\)
0.860117 + 0.510097i \(0.170391\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.89940 0.371131
\(576\) 0 0
\(577\) −15.8212 −0.658644 −0.329322 0.944218i \(-0.606820\pi\)
−0.329322 + 0.944218i \(0.606820\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −33.8531 −1.40446
\(582\) 0 0
\(583\) −5.76496 −0.238760
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.7520 1.39310 0.696548 0.717510i \(-0.254718\pi\)
0.696548 + 0.717510i \(0.254718\pi\)
\(588\) 0 0
\(589\) 14.0098 0.577265
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.4284 −0.879959 −0.439980 0.898008i \(-0.645014\pi\)
−0.439980 + 0.898008i \(0.645014\pi\)
\(594\) 0 0
\(595\) −57.6222 −2.36228
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 23.1311 0.945113 0.472557 0.881300i \(-0.343331\pi\)
0.472557 + 0.881300i \(0.343331\pi\)
\(600\) 0 0
\(601\) −17.5192 −0.714624 −0.357312 0.933985i \(-0.616307\pi\)
−0.357312 + 0.933985i \(0.616307\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 35.0705 1.42582
\(606\) 0 0
\(607\) −15.8287 −0.642469 −0.321235 0.947000i \(-0.604098\pi\)
−0.321235 + 0.947000i \(0.604098\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.85417 0.155923
\(612\) 0 0
\(613\) −33.7136 −1.36168 −0.680841 0.732432i \(-0.738385\pi\)
−0.680841 + 0.732432i \(0.738385\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.5334 0.987678 0.493839 0.869553i \(-0.335593\pi\)
0.493839 + 0.869553i \(0.335593\pi\)
\(618\) 0 0
\(619\) −34.9934 −1.40650 −0.703252 0.710941i \(-0.748269\pi\)
−0.703252 + 0.710941i \(0.748269\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −30.8142 −1.23455
\(624\) 0 0
\(625\) 120.969 4.83877
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.26591 −0.170093
\(630\) 0 0
\(631\) −19.0839 −0.759720 −0.379860 0.925044i \(-0.624028\pi\)
−0.379860 + 0.925044i \(0.624028\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.6818 0.979468
\(636\) 0 0
\(637\) 13.0333 0.516397
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.95024 0.156025 0.0780125 0.996952i \(-0.475143\pi\)
0.0780125 + 0.996952i \(0.475143\pi\)
\(642\) 0 0
\(643\) 25.7889 1.01701 0.508507 0.861058i \(-0.330198\pi\)
0.508507 + 0.861058i \(0.330198\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.6159 0.771182 0.385591 0.922670i \(-0.373998\pi\)
0.385591 + 0.922670i \(0.373998\pi\)
\(648\) 0 0
\(649\) −14.6873 −0.576526
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −27.2016 −1.06448 −0.532241 0.846593i \(-0.678650\pi\)
−0.532241 + 0.846593i \(0.678650\pi\)
\(654\) 0 0
\(655\) −74.4532 −2.90913
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.7710 −0.964943 −0.482471 0.875912i \(-0.660261\pi\)
−0.482471 + 0.875912i \(0.660261\pi\)
\(660\) 0 0
\(661\) −41.3384 −1.60788 −0.803939 0.594712i \(-0.797266\pi\)
−0.803939 + 0.594712i \(0.797266\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −105.988 −4.11003
\(666\) 0 0
\(667\) −0.380927 −0.0147496
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.22499 0.0858948
\(672\) 0 0
\(673\) 12.4022 0.478070 0.239035 0.971011i \(-0.423169\pi\)
0.239035 + 0.971011i \(0.423169\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.88962 0.149490 0.0747452 0.997203i \(-0.476186\pi\)
0.0747452 + 0.997203i \(0.476186\pi\)
\(678\) 0 0
\(679\) −48.1202 −1.84668
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −46.6629 −1.78550 −0.892752 0.450548i \(-0.851229\pi\)
−0.892752 + 0.450548i \(0.851229\pi\)
\(684\) 0 0
\(685\) 80.4062 3.07216
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.32698 0.0505539
\(690\) 0 0
\(691\) 22.1783 0.843703 0.421851 0.906665i \(-0.361380\pi\)
0.421851 + 0.906665i \(0.361380\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.25395 0.351022
\(696\) 0 0
\(697\) −17.1644 −0.650148
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.2661 1.36975 0.684876 0.728660i \(-0.259857\pi\)
0.684876 + 0.728660i \(0.259857\pi\)
\(702\) 0 0
\(703\) −7.84653 −0.295937
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.6721 1.52963
\(708\) 0 0
\(709\) −24.1429 −0.906704 −0.453352 0.891331i \(-0.649772\pi\)
−0.453352 + 0.891331i \(0.649772\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.58049 0.0591899
\(714\) 0 0
\(715\) −19.3499 −0.723644
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.21668 0.0453744 0.0226872 0.999743i \(-0.492778\pi\)
0.0226872 + 0.999743i \(0.492778\pi\)
\(720\) 0 0
\(721\) −9.66451 −0.359925
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.42357 −0.349983
\(726\) 0 0
\(727\) 5.19763 0.192769 0.0963847 0.995344i \(-0.469272\pi\)
0.0963847 + 0.995344i \(0.469272\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.1518 −0.375476
\(732\) 0 0
\(733\) 2.70658 0.0999700 0.0499850 0.998750i \(-0.484083\pi\)
0.0499850 + 0.998750i \(0.484083\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.3236 0.895972
\(738\) 0 0
\(739\) 10.5759 0.389042 0.194521 0.980898i \(-0.437685\pi\)
0.194521 + 0.980898i \(0.437685\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.7651 −1.05529 −0.527645 0.849465i \(-0.676925\pi\)
−0.527645 + 0.849465i \(0.676925\pi\)
\(744\) 0 0
\(745\) 67.5101 2.47338
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −20.5614 −0.751298
\(750\) 0 0
\(751\) 29.1483 1.06364 0.531818 0.846859i \(-0.321509\pi\)
0.531818 + 0.846859i \(0.321509\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −65.3772 −2.37932
\(756\) 0 0
\(757\) −45.8518 −1.66651 −0.833257 0.552886i \(-0.813526\pi\)
−0.833257 + 0.552886i \(0.813526\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.8304 0.827600 0.413800 0.910368i \(-0.364201\pi\)
0.413800 + 0.910368i \(0.364201\pi\)
\(762\) 0 0
\(763\) 54.4547 1.97139
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.38072 0.122071
\(768\) 0 0
\(769\) −32.3921 −1.16809 −0.584045 0.811721i \(-0.698531\pi\)
−0.584045 + 0.811721i \(0.698531\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −30.8359 −1.10909 −0.554546 0.832153i \(-0.687108\pi\)
−0.554546 + 0.832153i \(0.687108\pi\)
\(774\) 0 0
\(775\) 39.0990 1.40448
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.5715 −1.13116
\(780\) 0 0
\(781\) −51.7330 −1.85115
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −39.4845 −1.40926
\(786\) 0 0
\(787\) −22.4922 −0.801760 −0.400880 0.916131i \(-0.631296\pi\)
−0.400880 + 0.916131i \(0.631296\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −25.3844 −0.902564
\(792\) 0 0
\(793\) −0.512149 −0.0181869
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.0208 −0.850859 −0.425430 0.904991i \(-0.639877\pi\)
−0.425430 + 0.904991i \(0.639877\pi\)
\(798\) 0 0
\(799\) 11.1404 0.394118
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −25.9089 −0.914304
\(804\) 0 0
\(805\) −11.9568 −0.421422
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −10.7398 −0.377591 −0.188796 0.982016i \(-0.560458\pi\)
−0.188796 + 0.982016i \(0.560458\pi\)
\(810\) 0 0
\(811\) 4.72701 0.165988 0.0829939 0.996550i \(-0.473552\pi\)
0.0829939 + 0.996550i \(0.473552\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.21701 −0.0426299
\(816\) 0 0
\(817\) −18.6727 −0.653275
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.24899 0.218091 0.109046 0.994037i \(-0.465221\pi\)
0.109046 + 0.994037i \(0.465221\pi\)
\(822\) 0 0
\(823\) −22.9062 −0.798459 −0.399230 0.916851i \(-0.630722\pi\)
−0.399230 + 0.916851i \(0.630722\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.09930 0.0382264 0.0191132 0.999817i \(-0.493916\pi\)
0.0191132 + 0.999817i \(0.493916\pi\)
\(828\) 0 0
\(829\) 20.9781 0.728599 0.364300 0.931282i \(-0.381308\pi\)
0.364300 + 0.931282i \(0.381308\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 37.6722 1.30527
\(834\) 0 0
\(835\) 1.19061 0.0412029
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.1747 0.731031 0.365515 0.930805i \(-0.380893\pi\)
0.365515 + 0.930805i \(0.380893\pi\)
\(840\) 0 0
\(841\) −28.5966 −0.986091
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.45396 0.153221
\(846\) 0 0
\(847\) −35.2429 −1.21096
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.885191 −0.0303440
\(852\) 0 0
\(853\) −21.1927 −0.725624 −0.362812 0.931862i \(-0.618183\pi\)
−0.362812 + 0.931862i \(0.618183\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.640189 −0.0218685 −0.0109342 0.999940i \(-0.503481\pi\)
−0.0109342 + 0.999940i \(0.503481\pi\)
\(858\) 0 0
\(859\) 20.2730 0.691705 0.345852 0.938289i \(-0.387590\pi\)
0.345852 + 0.938289i \(0.387590\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24.9937 0.850797 0.425398 0.905006i \(-0.360134\pi\)
0.425398 + 0.905006i \(0.360134\pi\)
\(864\) 0 0
\(865\) 2.16632 0.0736570
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −65.9945 −2.23871
\(870\) 0 0
\(871\) −5.59881 −0.189709
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −196.117 −6.62998
\(876\) 0 0
\(877\) 22.2594 0.751646 0.375823 0.926691i \(-0.377360\pi\)
0.375823 + 0.926691i \(0.377360\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.6524 −0.426272 −0.213136 0.977023i \(-0.568368\pi\)
−0.213136 + 0.977023i \(0.568368\pi\)
\(882\) 0 0
\(883\) −4.84806 −0.163150 −0.0815751 0.996667i \(-0.525995\pi\)
−0.0815751 + 0.996667i \(0.525995\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.1523 0.609493 0.304747 0.952433i \(-0.401428\pi\)
0.304747 + 0.952433i \(0.401428\pi\)
\(888\) 0 0
\(889\) −24.8032 −0.831872
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 20.4911 0.685708
\(894\) 0 0
\(895\) −46.5792 −1.55697
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.67358 −0.0558171
\(900\) 0 0
\(901\) 3.83559 0.127782
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 79.5566 2.64455
\(906\) 0 0
\(907\) 9.10518 0.302333 0.151166 0.988508i \(-0.451697\pi\)
0.151166 + 0.988508i \(0.451697\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.4703 −0.943263 −0.471631 0.881796i \(-0.656335\pi\)
−0.471631 + 0.881796i \(0.656335\pi\)
\(912\) 0 0
\(913\) −32.8590 −1.08747
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 74.8192 2.47075
\(918\) 0 0
\(919\) −48.9506 −1.61473 −0.807366 0.590050i \(-0.799108\pi\)
−0.807366 + 0.590050i \(0.799108\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.9079 0.391954
\(924\) 0 0
\(925\) −21.8983 −0.720012
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 52.0023 1.70614 0.853071 0.521795i \(-0.174738\pi\)
0.853071 + 0.521795i \(0.174738\pi\)
\(930\) 0 0
\(931\) 69.2927 2.27098
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −55.9302 −1.82911
\(936\) 0 0
\(937\) −40.2240 −1.31406 −0.657031 0.753864i \(-0.728188\pi\)
−0.657031 + 0.753864i \(0.728188\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −36.5473 −1.19141 −0.595704 0.803204i \(-0.703127\pi\)
−0.595704 + 0.803204i \(0.703127\pi\)
\(942\) 0 0
\(943\) −3.56167 −0.115984
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −28.6419 −0.930736 −0.465368 0.885117i \(-0.654078\pi\)
−0.465368 + 0.885117i \(0.654078\pi\)
\(948\) 0 0
\(949\) 5.96371 0.193590
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 5.26429 0.170527 0.0852636 0.996358i \(-0.472827\pi\)
0.0852636 + 0.996358i \(0.472827\pi\)
\(954\) 0 0
\(955\) 44.4748 1.43917
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −80.8016 −2.60922
\(960\) 0 0
\(961\) −24.0562 −0.776006
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.4018 −0.431420
\(966\) 0 0
\(967\) 26.4649 0.851053 0.425526 0.904946i \(-0.360089\pi\)
0.425526 + 0.904946i \(0.360089\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.9428 0.383263 0.191631 0.981467i \(-0.438622\pi\)
0.191631 + 0.981467i \(0.438622\pi\)
\(972\) 0 0
\(973\) −9.29945 −0.298127
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.4328 0.685697 0.342848 0.939391i \(-0.388608\pi\)
0.342848 + 0.939391i \(0.388608\pi\)
\(978\) 0 0
\(979\) −29.9094 −0.955907
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23.5272 0.750401 0.375200 0.926944i \(-0.377574\pi\)
0.375200 + 0.926944i \(0.377574\pi\)
\(984\) 0 0
\(985\) 65.1486 2.07581
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.10652 −0.0669836
\(990\) 0 0
\(991\) −18.8427 −0.598558 −0.299279 0.954166i \(-0.596746\pi\)
−0.299279 + 0.954166i \(0.596746\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −70.3789 −2.23116
\(996\) 0 0
\(997\) 59.1799 1.87425 0.937123 0.348999i \(-0.113479\pi\)
0.937123 + 0.348999i \(0.113479\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.a.j.1.5 5
3.2 odd 2 4212.2.a.i.1.1 5
9.2 odd 6 468.2.i.b.157.5 10
9.4 even 3 1404.2.i.b.937.1 10
9.5 odd 6 468.2.i.b.313.5 yes 10
9.7 even 3 1404.2.i.b.469.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.i.b.157.5 10 9.2 odd 6
468.2.i.b.313.5 yes 10 9.5 odd 6
1404.2.i.b.469.1 10 9.7 even 3
1404.2.i.b.937.1 10 9.4 even 3
4212.2.a.i.1.1 5 3.2 odd 2
4212.2.a.j.1.5 5 1.1 even 1 trivial