Properties

Label 4212.2.a.f
Level $4212$
Weight $2$
Character orbit 4212.a
Self dual yes
Analytic conductor $33.633$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-3,0,1,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.113688.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 14x^{2} + 3x + 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{5} + ( - \beta_{2} - \beta_1) q^{7} + ( - \beta_{3} + \beta_1 + 1) q^{11} - q^{13} + (\beta_{3} - \beta_{2} - 1) q^{17} + ( - 2 \beta_{3} - \beta_{2} - 1) q^{19} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{23}+ \cdots + ( - 2 \beta_{2} + 4 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} + q^{7} + 3 q^{11} - 4 q^{13} - 6 q^{19} - 3 q^{23} + 11 q^{25} + 9 q^{29} + q^{31} - 24 q^{35} + 15 q^{37} - 3 q^{41} + 10 q^{43} + 24 q^{47} + 21 q^{49} - 12 q^{53} + 23 q^{55} + 6 q^{59}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 14x^{2} + 3x + 39 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu^{2} - 8\nu + 7 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu^{2} + 6\nu - 21 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + 4\beta_{2} + 10\beta _1 + 7 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.61097
−2.07250
1.90992
3.77356
0 0 0 −3.61097 0 4.38402 0 0 0
1.2 0 0 0 −3.07250 0 −0.971250 0 0 0
1.3 0 0 0 0.909921 0 2.39406 0 0 0
1.4 0 0 0 2.77356 0 −4.80682 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4212.2.a.f 4
3.b odd 2 1 4212.2.a.h yes 4
9.c even 3 2 4212.2.i.x 8
9.d odd 6 2 4212.2.i.v 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4212.2.a.f 4 1.a even 1 1 trivial
4212.2.a.h yes 4 3.b odd 2 1
4212.2.i.v 8 9.d odd 6 2
4212.2.i.x 8 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4212))\):

\( T_{5}^{4} + 3T_{5}^{3} - 11T_{5}^{2} - 24T_{5} + 28 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} - 26T_{11}^{2} + 123T_{11} - 137 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 28 \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots - 137 \) Copy content Toggle raw display
$13$ \( (T + 1)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 45 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$19$ \( T^{4} + 6 T^{3} + \cdots + 909 \) Copy content Toggle raw display
$23$ \( T^{4} + 3 T^{3} + \cdots + 136 \) Copy content Toggle raw display
$29$ \( T^{4} - 9 T^{3} + \cdots - 1313 \) Copy content Toggle raw display
$31$ \( T^{4} - T^{3} - 87 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$37$ \( T^{4} - 15 T^{3} + \cdots - 576 \) Copy content Toggle raw display
$41$ \( T^{4} + 3 T^{3} + \cdots + 504 \) Copy content Toggle raw display
$43$ \( T^{4} - 10 T^{3} + \cdots - 1604 \) Copy content Toggle raw display
$47$ \( T^{4} - 24 T^{3} + \cdots - 6308 \) Copy content Toggle raw display
$53$ \( T^{4} + 12 T^{3} + \cdots - 36 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} - 13 T^{3} + \cdots - 1481 \) Copy content Toggle raw display
$67$ \( T^{4} - T^{3} + \cdots + 28 \) Copy content Toggle raw display
$71$ \( T^{4} + 30 T^{3} + \cdots + 2341 \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots - 416 \) Copy content Toggle raw display
$79$ \( T^{4} - 14 T^{3} + \cdots - 5036 \) Copy content Toggle raw display
$83$ \( T^{4} - 24 T^{3} + \cdots - 513 \) Copy content Toggle raw display
$89$ \( T^{4} + 3 T^{3} + \cdots + 1404 \) Copy content Toggle raw display
$97$ \( T^{4} - 8 T^{3} + \cdots + 20992 \) Copy content Toggle raw display
show more
show less