Properties

Label 420.2.bk
Level $420$
Weight $2$
Character orbit 420.bk
Rep. character $\chi_{420}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 140 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(420, [\chi])\).

Total New Old
Modular forms 208 96 112
Cusp forms 176 96 80
Eisenstein series 32 0 32

Trace form

\( 96 q + 48 q^{9} + 18 q^{10} + 4 q^{14} - 8 q^{16} + 4 q^{25} - 8 q^{30} - 30 q^{40} + 16 q^{44} + 44 q^{46} - 8 q^{49} - 48 q^{50} - 52 q^{56} + 2 q^{60} - 144 q^{64} - 36 q^{66} - 42 q^{70} - 20 q^{74}+ \cdots - 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(420, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
420.2.bk.a 420.bk 140.s $96$ $3.354$ None 420.2.bk.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(420, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(420, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)