Defining parameters
| Level: | \( N \) | \(=\) | \( 418 = 2 \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 418.f (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(418, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 256 | 72 | 184 |
| Cusp forms | 224 | 72 | 152 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(418, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(418, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(418, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(209, [\chi])\)\(^{\oplus 2}\)