Properties

Label 418.2.f.a
Level $418$
Weight $2$
Character orbit 418.f
Analytic conductor $3.338$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 418 = 2 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 418.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.33774680449\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 1) q^{2} + ( - 2 \zeta_{10}^{3} - 2 \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + ( - 3 \zeta_{10}^{2} + \zeta_{10} - 3) q^{5} + (2 \zeta_{10}^{2} + 2) q^{6} + (2 \zeta_{10}^{3} + 3 \zeta_{10} - 3) q^{7} + \zeta_{10}^{2} q^{8} + (5 \zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 5) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 1) q^{2} + ( - 2 \zeta_{10}^{3} - 2 \zeta_{10}) q^{3} - \zeta_{10}^{3} q^{4} + ( - 3 \zeta_{10}^{2} + \zeta_{10} - 3) q^{5} + (2 \zeta_{10}^{2} + 2) q^{6} + (2 \zeta_{10}^{3} + 3 \zeta_{10} - 3) q^{7} + \zeta_{10}^{2} q^{8} + (5 \zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 5) q^{9} + ( - 3 \zeta_{10}^{3} + 3 \zeta_{10}^{2} + 2) q^{10} + ( - 2 \zeta_{10}^{3} + \zeta_{10}^{2} - 4 \zeta_{10} + 2) q^{11} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} - 2) q^{12} + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 4 \zeta_{10} + 4) q^{13} + ( - 3 \zeta_{10}^{3} + \zeta_{10}^{2} - 3 \zeta_{10}) q^{14} + (10 \zeta_{10}^{3} + 4 \zeta_{10} - 4) q^{15} - \zeta_{10} q^{16} + ( - \zeta_{10}^{2} - 1) q^{17} + ( - 5 \zeta_{10}^{3} - 4 \zeta_{10} + 4) q^{18} + \zeta_{10}^{2} q^{19} + (2 \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} - 2) q^{20} + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2} + 10) q^{21} + (2 \zeta_{10}^{3} + \zeta_{10} + 2) q^{22} + ( - 3 \zeta_{10}^{3} + 3 \zeta_{10}^{2} - 1) q^{23} + ( - 2 \zeta_{10}^{3} + 2) q^{24} + (3 \zeta_{10}^{3} + 5 \zeta_{10}^{2} + 3 \zeta_{10}) q^{25} + 4 \zeta_{10}^{3} q^{26} + (4 \zeta_{10}^{2} + 8 \zeta_{10} + 4) q^{27} + (3 \zeta_{10}^{2} - \zeta_{10} + 3) q^{28} + (2 \zeta_{10}^{3} + 6 \zeta_{10} - 6) q^{29} + ( - 4 \zeta_{10}^{3} - 6 \zeta_{10}^{2} - 4 \zeta_{10}) q^{30} + ( - 4 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 6 \zeta_{10} + 4) q^{31} + q^{32} + (6 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 4 \zeta_{10} - 10) q^{33} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 1) q^{34} + ( - 13 \zeta_{10}^{3} + 10 \zeta_{10}^{2} - 10 \zeta_{10} + 13) q^{35} + (4 \zeta_{10}^{3} + \zeta_{10}^{2} + 4 \zeta_{10}) q^{36} + (2 \zeta_{10}^{3} + 2 \zeta_{10} - 2) q^{37} - \zeta_{10} q^{38} + ( - 8 \zeta_{10}^{2} - 8) q^{39} + ( - 2 \zeta_{10}^{3} - 3 \zeta_{10} + 3) q^{40} + (4 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 4 \zeta_{10}) q^{41} + (10 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 6 \zeta_{10} - 10) q^{42} + (\zeta_{10}^{3} - \zeta_{10}^{2} - 7) q^{43} + (2 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 2 \zeta_{10} - 3) q^{44} + ( - 11 \zeta_{10}^{3} + 11 \zeta_{10}^{2} + 22) q^{45} + ( - \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 4 \zeta_{10} + 1) q^{46} + ( - 3 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 3 \zeta_{10}) q^{47} + (2 \zeta_{10}^{3} + 2 \zeta_{10} - 2) q^{48} + ( - 3 \zeta_{10}^{2} - 3 \zeta_{10} - 3) q^{49} + ( - 3 \zeta_{10}^{2} - 5 \zeta_{10} - 3) q^{50} + (4 \zeta_{10}^{3} + 2 \zeta_{10} - 2) q^{51} - 4 \zeta_{10}^{2} q^{52} + (10 \zeta_{10}^{3} - 8 \zeta_{10}^{2} + 8 \zeta_{10} - 10) q^{53} + (4 \zeta_{10}^{3} - 4 \zeta_{10}^{2} - 12) q^{54} + (14 \zeta_{10}^{3} - 8 \zeta_{10}^{2} + 9 \zeta_{10} - 7) q^{55} + (3 \zeta_{10}^{3} - 3 \zeta_{10}^{2} - 2) q^{56} + ( - 2 \zeta_{10}^{3} + 2) q^{57} + ( - 6 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 6 \zeta_{10}) q^{58} + ( - 2 \zeta_{10}^{3} - 8 \zeta_{10} + 8) q^{59} + (4 \zeta_{10}^{2} + 6 \zeta_{10} + 4) q^{60} + ( - 3 \zeta_{10}^{2} + 6 \zeta_{10} - 3) q^{61} + (4 \zeta_{10}^{3} - 2 \zeta_{10} + 2) q^{62} + ( - 11 \zeta_{10}^{3} - 11 \zeta_{10}^{2} - 11 \zeta_{10}) q^{63} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 1) q^{64} + (12 \zeta_{10}^{3} - 12 \zeta_{10}^{2} - 8) q^{65} + ( - 10 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 6 \zeta_{10} + 6) q^{66} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} - 8) q^{67} + (\zeta_{10}^{3} - 1) q^{68} + (2 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 2 \zeta_{10}) q^{69} + (13 \zeta_{10}^{3} + 3 \zeta_{10} - 3) q^{70} + ( - 2 \zeta_{10}^{2} + 6 \zeta_{10} - 2) q^{71} + ( - 4 \zeta_{10}^{2} - \zeta_{10} - 4) q^{72} + (6 \zeta_{10}^{3} + 8 \zeta_{10} - 8) q^{73} + ( - 2 \zeta_{10}^{3} - 2 \zeta_{10}) q^{74} + ( - 22 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 6 \zeta_{10} + 22) q^{75} + q^{76} + ( - \zeta_{10}^{3} - \zeta_{10}^{2} + 8 \zeta_{10} + 6) q^{77} + ( - 8 \zeta_{10}^{3} + 8 \zeta_{10}^{2} + 8) q^{78} + ( - 8 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 6 \zeta_{10} + 8) q^{79} + (3 \zeta_{10}^{3} - \zeta_{10}^{2} + 3 \zeta_{10}) q^{80} + ( - 17 \zeta_{10}^{3} - 12 \zeta_{10} + 12) q^{81} + ( - 4 \zeta_{10}^{2} + 6 \zeta_{10} - 4) q^{82} + (3 \zeta_{10}^{2} - 7 \zeta_{10} + 3) q^{83} + ( - 10 \zeta_{10}^{3} - 4 \zeta_{10} + 4) q^{84} + (2 \zeta_{10}^{3} + 3 \zeta_{10}^{2} + 2 \zeta_{10}) q^{85} + ( - 7 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 6 \zeta_{10} + 7) q^{86} + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2} + 16) q^{87} + ( - 3 \zeta_{10}^{3} + \zeta_{10}^{2} + \zeta_{10} + 1) q^{88} + (10 \zeta_{10}^{3} - 10 \zeta_{10}^{2} - 8) q^{89} + (22 \zeta_{10}^{3} - 11 \zeta_{10}^{2} + 11 \zeta_{10} - 22) q^{90} + (12 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 12 \zeta_{10}) q^{91} + (\zeta_{10}^{3} - 3 \zeta_{10} + 3) q^{92} + ( - 8 \zeta_{10}^{2} + 4 \zeta_{10} - 8) q^{93} + (3 \zeta_{10}^{2} - 4 \zeta_{10} + 3) q^{94} + ( - 2 \zeta_{10}^{3} - 3 \zeta_{10} + 3) q^{95} + ( - 2 \zeta_{10}^{3} - 2 \zeta_{10}) q^{96} + (12 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 4 \zeta_{10} - 12) q^{97} + ( - 3 \zeta_{10}^{3} + 3 \zeta_{10}^{2} + 6) q^{98} + (2 \zeta_{10}^{3} + 12 \zeta_{10}^{2} + 9 \zeta_{10} + 6) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 4 q^{3} - q^{4} - 8 q^{5} + 6 q^{6} - 7 q^{7} - q^{8} - 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{2} - 4 q^{3} - q^{4} - 8 q^{5} + 6 q^{6} - 7 q^{7} - q^{8} - 13 q^{9} + 2 q^{10} + q^{11} - 4 q^{12} + 4 q^{13} - 7 q^{14} - 2 q^{15} - q^{16} - 3 q^{17} + 7 q^{18} - q^{19} - 8 q^{20} + 32 q^{21} + 11 q^{22} - 10 q^{23} + 6 q^{24} + q^{25} + 4 q^{26} + 20 q^{27} + 8 q^{28} - 16 q^{29} - 2 q^{30} + 4 q^{32} - 26 q^{33} + 2 q^{34} + 19 q^{35} + 7 q^{36} - 4 q^{37} - q^{38} - 24 q^{39} + 7 q^{40} + 14 q^{41} - 18 q^{42} - 26 q^{43} - 4 q^{44} + 66 q^{45} - 5 q^{46} - 10 q^{47} - 4 q^{48} - 12 q^{49} - 14 q^{50} - 2 q^{51} + 4 q^{52} - 14 q^{53} - 40 q^{54} + 3 q^{55} - 2 q^{56} + 6 q^{57} - 16 q^{58} + 22 q^{59} + 18 q^{60} - 3 q^{61} + 10 q^{62} - 11 q^{63} - q^{64} - 8 q^{65} + 4 q^{66} - 28 q^{67} - 3 q^{68} + 10 q^{69} + 4 q^{70} - 13 q^{72} - 18 q^{73} - 4 q^{74} + 54 q^{75} + 4 q^{76} + 32 q^{77} + 16 q^{78} + 12 q^{79} + 7 q^{80} + 19 q^{81} - 6 q^{82} + 2 q^{83} + 2 q^{84} + q^{85} + 9 q^{86} + 56 q^{87} + q^{88} - 12 q^{89} - 44 q^{90} + 28 q^{91} + 10 q^{92} - 20 q^{93} + 5 q^{94} + 7 q^{95} - 4 q^{96} - 28 q^{97} + 18 q^{98} + 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/418\mathbb{Z}\right)^\times\).

\(n\) \(287\) \(343\)
\(\chi(n)\) \(1\) \(-\zeta_{10}^{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
115.1
−0.309017 + 0.951057i
0.809017 0.587785i
−0.309017 0.951057i
0.809017 + 0.587785i
0.309017 + 0.951057i −1.00000 0.726543i −0.809017 + 0.587785i −0.881966 + 2.71441i 0.381966 1.17557i −2.30902 + 1.67760i −0.809017 0.587785i −0.454915 1.40008i −2.85410
191.1 −0.809017 0.587785i −1.00000 + 3.07768i 0.309017 + 0.951057i −3.11803 + 2.26538i 2.61803 1.90211i −1.19098 3.66547i 0.309017 0.951057i −6.04508 4.39201i 3.85410
229.1 0.309017 0.951057i −1.00000 + 0.726543i −0.809017 0.587785i −0.881966 2.71441i 0.381966 + 1.17557i −2.30902 1.67760i −0.809017 + 0.587785i −0.454915 + 1.40008i −2.85410
267.1 −0.809017 + 0.587785i −1.00000 3.07768i 0.309017 0.951057i −3.11803 2.26538i 2.61803 + 1.90211i −1.19098 + 3.66547i 0.309017 + 0.951057i −6.04508 + 4.39201i 3.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 418.2.f.a 4
11.c even 5 1 inner 418.2.f.a 4
11.c even 5 1 4598.2.a.be 2
11.d odd 10 1 4598.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
418.2.f.a 4 1.a even 1 1 trivial
418.2.f.a 4 11.c even 5 1 inner
4598.2.a.v 2 11.d odd 10 1
4598.2.a.be 2 11.c even 5 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} + 16T_{3}^{2} + 24T_{3} + 16 \) acting on \(S_{2}^{\mathrm{new}}(418, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + T^{3} + T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + 16 T^{2} + 24 T + 16 \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + 34 T^{2} + 77 T + 121 \) Copy content Toggle raw display
$7$ \( T^{4} + 7 T^{3} + 34 T^{2} + 88 T + 121 \) Copy content Toggle raw display
$11$ \( T^{4} - T^{3} + 21 T^{2} - 11 T + 121 \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + 16 T^{2} - 64 T + 256 \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + 4 T^{2} + 2 T + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + T^{2} + T + 1 \) Copy content Toggle raw display
$23$ \( (T^{2} + 5 T - 5)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 16 T^{3} + 136 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$31$ \( T^{4} + 40 T^{2} - 200 T + 400 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + 16 T^{2} + 24 T + 16 \) Copy content Toggle raw display
$41$ \( T^{4} - 14 T^{3} + 76 T^{2} - 24 T + 16 \) Copy content Toggle raw display
$43$ \( (T^{2} + 13 T + 41)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 10 T^{3} + 40 T^{2} + 25 T + 25 \) Copy content Toggle raw display
$53$ \( T^{4} + 14 T^{3} + 96 T^{2} + \cdots + 5776 \) Copy content Toggle raw display
$59$ \( T^{4} - 22 T^{3} + 244 T^{2} + \cdots + 5776 \) Copy content Toggle raw display
$61$ \( T^{4} + 3 T^{3} + 54 T^{2} - 108 T + 81 \) Copy content Toggle raw display
$67$ \( (T^{2} + 14 T + 44)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 40 T^{2} - 200 T + 400 \) Copy content Toggle raw display
$73$ \( T^{4} + 18 T^{3} + 244 T^{2} + \cdots + 5776 \) Copy content Toggle raw display
$79$ \( T^{4} - 12 T^{3} + 64 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + 64 T^{2} + 247 T + 361 \) Copy content Toggle raw display
$89$ \( (T^{2} + 6 T - 116)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 28 T^{3} + 304 T^{2} + \cdots + 256 \) Copy content Toggle raw display
show more
show less