Properties

Label 416.7.h.a
Level 416416
Weight 77
Character orbit 416.h
Self dual yes
Analytic conductor 95.70295.702
Analytic rank 00
Dimension 11
CM discriminant -104
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,7,Mod(207,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.207"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 7 7
Character orbit: [χ][\chi] == 416.h (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,50,0,-218] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 95.702498785995.7024987859
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+50q3218q5+614q7+1771q92197q1310900q15+3170q17+30700q21+31899q25+52100q27+27830q31133852q35+13894q37109850q39+111490q43++1391500q93+O(q100) q + 50 q^{3} - 218 q^{5} + 614 q^{7} + 1771 q^{9} - 2197 q^{13} - 10900 q^{15} + 3170 q^{17} + 30700 q^{21} + 31899 q^{25} + 52100 q^{27} + 27830 q^{31} - 133852 q^{35} + 13894 q^{37} - 109850 q^{39} + 111490 q^{43}+ \cdots + 1391500 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
207.1
0
0 50.0000 0 −218.000 0 614.000 0 1771.00 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by Q(26)\Q(\sqrt{-26})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.7.h.a 1
4.b odd 2 1 104.7.h.b yes 1
8.b even 2 1 104.7.h.a 1
8.d odd 2 1 416.7.h.b 1
13.b even 2 1 416.7.h.b 1
52.b odd 2 1 104.7.h.a 1
104.e even 2 1 104.7.h.b yes 1
104.h odd 2 1 CM 416.7.h.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.7.h.a 1 8.b even 2 1
104.7.h.a 1 52.b odd 2 1
104.7.h.b yes 1 4.b odd 2 1
104.7.h.b yes 1 104.e even 2 1
416.7.h.a 1 1.a even 1 1 trivial
416.7.h.a 1 104.h odd 2 1 CM
416.7.h.b 1 8.d odd 2 1
416.7.h.b 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S7new(416,[χ])S_{7}^{\mathrm{new}}(416, [\chi]):

T350 T_{3} - 50 Copy content Toggle raw display
T5+218 T_{5} + 218 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T50 T - 50 Copy content Toggle raw display
55 T+218 T + 218 Copy content Toggle raw display
77 T614 T - 614 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+2197 T + 2197 Copy content Toggle raw display
1717 T3170 T - 3170 Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T27830 T - 27830 Copy content Toggle raw display
3737 T13894 T - 13894 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T111490 T - 111490 Copy content Toggle raw display
4747 T+128554 T + 128554 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T T Copy content Toggle raw display
7171 T317990 T - 317990 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T T Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less