gp: [N,k,chi] = [416,7,Mod(207,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 7, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.207");
S:= CuspForms(chi, 7);
N := Newforms(S);
Newform invariants
sage: traces = [1,0,50,0,-218]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of χ \chi χ on generators for ( Z / 416 Z ) × \left(\mathbb{Z}/416\mathbb{Z}\right)^\times ( Z / 4 1 6 Z ) × .
n n n
261 261 2 6 1
287 287 2 8 7
353 353 3 5 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 7 n e w ( 416 , [ χ ] ) S_{7}^{\mathrm{new}}(416, [\chi]) S 7 n e w ( 4 1 6 , [ χ ] ) :
T 3 − 50 T_{3} - 50 T 3 − 5 0
T3 - 50
T 5 + 218 T_{5} + 218 T 5 + 2 1 8
T5 + 218
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 50 T - 50 T − 5 0
T - 50
5 5 5
T + 218 T + 218 T + 2 1 8
T + 218
7 7 7
T − 614 T - 614 T − 6 1 4
T - 614
11 11 1 1
T T T
T
13 13 1 3
T + 2197 T + 2197 T + 2 1 9 7
T + 2197
17 17 1 7
T − 3170 T - 3170 T − 3 1 7 0
T - 3170
19 19 1 9
T T T
T
23 23 2 3
T T T
T
29 29 2 9
T T T
T
31 31 3 1
T − 27830 T - 27830 T − 2 7 8 3 0
T - 27830
37 37 3 7
T − 13894 T - 13894 T − 1 3 8 9 4
T - 13894
41 41 4 1
T T T
T
43 43 4 3
T − 111490 T - 111490 T − 1 1 1 4 9 0
T - 111490
47 47 4 7
T + 128554 T + 128554 T + 1 2 8 5 5 4
T + 128554
53 53 5 3
T T T
T
59 59 5 9
T T T
T
61 61 6 1
T T T
T
67 67 6 7
T T T
T
71 71 7 1
T − 317990 T - 317990 T − 3 1 7 9 9 0
T - 317990
73 73 7 3
T T T
T
79 79 7 9
T T T
T
83 83 8 3
T T T
T
89 89 8 9
T T T
T
97 97 9 7
T T T
T
show more
show less