Properties

Label 416.3.j
Level $416$
Weight $3$
Character orbit 416.j
Rep. character $\chi_{416}(177,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $52$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 416.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(416, [\chi])\).

Total New Old
Modular forms 240 60 180
Cusp forms 208 52 156
Eisenstein series 32 8 24

Trace form

\( 52 q + 4 q^{7} - 140 q^{9} - 32 q^{15} + 4 q^{31} + 32 q^{33} - 32 q^{39} + 36 q^{41} + 4 q^{47} - 248 q^{55} - 64 q^{57} + 164 q^{63} + 52 q^{65} - 252 q^{71} - 284 q^{73} + 8 q^{79} + 244 q^{81} + 704 q^{87}+ \cdots + 292 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(416, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
416.3.j.a 416.j 104.j $52$ $11.335$ None 104.3.j.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{3}^{\mathrm{old}}(416, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(416, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)