Newspace parameters
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.be (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.3351789974\) |
Analytic rank: | \(0\) |
Dimension: | \(440\) |
Relative dimension: | \(110\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
51.1 | −1.99787 | + | 0.0923444i | −3.11870 | − | 1.29181i | 3.98295 | − | 0.368984i | 0.586174 | + | 1.41515i | 6.35003 | + | 2.29286i | 8.09949 | − | 8.09949i | −7.92332 | + | 1.10498i | 1.69355 | + | 1.69355i | −1.30178 | − | 2.77315i |
51.2 | −1.99616 | − | 0.123854i | −0.885286 | − | 0.366698i | 3.96932 | + | 0.494465i | −0.454051 | − | 1.09618i | 1.72176 | + | 0.841634i | −8.45119 | + | 8.45119i | −7.86216 | − | 1.47865i | −5.71470 | − | 5.71470i | 0.770593 | + | 2.24438i |
51.3 | −1.99291 | + | 0.168199i | 2.73329 | + | 1.13217i | 3.94342 | − | 0.670412i | −2.31992 | − | 5.60078i | −5.63765 | − | 1.79657i | 7.44559 | − | 7.44559i | −7.74613 | + | 1.99935i | −0.174878 | − | 0.174878i | 5.56544 | + | 10.7717i |
51.4 | −1.98733 | + | 0.224787i | 3.22684 | + | 1.33660i | 3.89894 | − | 0.893452i | −0.176830 | − | 0.426906i | −6.71325 | − | 1.93091i | −0.188699 | + | 0.188699i | −7.54764 | + | 2.65201i | 2.26205 | + | 2.26205i | 0.447383 | + | 0.808653i |
51.5 | −1.97986 | + | 0.283121i | −0.499130 | − | 0.206746i | 3.83968 | − | 1.12108i | 1.15470 | + | 2.78770i | 1.04674 | + | 0.268014i | 2.72764 | − | 2.72764i | −7.28463 | + | 3.30668i | −6.15757 | − | 6.15757i | −3.07541 | − | 5.19234i |
51.6 | −1.96792 | + | 0.356756i | −4.95804 | − | 2.05369i | 3.74545 | − | 1.40414i | 2.61067 | + | 6.30273i | 10.4897 | + | 2.27269i | −8.59359 | + | 8.59359i | −6.86983 | + | 4.09945i | 14.0006 | + | 14.0006i | −7.38615 | − | 11.4719i |
51.7 | −1.96333 | − | 0.381226i | −1.28388 | − | 0.531799i | 3.70933 | + | 1.49694i | 3.53737 | + | 8.53997i | 2.31794 | + | 1.53354i | 1.84272 | − | 1.84272i | −6.71197 | − | 4.35309i | −4.99843 | − | 4.99843i | −3.68937 | − | 18.1153i |
51.8 | −1.95091 | − | 0.440378i | 0.255951 | + | 0.106019i | 3.61214 | + | 1.71828i | −2.72741 | − | 6.58455i | −0.452651 | − | 0.319548i | −2.25164 | + | 2.25164i | −6.29028 | − | 4.94292i | −6.30969 | − | 6.30969i | 2.42126 | + | 14.0470i |
51.9 | −1.92993 | + | 0.524772i | −3.77448 | − | 1.56344i | 3.44923 | − | 2.02554i | −2.28619 | − | 5.51936i | 8.10491 | + | 1.03658i | −3.65748 | + | 3.65748i | −5.59381 | + | 5.71920i | 5.43837 | + | 5.43837i | 7.30859 | + | 9.45223i |
51.10 | −1.92545 | + | 0.540980i | 4.91460 | + | 2.03570i | 3.41468 | − | 2.08325i | 2.19173 | + | 5.29131i | −10.5641 | − | 1.26092i | −1.13789 | + | 1.13789i | −5.44779 | + | 5.85847i | 13.6453 | + | 13.6453i | −7.08255 | − | 9.00245i |
51.11 | −1.90708 | − | 0.602529i | 2.65847 | + | 1.10117i | 3.27392 | + | 2.29814i | 2.74000 | + | 6.61494i | −4.40643 | − | 3.70183i | −4.57539 | + | 4.57539i | −4.85893 | − | 6.35537i | −0.509089 | − | 0.509089i | −1.23971 | − | 14.2662i |
51.12 | −1.90033 | − | 0.623488i | −4.38843 | − | 1.81775i | 3.22252 | + | 2.36967i | −1.71600 | − | 4.14279i | 7.20613 | + | 6.19046i | 1.73486 | − | 1.73486i | −4.64640 | − | 6.51237i | 9.59016 | + | 9.59016i | 0.677988 | + | 8.94258i |
51.13 | −1.89304 | − | 0.645295i | 4.68963 | + | 1.94251i | 3.16719 | + | 2.44314i | −0.683091 | − | 1.64913i | −7.62416 | − | 6.70344i | 3.12122 | − | 3.12122i | −4.41906 | − | 6.66872i | 11.8553 | + | 11.8553i | 0.228943 | + | 3.56266i |
51.14 | −1.87191 | − | 0.704229i | −3.85446 | − | 1.59657i | 3.00812 | + | 2.63651i | 0.599273 | + | 1.44677i | 6.09086 | + | 5.70306i | 0.783280 | − | 0.783280i | −3.77423 | − | 7.05373i | 5.94386 | + | 5.94386i | −0.102927 | − | 3.13026i |
51.15 | −1.83810 | + | 0.788281i | 1.32174 | + | 0.547481i | 2.75723 | − | 2.89788i | 1.20868 | + | 2.91800i | −2.86105 | + | 0.0355745i | −1.19470 | + | 1.19470i | −2.78371 | + | 7.50006i | −4.91671 | − | 4.91671i | −4.52187 | − | 4.41080i |
51.16 | −1.81111 | + | 0.848459i | 3.26014 | + | 1.35040i | 2.56023 | − | 3.07330i | −3.69360 | − | 8.91714i | −7.05023 | + | 0.320385i | −5.21443 | + | 5.21443i | −2.02929 | + | 7.73835i | 2.44101 | + | 2.44101i | 14.2553 | + | 13.0160i |
51.17 | −1.79828 | + | 0.875320i | −4.22104 | − | 1.74841i | 2.46763 | − | 3.14814i | −2.88910 | − | 6.97489i | 9.12104 | − | 0.550624i | 2.87965 | − | 2.87965i | −1.68186 | + | 7.82121i | 8.39629 | + | 8.39629i | 11.3007 | + | 10.0139i |
51.18 | −1.76306 | − | 0.944258i | 2.02772 | + | 0.839910i | 2.21675 | + | 3.32956i | 0.464706 | + | 1.12190i | −2.78190 | − | 3.39550i | 6.62794 | − | 6.62794i | −0.764303 | − | 7.96341i | −2.95776 | − | 2.95776i | 0.240058 | − | 2.41678i |
51.19 | −1.66437 | + | 1.10899i | −0.157380 | − | 0.0651888i | 1.54028 | − | 3.69155i | −0.933238 | − | 2.25303i | 0.334232 | − | 0.0660338i | −4.44018 | + | 4.44018i | 1.53028 | + | 7.85228i | −6.34344 | − | 6.34344i | 4.05185 | + | 2.71494i |
51.20 | −1.65663 | + | 1.12052i | −2.80483 | − | 1.16180i | 1.48887 | − | 3.71258i | 1.24533 | + | 3.00650i | 5.94839 | − | 1.21819i | −1.43368 | + | 1.43368i | 1.69352 | + | 7.81870i | 0.153325 | + | 0.153325i | −5.43191 | − | 3.58525i |
See next 80 embeddings (of 440 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
32.h | odd | 8 | 1 | inner |
416.be | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.3.be.a | ✓ | 440 |
13.b | even | 2 | 1 | inner | 416.3.be.a | ✓ | 440 |
32.h | odd | 8 | 1 | inner | 416.3.be.a | ✓ | 440 |
416.be | odd | 8 | 1 | inner | 416.3.be.a | ✓ | 440 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.3.be.a | ✓ | 440 | 1.a | even | 1 | 1 | trivial |
416.3.be.a | ✓ | 440 | 13.b | even | 2 | 1 | inner |
416.3.be.a | ✓ | 440 | 32.h | odd | 8 | 1 | inner |
416.3.be.a | ✓ | 440 | 416.be | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(416, [\chi])\).