Properties

Label 416.3.be.a
Level $416$
Weight $3$
Character orbit 416.be
Analytic conductor $11.335$
Analytic rank $0$
Dimension $440$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,3,Mod(51,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 7, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 416.be (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3351789974\)
Analytic rank: \(0\)
Dimension: \(440\)
Relative dimension: \(110\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 440 q - 8 q^{3} - 8 q^{4} - 8 q^{9} - 8 q^{10} + 40 q^{12} - 4 q^{13} - 40 q^{14} - 8 q^{16} + 104 q^{22} - 8 q^{23} - 8 q^{25} - 104 q^{26} + 184 q^{27} - 8 q^{29} + 24 q^{30} - 8 q^{35} - 272 q^{36} - 288 q^{38}+ \cdots - 792 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1 −1.99787 + 0.0923444i −3.11870 1.29181i 3.98295 0.368984i 0.586174 + 1.41515i 6.35003 + 2.29286i 8.09949 8.09949i −7.92332 + 1.10498i 1.69355 + 1.69355i −1.30178 2.77315i
51.2 −1.99616 0.123854i −0.885286 0.366698i 3.96932 + 0.494465i −0.454051 1.09618i 1.72176 + 0.841634i −8.45119 + 8.45119i −7.86216 1.47865i −5.71470 5.71470i 0.770593 + 2.24438i
51.3 −1.99291 + 0.168199i 2.73329 + 1.13217i 3.94342 0.670412i −2.31992 5.60078i −5.63765 1.79657i 7.44559 7.44559i −7.74613 + 1.99935i −0.174878 0.174878i 5.56544 + 10.7717i
51.4 −1.98733 + 0.224787i 3.22684 + 1.33660i 3.89894 0.893452i −0.176830 0.426906i −6.71325 1.93091i −0.188699 + 0.188699i −7.54764 + 2.65201i 2.26205 + 2.26205i 0.447383 + 0.808653i
51.5 −1.97986 + 0.283121i −0.499130 0.206746i 3.83968 1.12108i 1.15470 + 2.78770i 1.04674 + 0.268014i 2.72764 2.72764i −7.28463 + 3.30668i −6.15757 6.15757i −3.07541 5.19234i
51.6 −1.96792 + 0.356756i −4.95804 2.05369i 3.74545 1.40414i 2.61067 + 6.30273i 10.4897 + 2.27269i −8.59359 + 8.59359i −6.86983 + 4.09945i 14.0006 + 14.0006i −7.38615 11.4719i
51.7 −1.96333 0.381226i −1.28388 0.531799i 3.70933 + 1.49694i 3.53737 + 8.53997i 2.31794 + 1.53354i 1.84272 1.84272i −6.71197 4.35309i −4.99843 4.99843i −3.68937 18.1153i
51.8 −1.95091 0.440378i 0.255951 + 0.106019i 3.61214 + 1.71828i −2.72741 6.58455i −0.452651 0.319548i −2.25164 + 2.25164i −6.29028 4.94292i −6.30969 6.30969i 2.42126 + 14.0470i
51.9 −1.92993 + 0.524772i −3.77448 1.56344i 3.44923 2.02554i −2.28619 5.51936i 8.10491 + 1.03658i −3.65748 + 3.65748i −5.59381 + 5.71920i 5.43837 + 5.43837i 7.30859 + 9.45223i
51.10 −1.92545 + 0.540980i 4.91460 + 2.03570i 3.41468 2.08325i 2.19173 + 5.29131i −10.5641 1.26092i −1.13789 + 1.13789i −5.44779 + 5.85847i 13.6453 + 13.6453i −7.08255 9.00245i
51.11 −1.90708 0.602529i 2.65847 + 1.10117i 3.27392 + 2.29814i 2.74000 + 6.61494i −4.40643 3.70183i −4.57539 + 4.57539i −4.85893 6.35537i −0.509089 0.509089i −1.23971 14.2662i
51.12 −1.90033 0.623488i −4.38843 1.81775i 3.22252 + 2.36967i −1.71600 4.14279i 7.20613 + 6.19046i 1.73486 1.73486i −4.64640 6.51237i 9.59016 + 9.59016i 0.677988 + 8.94258i
51.13 −1.89304 0.645295i 4.68963 + 1.94251i 3.16719 + 2.44314i −0.683091 1.64913i −7.62416 6.70344i 3.12122 3.12122i −4.41906 6.66872i 11.8553 + 11.8553i 0.228943 + 3.56266i
51.14 −1.87191 0.704229i −3.85446 1.59657i 3.00812 + 2.63651i 0.599273 + 1.44677i 6.09086 + 5.70306i 0.783280 0.783280i −3.77423 7.05373i 5.94386 + 5.94386i −0.102927 3.13026i
51.15 −1.83810 + 0.788281i 1.32174 + 0.547481i 2.75723 2.89788i 1.20868 + 2.91800i −2.86105 + 0.0355745i −1.19470 + 1.19470i −2.78371 + 7.50006i −4.91671 4.91671i −4.52187 4.41080i
51.16 −1.81111 + 0.848459i 3.26014 + 1.35040i 2.56023 3.07330i −3.69360 8.91714i −7.05023 + 0.320385i −5.21443 + 5.21443i −2.02929 + 7.73835i 2.44101 + 2.44101i 14.2553 + 13.0160i
51.17 −1.79828 + 0.875320i −4.22104 1.74841i 2.46763 3.14814i −2.88910 6.97489i 9.12104 0.550624i 2.87965 2.87965i −1.68186 + 7.82121i 8.39629 + 8.39629i 11.3007 + 10.0139i
51.18 −1.76306 0.944258i 2.02772 + 0.839910i 2.21675 + 3.32956i 0.464706 + 1.12190i −2.78190 3.39550i 6.62794 6.62794i −0.764303 7.96341i −2.95776 2.95776i 0.240058 2.41678i
51.19 −1.66437 + 1.10899i −0.157380 0.0651888i 1.54028 3.69155i −0.933238 2.25303i 0.334232 0.0660338i −4.44018 + 4.44018i 1.53028 + 7.85228i −6.34344 6.34344i 4.05185 + 2.71494i
51.20 −1.65663 + 1.12052i −2.80483 1.16180i 1.48887 3.71258i 1.24533 + 3.00650i 5.94839 1.21819i −1.43368 + 1.43368i 1.69352 + 7.81870i 0.153325 + 0.153325i −5.43191 3.58525i
See next 80 embeddings (of 440 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.110
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
32.h odd 8 1 inner
416.be odd 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.3.be.a 440
13.b even 2 1 inner 416.3.be.a 440
32.h odd 8 1 inner 416.3.be.a 440
416.be odd 8 1 inner 416.3.be.a 440
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.3.be.a 440 1.a even 1 1 trivial
416.3.be.a 440 13.b even 2 1 inner
416.3.be.a 440 32.h odd 8 1 inner
416.3.be.a 440 416.be odd 8 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(416, [\chi])\).