Properties

Label 416.2.k.e.31.4
Level $416$
Weight $2$
Character 416.31
Analytic conductor $3.322$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(31,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-2,0,-20,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{6} + 84x^{4} + 100x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.4
Root \(2.65328i\) of defining polynomial
Character \(\chi\) \(=\) 416.31
Dual form 416.2.k.e.255.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.89949i q^{3} +(-2.84658 + 2.84658i) q^{5} +(-0.193303 + 0.193303i) q^{7} -5.40706 q^{9} +(3.65328 - 3.65328i) q^{11} +(-0.193303 + 3.60037i) q^{13} +(-8.25364 - 8.25364i) q^{15} -0.899494i q^{17} +(0.753785 + 0.753785i) q^{19} +(-0.560481 - 0.560481i) q^{21} -1.89418 q^{23} -11.2060i q^{25} -6.97926i q^{27} -5.41238 q^{29} +(3.24622 + 3.24622i) q^{31} +(10.5927 + 10.5927i) q^{33} -1.10051i q^{35} +(2.95241 + 2.95241i) q^{37} +(-10.4392 - 0.560481i) q^{39} +(-5.79367 + 5.79367i) q^{41} -2.81972 q^{43} +(15.3916 - 15.3916i) q^{45} +(7.49986 - 7.49986i) q^{47} +6.92527i q^{49} +2.60808 q^{51} -5.69316 q^{53} +20.7987i q^{55} +(-2.18559 + 2.18559i) q^{57} +(-8.44695 + 8.44695i) q^{59} -2.98486 q^{61} +(1.04520 - 1.04520i) q^{63} +(-9.69848 - 10.7990i) q^{65} +(8.85401 + 8.85401i) q^{67} -5.49215i q^{69} +(-1.91252 - 1.91252i) q^{71} +(5.40706 + 5.40706i) q^{73} +32.4919 q^{75} +1.41238i q^{77} +1.20073i q^{79} +4.01514 q^{81} +(2.14571 + 2.14571i) q^{83} +(2.56048 + 2.56048i) q^{85} -15.6932i q^{87} +(-1.79367 - 1.79367i) q^{89} +(-0.658596 - 0.733328i) q^{91} +(-9.41238 + 9.41238i) q^{93} -4.29142 q^{95} +(-1.10582 + 1.10582i) q^{97} +(-19.7535 + 19.7535i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{7} - 20 q^{9} + 6 q^{11} - 2 q^{13} - 20 q^{15} + 6 q^{19} - 4 q^{21} - 16 q^{23} + 4 q^{29} + 26 q^{31} + 16 q^{33} + 8 q^{39} - 24 q^{41} - 44 q^{43} + 8 q^{45} + 14 q^{47} + 44 q^{51} + 28 q^{57}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.89949i 1.67402i 0.547185 + 0.837012i \(0.315699\pi\)
−0.547185 + 0.837012i \(0.684301\pi\)
\(4\) 0 0
\(5\) −2.84658 + 2.84658i −1.27303 + 1.27303i −0.328540 + 0.944490i \(0.606556\pi\)
−0.944490 + 0.328540i \(0.893444\pi\)
\(6\) 0 0
\(7\) −0.193303 + 0.193303i −0.0730617 + 0.0730617i −0.742693 0.669632i \(-0.766452\pi\)
0.669632 + 0.742693i \(0.266452\pi\)
\(8\) 0 0
\(9\) −5.40706 −1.80235
\(10\) 0 0
\(11\) 3.65328 3.65328i 1.10150 1.10150i 0.107275 0.994229i \(-0.465787\pi\)
0.994229 0.107275i \(-0.0342127\pi\)
\(12\) 0 0
\(13\) −0.193303 + 3.60037i −0.0536127 + 0.998562i
\(14\) 0 0
\(15\) −8.25364 8.25364i −2.13108 2.13108i
\(16\) 0 0
\(17\) 0.899494i 0.218159i −0.994033 0.109080i \(-0.965210\pi\)
0.994033 0.109080i \(-0.0347903\pi\)
\(18\) 0 0
\(19\) 0.753785 + 0.753785i 0.172930 + 0.172930i 0.788265 0.615335i \(-0.210979\pi\)
−0.615335 + 0.788265i \(0.710979\pi\)
\(20\) 0 0
\(21\) −0.560481 0.560481i −0.122307 0.122307i
\(22\) 0 0
\(23\) −1.89418 −0.394963 −0.197481 0.980307i \(-0.563276\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(24\) 0 0
\(25\) 11.2060i 2.24121i
\(26\) 0 0
\(27\) 6.97926i 1.34316i
\(28\) 0 0
\(29\) −5.41238 −1.00505 −0.502527 0.864562i \(-0.667596\pi\)
−0.502527 + 0.864562i \(0.667596\pi\)
\(30\) 0 0
\(31\) 3.24622 + 3.24622i 0.583038 + 0.583038i 0.935737 0.352699i \(-0.114736\pi\)
−0.352699 + 0.935737i \(0.614736\pi\)
\(32\) 0 0
\(33\) 10.5927 + 10.5927i 1.84394 + 1.84394i
\(34\) 0 0
\(35\) 1.10051i 0.186020i
\(36\) 0 0
\(37\) 2.95241 + 2.95241i 0.485373 + 0.485373i 0.906842 0.421470i \(-0.138486\pi\)
−0.421470 + 0.906842i \(0.638486\pi\)
\(38\) 0 0
\(39\) −10.4392 0.560481i −1.67162 0.0897488i
\(40\) 0 0
\(41\) −5.79367 + 5.79367i −0.904819 + 0.904819i −0.995848 0.0910291i \(-0.970984\pi\)
0.0910291 + 0.995848i \(0.470984\pi\)
\(42\) 0 0
\(43\) −2.81972 −0.430004 −0.215002 0.976614i \(-0.568976\pi\)
−0.215002 + 0.976614i \(0.568976\pi\)
\(44\) 0 0
\(45\) 15.3916 15.3916i 2.29445 2.29445i
\(46\) 0 0
\(47\) 7.49986 7.49986i 1.09397 1.09397i 0.0988662 0.995101i \(-0.468478\pi\)
0.995101 0.0988662i \(-0.0315216\pi\)
\(48\) 0 0
\(49\) 6.92527i 0.989324i
\(50\) 0 0
\(51\) 2.60808 0.365204
\(52\) 0 0
\(53\) −5.69316 −0.782016 −0.391008 0.920387i \(-0.627874\pi\)
−0.391008 + 0.920387i \(0.627874\pi\)
\(54\) 0 0
\(55\) 20.7987i 2.80450i
\(56\) 0 0
\(57\) −2.18559 + 2.18559i −0.289489 + 0.289489i
\(58\) 0 0
\(59\) −8.44695 + 8.44695i −1.09970 + 1.09970i −0.105253 + 0.994445i \(0.533565\pi\)
−0.994445 + 0.105253i \(0.966435\pi\)
\(60\) 0 0
\(61\) −2.98486 −0.382172 −0.191086 0.981573i \(-0.561201\pi\)
−0.191086 + 0.981573i \(0.561201\pi\)
\(62\) 0 0
\(63\) 1.04520 1.04520i 0.131683 0.131683i
\(64\) 0 0
\(65\) −9.69848 10.7990i −1.20295 1.33945i
\(66\) 0 0
\(67\) 8.85401 + 8.85401i 1.08169 + 1.08169i 0.996352 + 0.0853373i \(0.0271968\pi\)
0.0853373 + 0.996352i \(0.472803\pi\)
\(68\) 0 0
\(69\) 5.49215i 0.661177i
\(70\) 0 0
\(71\) −1.91252 1.91252i −0.226975 0.226975i 0.584453 0.811428i \(-0.301309\pi\)
−0.811428 + 0.584453i \(0.801309\pi\)
\(72\) 0 0
\(73\) 5.40706 + 5.40706i 0.632849 + 0.632849i 0.948782 0.315933i \(-0.102317\pi\)
−0.315933 + 0.948782i \(0.602317\pi\)
\(74\) 0 0
\(75\) 32.4919 3.75184
\(76\) 0 0
\(77\) 1.41238i 0.160956i
\(78\) 0 0
\(79\) 1.20073i 0.135093i 0.997716 + 0.0675464i \(0.0215171\pi\)
−0.997716 + 0.0675464i \(0.978483\pi\)
\(80\) 0 0
\(81\) 4.01514 0.446126
\(82\) 0 0
\(83\) 2.14571 + 2.14571i 0.235522 + 0.235522i 0.814993 0.579471i \(-0.196741\pi\)
−0.579471 + 0.814993i \(0.696741\pi\)
\(84\) 0 0
\(85\) 2.56048 + 2.56048i 0.277723 + 0.277723i
\(86\) 0 0
\(87\) 15.6932i 1.68248i
\(88\) 0 0
\(89\) −1.79367 1.79367i −0.190129 0.190129i 0.605623 0.795752i \(-0.292924\pi\)
−0.795752 + 0.605623i \(0.792924\pi\)
\(90\) 0 0
\(91\) −0.658596 0.733328i −0.0690396 0.0768737i
\(92\) 0 0
\(93\) −9.41238 + 9.41238i −0.976018 + 0.976018i
\(94\) 0 0
\(95\) −4.29142 −0.440290
\(96\) 0 0
\(97\) −1.10582 + 1.10582i −0.112279 + 0.112279i −0.761014 0.648735i \(-0.775298\pi\)
0.648735 + 0.761014i \(0.275298\pi\)
\(98\) 0 0
\(99\) −19.7535 + 19.7535i −1.98530 + 1.98530i
\(100\) 0 0
\(101\) 3.22679i 0.321077i −0.987030 0.160539i \(-0.948677\pi\)
0.987030 0.160539i \(-0.0513231\pi\)
\(102\) 0 0
\(103\) 8.46638 0.834217 0.417108 0.908857i \(-0.363044\pi\)
0.417108 + 0.908857i \(0.363044\pi\)
\(104\) 0 0
\(105\) 3.19091 0.311401
\(106\) 0 0
\(107\) 8.29142i 0.801562i 0.916174 + 0.400781i \(0.131261\pi\)
−0.916174 + 0.400781i \(0.868739\pi\)
\(108\) 0 0
\(109\) 10.7408 10.7408i 1.02878 1.02878i 0.0292045 0.999573i \(-0.490703\pi\)
0.999573 0.0292045i \(-0.00929739\pi\)
\(110\) 0 0
\(111\) −8.56048 + 8.56048i −0.812525 + 0.812525i
\(112\) 0 0
\(113\) 16.4919 1.55142 0.775712 0.631087i \(-0.217391\pi\)
0.775712 + 0.631087i \(0.217391\pi\)
\(114\) 0 0
\(115\) 5.39192 5.39192i 0.502800 0.502800i
\(116\) 0 0
\(117\) 1.04520 19.4674i 0.0966290 1.79976i
\(118\) 0 0
\(119\) 0.173875 + 0.173875i 0.0159391 + 0.0159391i
\(120\) 0 0
\(121\) 15.6929i 1.42663i
\(122\) 0 0
\(123\) −16.7987 16.7987i −1.51469 1.51469i
\(124\) 0 0
\(125\) 17.6660 + 17.6660i 1.58010 + 1.58010i
\(126\) 0 0
\(127\) 1.89418 0.168081 0.0840404 0.996462i \(-0.473218\pi\)
0.0840404 + 0.996462i \(0.473218\pi\)
\(128\) 0 0
\(129\) 8.17577i 0.719837i
\(130\) 0 0
\(131\) 18.3267i 1.60121i −0.599190 0.800607i \(-0.704511\pi\)
0.599190 0.800607i \(-0.295489\pi\)
\(132\) 0 0
\(133\) −0.291418 −0.0252691
\(134\) 0 0
\(135\) 19.8670 + 19.8670i 1.70988 + 1.70988i
\(136\) 0 0
\(137\) 5.98486 + 5.98486i 0.511321 + 0.511321i 0.914931 0.403610i \(-0.132245\pi\)
−0.403610 + 0.914931i \(0.632245\pi\)
\(138\) 0 0
\(139\) 1.31216i 0.111296i −0.998450 0.0556478i \(-0.982278\pi\)
0.998450 0.0556478i \(-0.0177224\pi\)
\(140\) 0 0
\(141\) 21.7458 + 21.7458i 1.83133 + 1.83133i
\(142\) 0 0
\(143\) 12.4469 + 13.8593i 1.04087 + 1.15898i
\(144\) 0 0
\(145\) 15.4068 15.4068i 1.27946 1.27946i
\(146\) 0 0
\(147\) −20.0798 −1.65615
\(148\) 0 0
\(149\) 0.111143 0.111143i 0.00910515 0.00910515i −0.702540 0.711645i \(-0.747951\pi\)
0.711645 + 0.702540i \(0.247951\pi\)
\(150\) 0 0
\(151\) 6.37890 6.37890i 0.519107 0.519107i −0.398194 0.917301i \(-0.630363\pi\)
0.917301 + 0.398194i \(0.130363\pi\)
\(152\) 0 0
\(153\) 4.86362i 0.393200i
\(154\) 0 0
\(155\) −18.4812 −1.48445
\(156\) 0 0
\(157\) −6.49243 −0.518152 −0.259076 0.965857i \(-0.583418\pi\)
−0.259076 + 0.965857i \(0.583418\pi\)
\(158\) 0 0
\(159\) 16.5073i 1.30911i
\(160\) 0 0
\(161\) 0.366150 0.366150i 0.0288567 0.0288567i
\(162\) 0 0
\(163\) 7.34644 7.34644i 0.575418 0.575418i −0.358220 0.933637i \(-0.616616\pi\)
0.933637 + 0.358220i \(0.116616\pi\)
\(164\) 0 0
\(165\) −60.3057 −4.69479
\(166\) 0 0
\(167\) 2.34112 2.34112i 0.181162 0.181162i −0.610700 0.791862i \(-0.709112\pi\)
0.791862 + 0.610700i \(0.209112\pi\)
\(168\) 0 0
\(169\) −12.9253 1.39192i −0.994251 0.107071i
\(170\) 0 0
\(171\) −4.07576 4.07576i −0.311681 0.311681i
\(172\) 0 0
\(173\) 19.0795i 1.45059i 0.688440 + 0.725293i \(0.258296\pi\)
−0.688440 + 0.725293i \(0.741704\pi\)
\(174\) 0 0
\(175\) 2.16617 + 2.16617i 0.163747 + 0.163747i
\(176\) 0 0
\(177\) −24.4919 24.4919i −1.84092 1.84092i
\(178\) 0 0
\(179\) −18.4065 −1.37577 −0.687883 0.725821i \(-0.741460\pi\)
−0.687883 + 0.725821i \(0.741460\pi\)
\(180\) 0 0
\(181\) 9.98458i 0.742148i 0.928603 + 0.371074i \(0.121010\pi\)
−0.928603 + 0.371074i \(0.878990\pi\)
\(182\) 0 0
\(183\) 8.65459i 0.639766i
\(184\) 0 0
\(185\) −16.8085 −1.23579
\(186\) 0 0
\(187\) −3.28610 3.28610i −0.240303 0.240303i
\(188\) 0 0
\(189\) 1.34911 + 1.34911i 0.0981336 + 0.0981336i
\(190\) 0 0
\(191\) 4.79871i 0.347222i 0.984814 + 0.173611i \(0.0555436\pi\)
−0.984814 + 0.173611i \(0.944456\pi\)
\(192\) 0 0
\(193\) 14.2805 + 14.2805i 1.02793 + 1.02793i 0.999598 + 0.0283344i \(0.00902033\pi\)
0.0283344 + 0.999598i \(0.490980\pi\)
\(194\) 0 0
\(195\) 31.3116 28.1207i 2.24227 2.01376i
\(196\) 0 0
\(197\) −5.23319 + 5.23319i −0.372849 + 0.372849i −0.868514 0.495665i \(-0.834924\pi\)
0.495665 + 0.868514i \(0.334924\pi\)
\(198\) 0 0
\(199\) −17.2805 −1.22498 −0.612491 0.790477i \(-0.709832\pi\)
−0.612491 + 0.790477i \(0.709832\pi\)
\(200\) 0 0
\(201\) −25.6721 + 25.6721i −1.81077 + 1.81077i
\(202\) 0 0
\(203\) 1.04623 1.04623i 0.0734310 0.0734310i
\(204\) 0 0
\(205\) 32.9843i 2.30372i
\(206\) 0 0
\(207\) 10.2419 0.711863
\(208\) 0 0
\(209\) 5.50757 0.380967
\(210\) 0 0
\(211\) 7.30152i 0.502657i 0.967902 + 0.251329i \(0.0808675\pi\)
−0.967902 + 0.251329i \(0.919133\pi\)
\(212\) 0 0
\(213\) 5.54534 5.54534i 0.379961 0.379961i
\(214\) 0 0
\(215\) 8.02658 8.02658i 0.547408 0.547408i
\(216\) 0 0
\(217\) −1.25501 −0.0851955
\(218\) 0 0
\(219\) −15.6777 + 15.6777i −1.05940 + 1.05940i
\(220\) 0 0
\(221\) 3.23851 + 0.173875i 0.217845 + 0.0116961i
\(222\) 0 0
\(223\) −7.71151 7.71151i −0.516401 0.516401i 0.400080 0.916480i \(-0.368982\pi\)
−0.916480 + 0.400080i \(0.868982\pi\)
\(224\) 0 0
\(225\) 60.5918i 4.03945i
\(226\) 0 0
\(227\) 11.5376 + 11.5376i 0.765780 + 0.765780i 0.977360 0.211581i \(-0.0678612\pi\)
−0.211581 + 0.977360i \(0.567861\pi\)
\(228\) 0 0
\(229\) 7.13800 + 7.13800i 0.471692 + 0.471692i 0.902462 0.430770i \(-0.141758\pi\)
−0.430770 + 0.902462i \(0.641758\pi\)
\(230\) 0 0
\(231\) −4.09519 −0.269444
\(232\) 0 0
\(233\) 15.6338i 1.02421i −0.858924 0.512104i \(-0.828866\pi\)
0.858924 0.512104i \(-0.171134\pi\)
\(234\) 0 0
\(235\) 42.6979i 2.78531i
\(236\) 0 0
\(237\) −3.48151 −0.226149
\(238\) 0 0
\(239\) 17.9923 + 17.9923i 1.16382 + 1.16382i 0.983631 + 0.180193i \(0.0576723\pi\)
0.180193 + 0.983631i \(0.442328\pi\)
\(240\) 0 0
\(241\) −2.56688 2.56688i −0.165347 0.165347i 0.619583 0.784931i \(-0.287302\pi\)
−0.784931 + 0.619583i \(0.787302\pi\)
\(242\) 0 0
\(243\) 9.29592i 0.596334i
\(244\) 0 0
\(245\) −19.7133 19.7133i −1.25944 1.25944i
\(246\) 0 0
\(247\) −2.85961 + 2.56819i −0.181953 + 0.163410i
\(248\) 0 0
\(249\) −6.22147 + 6.22147i −0.394270 + 0.394270i
\(250\) 0 0
\(251\) −14.3606 −0.906430 −0.453215 0.891401i \(-0.649723\pi\)
−0.453215 + 0.891401i \(0.649723\pi\)
\(252\) 0 0
\(253\) −6.91995 + 6.91995i −0.435054 + 0.435054i
\(254\) 0 0
\(255\) −7.42410 + 7.42410i −0.464915 + 0.464915i
\(256\) 0 0
\(257\) 4.96863i 0.309934i 0.987920 + 0.154967i \(0.0495272\pi\)
−0.987920 + 0.154967i \(0.950473\pi\)
\(258\) 0 0
\(259\) −1.14142 −0.0709243
\(260\) 0 0
\(261\) 29.2651 1.81146
\(262\) 0 0
\(263\) 19.6777i 1.21338i −0.794938 0.606691i \(-0.792497\pi\)
0.794938 0.606691i \(-0.207503\pi\)
\(264\) 0 0
\(265\) 16.2060 16.2060i 0.995530 0.995530i
\(266\) 0 0
\(267\) 5.20073 5.20073i 0.318280 0.318280i
\(268\) 0 0
\(269\) 11.2544 0.686196 0.343098 0.939300i \(-0.388524\pi\)
0.343098 + 0.939300i \(0.388524\pi\)
\(270\) 0 0
\(271\) −7.88647 + 7.88647i −0.479069 + 0.479069i −0.904834 0.425765i \(-0.860005\pi\)
0.425765 + 0.904834i \(0.360005\pi\)
\(272\) 0 0
\(273\) 2.12628 1.90960i 0.128688 0.115574i
\(274\) 0 0
\(275\) −40.9388 40.9388i −2.46870 2.46870i
\(276\) 0 0
\(277\) 10.4127i 0.625636i 0.949813 + 0.312818i \(0.101273\pi\)
−0.949813 + 0.312818i \(0.898727\pi\)
\(278\) 0 0
\(279\) −17.5525 17.5525i −1.05084 1.05084i
\(280\) 0 0
\(281\) 13.8734 + 13.8734i 0.827620 + 0.827620i 0.987187 0.159567i \(-0.0510099\pi\)
−0.159567 + 0.987187i \(0.551010\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 12.4429i 0.737056i
\(286\) 0 0
\(287\) 2.23987i 0.132215i
\(288\) 0 0
\(289\) 16.1909 0.952407
\(290\) 0 0
\(291\) −3.20633 3.20633i −0.187958 0.187958i
\(292\) 0 0
\(293\) −22.7662 22.7662i −1.33002 1.33002i −0.905348 0.424671i \(-0.860390\pi\)
−0.424671 0.905348i \(-0.639610\pi\)
\(294\) 0 0
\(295\) 48.0898i 2.79990i
\(296\) 0 0
\(297\) −25.4972 25.4972i −1.47950 1.47950i
\(298\) 0 0
\(299\) 0.366150 6.81972i 0.0211750 0.394395i
\(300\) 0 0
\(301\) 0.545062 0.545062i 0.0314168 0.0314168i
\(302\) 0 0
\(303\) 9.35605 0.537491
\(304\) 0 0
\(305\) 8.49665 8.49665i 0.486517 0.486517i
\(306\) 0 0
\(307\) 12.3151 12.3151i 0.702858 0.702858i −0.262165 0.965023i \(-0.584436\pi\)
0.965023 + 0.262165i \(0.0844365\pi\)
\(308\) 0 0
\(309\) 24.5482i 1.39650i
\(310\) 0 0
\(311\) 21.0258 1.19226 0.596131 0.802887i \(-0.296704\pi\)
0.596131 + 0.802887i \(0.296704\pi\)
\(312\) 0 0
\(313\) −0.498030 −0.0281503 −0.0140752 0.999901i \(-0.504480\pi\)
−0.0140752 + 0.999901i \(0.504480\pi\)
\(314\) 0 0
\(315\) 5.95051i 0.335273i
\(316\) 0 0
\(317\) 14.5126 14.5126i 0.815109 0.815109i −0.170286 0.985395i \(-0.554469\pi\)
0.985395 + 0.170286i \(0.0544690\pi\)
\(318\) 0 0
\(319\) −19.7729 + 19.7729i −1.10707 + 1.10707i
\(320\) 0 0
\(321\) −24.0409 −1.34183
\(322\) 0 0
\(323\) 0.678024 0.678024i 0.0377263 0.0377263i
\(324\) 0 0
\(325\) 40.3459 + 2.16617i 2.23799 + 0.120157i
\(326\) 0 0
\(327\) 31.1428 + 31.1428i 1.72220 + 1.72220i
\(328\) 0 0
\(329\) 2.89949i 0.159854i
\(330\) 0 0
\(331\) 6.18662 + 6.18662i 0.340047 + 0.340047i 0.856385 0.516338i \(-0.172705\pi\)
−0.516338 + 0.856385i \(0.672705\pi\)
\(332\) 0 0
\(333\) −15.9638 15.9638i −0.874813 0.874813i
\(334\) 0 0
\(335\) −50.4073 −2.75405
\(336\) 0 0
\(337\) 6.91013i 0.376419i 0.982129 + 0.188209i \(0.0602684\pi\)
−0.982129 + 0.188209i \(0.939732\pi\)
\(338\) 0 0
\(339\) 47.8181i 2.59712i
\(340\) 0 0
\(341\) 23.7187 1.28444
\(342\) 0 0
\(343\) −2.69180 2.69180i −0.145343 0.145343i
\(344\) 0 0
\(345\) 15.6338 + 15.6338i 0.841698 + 0.841698i
\(346\) 0 0
\(347\) 28.2965i 1.51903i −0.650488 0.759517i \(-0.725436\pi\)
0.650488 0.759517i \(-0.274564\pi\)
\(348\) 0 0
\(349\) −12.9524 12.9524i −0.693326 0.693326i 0.269636 0.962962i \(-0.413097\pi\)
−0.962962 + 0.269636i \(0.913097\pi\)
\(350\) 0 0
\(351\) 25.1279 + 1.34911i 1.34123 + 0.0720104i
\(352\) 0 0
\(353\) −14.7341 + 14.7341i −0.784216 + 0.784216i −0.980539 0.196323i \(-0.937100\pi\)
0.196323 + 0.980539i \(0.437100\pi\)
\(354\) 0 0
\(355\) 10.8883 0.577891
\(356\) 0 0
\(357\) −0.504149 + 0.504149i −0.0266824 + 0.0266824i
\(358\) 0 0
\(359\) 9.73865 9.73865i 0.513986 0.513986i −0.401759 0.915745i \(-0.631601\pi\)
0.915745 + 0.401759i \(0.131601\pi\)
\(360\) 0 0
\(361\) 17.8636i 0.940190i
\(362\) 0 0
\(363\) 45.5014 2.38820
\(364\) 0 0
\(365\) −30.7833 −1.61127
\(366\) 0 0
\(367\) 11.2114i 0.585229i −0.956231 0.292614i \(-0.905475\pi\)
0.956231 0.292614i \(-0.0945252\pi\)
\(368\) 0 0
\(369\) 31.3267 31.3267i 1.63080 1.63080i
\(370\) 0 0
\(371\) 1.10051 1.10051i 0.0571355 0.0571355i
\(372\) 0 0
\(373\) 15.3475 0.794662 0.397331 0.917675i \(-0.369937\pi\)
0.397331 + 0.917675i \(0.369937\pi\)
\(374\) 0 0
\(375\) −51.2225 + 51.2225i −2.64512 + 2.64512i
\(376\) 0 0
\(377\) 1.04623 19.4866i 0.0538836 1.00361i
\(378\) 0 0
\(379\) 9.62722 + 9.62722i 0.494517 + 0.494517i 0.909726 0.415209i \(-0.136292\pi\)
−0.415209 + 0.909726i \(0.636292\pi\)
\(380\) 0 0
\(381\) 5.49215i 0.281371i
\(382\) 0 0
\(383\) 20.5102 + 20.5102i 1.04802 + 1.04802i 0.998787 + 0.0492358i \(0.0156786\pi\)
0.0492358 + 0.998787i \(0.484321\pi\)
\(384\) 0 0
\(385\) −4.02046 4.02046i −0.204901 0.204901i
\(386\) 0 0
\(387\) 15.2464 0.775019
\(388\) 0 0
\(389\) 26.1616i 1.32645i 0.748422 + 0.663223i \(0.230812\pi\)
−0.748422 + 0.663223i \(0.769188\pi\)
\(390\) 0 0
\(391\) 1.70380i 0.0861648i
\(392\) 0 0
\(393\) 53.1382 2.68047
\(394\) 0 0
\(395\) −3.41798 3.41798i −0.171977 0.171977i
\(396\) 0 0
\(397\) 10.1909 + 10.1909i 0.511467 + 0.511467i 0.914976 0.403509i \(-0.132209\pi\)
−0.403509 + 0.914976i \(0.632209\pi\)
\(398\) 0 0
\(399\) 0.844964i 0.0423011i
\(400\) 0 0
\(401\) −1.85298 1.85298i −0.0925335 0.0925335i 0.659325 0.751858i \(-0.270842\pi\)
−0.751858 + 0.659325i \(0.770842\pi\)
\(402\) 0 0
\(403\) −12.3151 + 11.0601i −0.613457 + 0.550941i
\(404\) 0 0
\(405\) −11.4294 + 11.4294i −0.567932 + 0.567932i
\(406\) 0 0
\(407\) 21.5719 1.06928
\(408\) 0 0
\(409\) −9.82476 + 9.82476i −0.485803 + 0.485803i −0.906979 0.421176i \(-0.861618\pi\)
0.421176 + 0.906979i \(0.361618\pi\)
\(410\) 0 0
\(411\) −17.3531 + 17.3531i −0.855964 + 0.855964i
\(412\) 0 0
\(413\) 3.26564i 0.160692i
\(414\) 0 0
\(415\) −12.2159 −0.599653
\(416\) 0 0
\(417\) 3.80459 0.186311
\(418\) 0 0
\(419\) 21.7243i 1.06130i −0.847591 0.530650i \(-0.821948\pi\)
0.847591 0.530650i \(-0.178052\pi\)
\(420\) 0 0
\(421\) −2.04731 + 2.04731i −0.0997799 + 0.0997799i −0.755235 0.655455i \(-0.772477\pi\)
0.655455 + 0.755235i \(0.272477\pi\)
\(422\) 0 0
\(423\) −40.5522 + 40.5522i −1.97172 + 1.97172i
\(424\) 0 0
\(425\) −10.0798 −0.488941
\(426\) 0 0
\(427\) 0.576983 0.576983i 0.0279222 0.0279222i
\(428\) 0 0
\(429\) −40.1850 + 36.0898i −1.94015 + 1.74243i
\(430\) 0 0
\(431\) −1.81733 1.81733i −0.0875378 0.0875378i 0.661982 0.749520i \(-0.269716\pi\)
−0.749520 + 0.661982i \(0.769716\pi\)
\(432\) 0 0
\(433\) 8.36615i 0.402052i 0.979586 + 0.201026i \(0.0644275\pi\)
−0.979586 + 0.201026i \(0.935573\pi\)
\(434\) 0 0
\(435\) 44.6719 + 44.6719i 2.14185 + 2.14185i
\(436\) 0 0
\(437\) −1.42780 1.42780i −0.0683009 0.0683009i
\(438\) 0 0
\(439\) 32.8242 1.56661 0.783307 0.621635i \(-0.213531\pi\)
0.783307 + 0.621635i \(0.213531\pi\)
\(440\) 0 0
\(441\) 37.4454i 1.78311i
\(442\) 0 0
\(443\) 14.9208i 0.708907i 0.935074 + 0.354453i \(0.115333\pi\)
−0.935074 + 0.354453i \(0.884667\pi\)
\(444\) 0 0
\(445\) 10.2116 0.484079
\(446\) 0 0
\(447\) 0.322257 + 0.322257i 0.0152422 + 0.0152422i
\(448\) 0 0
\(449\) −1.80990 1.80990i −0.0854147 0.0854147i 0.663109 0.748523i \(-0.269237\pi\)
−0.748523 + 0.663109i \(0.769237\pi\)
\(450\) 0 0
\(451\) 42.3318i 1.99333i
\(452\) 0 0
\(453\) 18.4956 + 18.4956i 0.868998 + 0.868998i
\(454\) 0 0
\(455\) 3.96223 + 0.212731i 0.185752 + 0.00997300i
\(456\) 0 0
\(457\) −12.0851 + 12.0851i −0.565317 + 0.565317i −0.930813 0.365496i \(-0.880899\pi\)
0.365496 + 0.930813i \(0.380899\pi\)
\(458\) 0 0
\(459\) −6.27780 −0.293023
\(460\) 0 0
\(461\) 8.14250 8.14250i 0.379234 0.379234i −0.491592 0.870826i \(-0.663585\pi\)
0.870826 + 0.491592i \(0.163585\pi\)
\(462\) 0 0
\(463\) −15.2350 + 15.2350i −0.708031 + 0.708031i −0.966121 0.258090i \(-0.916907\pi\)
0.258090 + 0.966121i \(0.416907\pi\)
\(464\) 0 0
\(465\) 53.5862i 2.48500i
\(466\) 0 0
\(467\) 39.1847 1.81325 0.906627 0.421933i \(-0.138648\pi\)
0.906627 + 0.421933i \(0.138648\pi\)
\(468\) 0 0
\(469\) −3.42302 −0.158060
\(470\) 0 0
\(471\) 18.8248i 0.867399i
\(472\) 0 0
\(473\) −10.3012 + 10.3012i −0.473651 + 0.473651i
\(474\) 0 0
\(475\) 8.44695 8.44695i 0.387573 0.387573i
\(476\) 0 0
\(477\) 30.7833 1.40947
\(478\) 0 0
\(479\) 29.4041 29.4041i 1.34351 1.34351i 0.450968 0.892540i \(-0.351079\pi\)
0.892540 0.450968i \(-0.148921\pi\)
\(480\) 0 0
\(481\) −11.2005 + 10.0590i −0.510697 + 0.458652i
\(482\) 0 0
\(483\) 1.06165 + 1.06165i 0.0483067 + 0.0483067i
\(484\) 0 0
\(485\) 6.29564i 0.285870i
\(486\) 0 0
\(487\) −14.3411 14.3411i −0.649858 0.649858i 0.303100 0.952959i \(-0.401978\pi\)
−0.952959 + 0.303100i \(0.901978\pi\)
\(488\) 0 0
\(489\) 21.3010 + 21.3010i 0.963263 + 0.963263i
\(490\) 0 0
\(491\) −22.1949 −1.00164 −0.500820 0.865552i \(-0.666968\pi\)
−0.500820 + 0.865552i \(0.666968\pi\)
\(492\) 0 0
\(493\) 4.86840i 0.219262i
\(494\) 0 0
\(495\) 112.460i 5.05470i
\(496\) 0 0
\(497\) 0.739393 0.0331663
\(498\) 0 0
\(499\) −14.6325 14.6325i −0.655042 0.655042i 0.299160 0.954203i \(-0.403293\pi\)
−0.954203 + 0.299160i \(0.903293\pi\)
\(500\) 0 0
\(501\) 6.78807 + 6.78807i 0.303269 + 0.303269i
\(502\) 0 0
\(503\) 39.8978i 1.77896i 0.456978 + 0.889478i \(0.348932\pi\)
−0.456978 + 0.889478i \(0.651068\pi\)
\(504\) 0 0
\(505\) 9.18531 + 9.18531i 0.408741 + 0.408741i
\(506\) 0 0
\(507\) 4.03588 37.4767i 0.179240 1.66440i
\(508\) 0 0
\(509\) 18.7243 18.7243i 0.829938 0.829938i −0.157570 0.987508i \(-0.550366\pi\)
0.987508 + 0.157570i \(0.0503659\pi\)
\(510\) 0 0
\(511\) −2.09040 −0.0924741
\(512\) 0 0
\(513\) 5.26086 5.26086i 0.232273 0.232273i
\(514\) 0 0
\(515\) −24.1002 + 24.1002i −1.06198 + 1.06198i
\(516\) 0 0
\(517\) 54.7981i 2.41002i
\(518\) 0 0
\(519\) −55.3209 −2.42832
\(520\) 0 0
\(521\) −29.1106 −1.27536 −0.637679 0.770302i \(-0.720105\pi\)
−0.637679 + 0.770302i \(0.720105\pi\)
\(522\) 0 0
\(523\) 4.69344i 0.205230i 0.994721 + 0.102615i \(0.0327210\pi\)
−0.994721 + 0.102615i \(0.967279\pi\)
\(524\) 0 0
\(525\) −6.28078 + 6.28078i −0.274116 + 0.274116i
\(526\) 0 0
\(527\) 2.91995 2.91995i 0.127195 0.127195i
\(528\) 0 0
\(529\) −19.4121 −0.844004
\(530\) 0 0
\(531\) 45.6732 45.6732i 1.98205 1.98205i
\(532\) 0 0
\(533\) −19.7394 21.9793i −0.855008 0.952028i
\(534\) 0 0
\(535\) −23.6022 23.6022i −1.02041 1.02041i
\(536\) 0 0
\(537\) 53.3695i 2.30307i
\(538\) 0 0
\(539\) 25.2999 + 25.2999i 1.08975 + 1.08975i
\(540\) 0 0
\(541\) −24.0728 24.0728i −1.03497 1.03497i −0.999366 0.0356048i \(-0.988664\pi\)
−0.0356048 0.999366i \(-0.511336\pi\)
\(542\) 0 0
\(543\) −28.9502 −1.24237
\(544\) 0 0
\(545\) 61.1489i 2.61933i
\(546\) 0 0
\(547\) 28.5687i 1.22151i −0.791821 0.610754i \(-0.790867\pi\)
0.791821 0.610754i \(-0.209133\pi\)
\(548\) 0 0
\(549\) 16.1393 0.688810
\(550\) 0 0
\(551\) −4.07977 4.07977i −0.173804 0.173804i
\(552\) 0 0
\(553\) −0.232105 0.232105i −0.00987012 0.00987012i
\(554\) 0 0
\(555\) 48.7362i 2.06874i
\(556\) 0 0
\(557\) −6.44456 6.44456i −0.273065 0.273065i 0.557268 0.830333i \(-0.311850\pi\)
−0.830333 + 0.557268i \(0.811850\pi\)
\(558\) 0 0
\(559\) 0.545062 10.1520i 0.0230537 0.429386i
\(560\) 0 0
\(561\) 9.52803 9.52803i 0.402274 0.402274i
\(562\) 0 0
\(563\) −40.9787 −1.72705 −0.863523 0.504309i \(-0.831747\pi\)
−0.863523 + 0.504309i \(0.831747\pi\)
\(564\) 0 0
\(565\) −46.9454 + 46.9454i −1.97501 + 1.97501i
\(566\) 0 0
\(567\) −0.776139 + 0.776139i −0.0325948 + 0.0325948i
\(568\) 0 0
\(569\) 23.9529i 1.00416i 0.864822 + 0.502079i \(0.167431\pi\)
−0.864822 + 0.502079i \(0.832569\pi\)
\(570\) 0 0
\(571\) 22.6181 0.946540 0.473270 0.880917i \(-0.343073\pi\)
0.473270 + 0.880917i \(0.343073\pi\)
\(572\) 0 0
\(573\) −13.9138 −0.581258
\(574\) 0 0
\(575\) 21.2262i 0.885195i
\(576\) 0 0
\(577\) −21.6873 + 21.6873i −0.902853 + 0.902853i −0.995682 0.0928287i \(-0.970409\pi\)
0.0928287 + 0.995682i \(0.470409\pi\)
\(578\) 0 0
\(579\) −41.4062 + 41.4062i −1.72078 + 1.72078i
\(580\) 0 0
\(581\) −0.829545 −0.0344153
\(582\) 0 0
\(583\) −20.7987 + 20.7987i −0.861394 + 0.861394i
\(584\) 0 0
\(585\) 52.4403 + 58.3908i 2.16814 + 2.41416i
\(586\) 0 0
\(587\) 4.90612 + 4.90612i 0.202497 + 0.202497i 0.801069 0.598572i \(-0.204265\pi\)
−0.598572 + 0.801069i \(0.704265\pi\)
\(588\) 0 0
\(589\) 4.89389i 0.201649i
\(590\) 0 0
\(591\) −15.1736 15.1736i −0.624158 0.624158i
\(592\) 0 0
\(593\) 3.85082 + 3.85082i 0.158134 + 0.158134i 0.781739 0.623605i \(-0.214333\pi\)
−0.623605 + 0.781739i \(0.714333\pi\)
\(594\) 0 0
\(595\) −0.989898 −0.0405819
\(596\) 0 0
\(597\) 50.1047i 2.05065i
\(598\) 0 0
\(599\) 1.08427i 0.0443021i −0.999755 0.0221511i \(-0.992949\pi\)
0.999755 0.0221511i \(-0.00705148\pi\)
\(600\) 0 0
\(601\) 20.3273 0.829168 0.414584 0.910011i \(-0.363927\pi\)
0.414584 + 0.910011i \(0.363927\pi\)
\(602\) 0 0
\(603\) −47.8742 47.8742i −1.94959 1.94959i
\(604\) 0 0
\(605\) 44.6711 + 44.6711i 1.81614 + 1.81614i
\(606\) 0 0
\(607\) 4.68225i 0.190046i −0.995475 0.0950232i \(-0.969707\pi\)
0.995475 0.0950232i \(-0.0302925\pi\)
\(608\) 0 0
\(609\) 3.03354 + 3.03354i 0.122925 + 0.122925i
\(610\) 0 0
\(611\) 25.5525 + 28.4520i 1.03374 + 1.15104i
\(612\) 0 0
\(613\) 22.8689 22.8689i 0.923668 0.923668i −0.0736188 0.997286i \(-0.523455\pi\)
0.997286 + 0.0736188i \(0.0234548\pi\)
\(614\) 0 0
\(615\) 95.6378 3.85649
\(616\) 0 0
\(617\) 8.80459 8.80459i 0.354459 0.354459i −0.507306 0.861766i \(-0.669359\pi\)
0.861766 + 0.507306i \(0.169359\pi\)
\(618\) 0 0
\(619\) 17.6690 17.6690i 0.710175 0.710175i −0.256397 0.966572i \(-0.582535\pi\)
0.966572 + 0.256397i \(0.0825353\pi\)
\(620\) 0 0
\(621\) 13.2199i 0.530498i
\(622\) 0 0
\(623\) 0.693444 0.0277822
\(624\) 0 0
\(625\) −44.5453 −1.78181
\(626\) 0 0
\(627\) 15.9692i 0.637747i
\(628\) 0 0
\(629\) 2.65567 2.65567i 0.105888 0.105888i
\(630\) 0 0
\(631\) −8.04600 + 8.04600i −0.320306 + 0.320306i −0.848885 0.528578i \(-0.822725\pi\)
0.528578 + 0.848885i \(0.322725\pi\)
\(632\) 0 0
\(633\) −21.1707 −0.841460
\(634\) 0 0
\(635\) −5.39192 + 5.39192i −0.213972 + 0.213972i
\(636\) 0 0
\(637\) −24.9335 1.33868i −0.987901 0.0530403i
\(638\) 0 0
\(639\) 10.3411 + 10.3411i 0.409088 + 0.409088i
\(640\) 0 0
\(641\) 36.5025i 1.44176i −0.693059 0.720881i \(-0.743737\pi\)
0.693059 0.720881i \(-0.256263\pi\)
\(642\) 0 0
\(643\) −31.9489 31.9489i −1.25994 1.25994i −0.951120 0.308823i \(-0.900065\pi\)
−0.308823 0.951120i \(-0.599935\pi\)
\(644\) 0 0
\(645\) 23.2730 + 23.2730i 0.916374 + 0.916374i
\(646\) 0 0
\(647\) 5.41660 0.212949 0.106474 0.994315i \(-0.466044\pi\)
0.106474 + 0.994315i \(0.466044\pi\)
\(648\) 0 0
\(649\) 61.7181i 2.42265i
\(650\) 0 0
\(651\) 3.63889i 0.142619i
\(652\) 0 0
\(653\) −0.543979 −0.0212876 −0.0106438 0.999943i \(-0.503388\pi\)
−0.0106438 + 0.999943i \(0.503388\pi\)
\(654\) 0 0
\(655\) 52.1685 + 52.1685i 2.03839 + 2.03839i
\(656\) 0 0
\(657\) −29.2363 29.2363i −1.14062 1.14062i
\(658\) 0 0
\(659\) 21.4358i 0.835021i 0.908672 + 0.417510i \(0.137097\pi\)
−0.908672 + 0.417510i \(0.862903\pi\)
\(660\) 0 0
\(661\) −13.3119 13.3119i −0.517772 0.517772i 0.399125 0.916897i \(-0.369314\pi\)
−0.916897 + 0.399125i \(0.869314\pi\)
\(662\) 0 0
\(663\) −0.504149 + 9.39003i −0.0195795 + 0.364678i
\(664\) 0 0
\(665\) 0.829545 0.829545i 0.0321684 0.0321684i
\(666\) 0 0
\(667\) 10.2520 0.396959
\(668\) 0 0
\(669\) 22.3595 22.3595i 0.864467 0.864467i
\(670\) 0 0
\(671\) −10.9045 + 10.9045i −0.420965 + 0.420965i
\(672\) 0 0
\(673\) 19.0893i 0.735839i 0.929858 + 0.367919i \(0.119930\pi\)
−0.929858 + 0.367919i \(0.880070\pi\)
\(674\) 0 0
\(675\) −78.2100 −3.01030
\(676\) 0 0
\(677\) −11.8421 −0.455128 −0.227564 0.973763i \(-0.573076\pi\)
−0.227564 + 0.973763i \(0.573076\pi\)
\(678\) 0 0
\(679\) 0.427519i 0.0164067i
\(680\) 0 0
\(681\) −33.4533 + 33.4533i −1.28193 + 1.28193i
\(682\) 0 0
\(683\) 4.26695 4.26695i 0.163270 0.163270i −0.620743 0.784014i \(-0.713169\pi\)
0.784014 + 0.620743i \(0.213169\pi\)
\(684\) 0 0
\(685\) −34.0728 −1.30185
\(686\) 0 0
\(687\) −20.6966 + 20.6966i −0.789624 + 0.789624i
\(688\) 0 0
\(689\) 1.10051 20.4975i 0.0419260 0.780891i
\(690\) 0 0
\(691\) −26.5783 26.5783i −1.01108 1.01108i −0.999938 0.0111470i \(-0.996452\pi\)
−0.0111470 0.999938i \(-0.503548\pi\)
\(692\) 0 0
\(693\) 7.63683i 0.290099i
\(694\) 0 0
\(695\) 3.73516 + 3.73516i 0.141683 + 0.141683i
\(696\) 0 0
\(697\) 5.21137 + 5.21137i 0.197395 + 0.197395i
\(698\) 0 0
\(699\) 45.3302 1.71455
\(700\) 0 0
\(701\) 47.9431i 1.81079i −0.424574 0.905393i \(-0.639576\pi\)
0.424574 0.905393i \(-0.360424\pi\)
\(702\) 0 0
\(703\) 4.45096i 0.167871i
\(704\) 0 0
\(705\) −123.802 −4.66267
\(706\) 0 0
\(707\) 0.623748 + 0.623748i 0.0234585 + 0.0234585i
\(708\) 0 0
\(709\) 21.4969 + 21.4969i 0.807333 + 0.807333i 0.984229 0.176896i \(-0.0566057\pi\)
−0.176896 + 0.984229i \(0.556606\pi\)
\(710\) 0 0
\(711\) 6.49243i 0.243485i
\(712\) 0 0
\(713\) −6.14890 6.14890i −0.230278 0.230278i
\(714\) 0 0
\(715\) −74.8829 4.02046i −2.80046 0.150357i
\(716\) 0 0
\(717\) −52.1685 + 52.1685i −1.94827 + 1.94827i
\(718\) 0 0
\(719\) 27.5224 1.02641 0.513207 0.858265i \(-0.328457\pi\)
0.513207 + 0.858265i \(0.328457\pi\)
\(720\) 0 0
\(721\) −1.63658 + 1.63658i −0.0609493 + 0.0609493i
\(722\) 0 0
\(723\) 7.44266 7.44266i 0.276795 0.276795i
\(724\) 0 0
\(725\) 60.6514i 2.25254i
\(726\) 0 0
\(727\) 42.9188 1.59177 0.795886 0.605447i \(-0.207006\pi\)
0.795886 + 0.605447i \(0.207006\pi\)
\(728\) 0 0
\(729\) 38.9989 1.44440
\(730\) 0 0
\(731\) 2.53632i 0.0938093i
\(732\) 0 0
\(733\) −23.3799 + 23.3799i −0.863557 + 0.863557i −0.991749 0.128192i \(-0.959083\pi\)
0.128192 + 0.991749i \(0.459083\pi\)
\(734\) 0 0
\(735\) 57.1587 57.1587i 2.10833 2.10833i
\(736\) 0 0
\(737\) 64.6923 2.38297
\(738\) 0 0
\(739\) 27.0558 27.0558i 0.995265 0.995265i −0.00472373 0.999989i \(-0.501504\pi\)
0.999989 + 0.00472373i \(0.00150362\pi\)
\(740\) 0 0
\(741\) −7.44645 8.29142i −0.273552 0.304593i
\(742\) 0 0
\(743\) −4.62082 4.62082i −0.169522 0.169522i 0.617248 0.786769i \(-0.288248\pi\)
−0.786769 + 0.617248i \(0.788248\pi\)
\(744\) 0 0
\(745\) 0.632753i 0.0231823i
\(746\) 0 0
\(747\) −11.6020 11.6020i −0.424494 0.424494i
\(748\) 0 0
\(749\) −1.60276 1.60276i −0.0585635 0.0585635i
\(750\) 0 0
\(751\) −10.5935 −0.386561 −0.193281 0.981144i \(-0.561913\pi\)
−0.193281 + 0.981144i \(0.561913\pi\)
\(752\) 0 0
\(753\) 41.6383i 1.51738i
\(754\) 0 0
\(755\) 36.3161i 1.32168i
\(756\) 0 0
\(757\) −21.3124 −0.774613 −0.387306 0.921951i \(-0.626594\pi\)
−0.387306 + 0.921951i \(0.626594\pi\)
\(758\) 0 0
\(759\) −20.0643 20.0643i −0.728290 0.728290i
\(760\) 0 0
\(761\) 4.38129 + 4.38129i 0.158822 + 0.158822i 0.782044 0.623223i \(-0.214177\pi\)
−0.623223 + 0.782044i \(0.714177\pi\)
\(762\) 0 0
\(763\) 4.15245i 0.150329i
\(764\) 0 0
\(765\) −13.8447 13.8447i −0.500556 0.500556i
\(766\) 0 0
\(767\) −28.7793 32.0449i −1.03916 1.15708i
\(768\) 0 0
\(769\) 10.1111 10.1111i 0.364617 0.364617i −0.500892 0.865510i \(-0.666995\pi\)
0.865510 + 0.500892i \(0.166995\pi\)
\(770\) 0 0
\(771\) −14.4065 −0.518837
\(772\) 0 0
\(773\) −1.84208 + 1.84208i −0.0662550 + 0.0662550i −0.739458 0.673203i \(-0.764918\pi\)
0.673203 + 0.739458i \(0.264918\pi\)
\(774\) 0 0
\(775\) 36.3773 36.3773i 1.30671 1.30671i
\(776\) 0 0
\(777\) 3.30954i 0.118729i
\(778\) 0 0
\(779\) −8.73436 −0.312941
\(780\) 0 0
\(781\) −13.9739 −0.500027
\(782\) 0 0
\(783\) 37.7744i 1.34995i
\(784\) 0 0
\(785\) 18.4812 18.4812i 0.659623 0.659623i
\(786\) 0 0
\(787\) 37.8285 37.8285i 1.34844 1.34844i 0.461083 0.887357i \(-0.347461\pi\)
0.887357 0.461083i \(-0.152539\pi\)
\(788\) 0 0
\(789\) 57.0555 2.03123
\(790\) 0 0
\(791\) −3.18793 + 3.18793i −0.113350 + 0.113350i
\(792\) 0 0
\(793\) 0.576983 10.7466i 0.0204893 0.381623i
\(794\) 0 0
\(795\) 46.9893 + 46.9893i 1.66654 + 1.66654i
\(796\) 0 0
\(797\) 18.2802i 0.647519i 0.946139 + 0.323759i \(0.104947\pi\)
−0.946139 + 0.323759i \(0.895053\pi\)
\(798\) 0 0
\(799\) −6.74607 6.74607i −0.238659 0.238659i
\(800\) 0 0
\(801\) 9.69848 + 9.69848i 0.342679 + 0.342679i
\(802\) 0 0
\(803\) 39.5070 1.39417
\(804\) 0 0
\(805\) 2.08455i 0.0734708i
\(806\) 0 0
\(807\) 32.6322i 1.14871i
\(808\) 0 0
\(809\) 17.1302 0.602266 0.301133 0.953582i \(-0.402635\pi\)
0.301133 + 0.953582i \(0.402635\pi\)
\(810\) 0 0
\(811\) −19.8721 19.8721i −0.697805 0.697805i 0.266132 0.963937i \(-0.414254\pi\)
−0.963937 + 0.266132i \(0.914254\pi\)
\(812\) 0 0
\(813\) −22.8668 22.8668i −0.801972 0.801972i
\(814\) 0 0
\(815\) 41.8245i 1.46505i
\(816\) 0 0
\(817\) −2.12546 2.12546i −0.0743606 0.0743606i
\(818\) 0 0
\(819\) 3.56107 + 3.96515i 0.124434 + 0.138554i
\(820\) 0 0
\(821\) 26.9216 26.9216i 0.939569 0.939569i −0.0587062 0.998275i \(-0.518697\pi\)
0.998275 + 0.0587062i \(0.0186975\pi\)
\(822\) 0 0
\(823\) −48.2105 −1.68051 −0.840257 0.542189i \(-0.817596\pi\)
−0.840257 + 0.542189i \(0.817596\pi\)
\(824\) 0 0
\(825\) 118.702 118.702i 4.13267 4.13267i
\(826\) 0 0
\(827\) −16.1810 + 16.1810i −0.562669 + 0.562669i −0.930065 0.367396i \(-0.880250\pi\)
0.367396 + 0.930065i \(0.380250\pi\)
\(828\) 0 0
\(829\) 40.8476i 1.41870i 0.704858 + 0.709349i \(0.251011\pi\)
−0.704858 + 0.709349i \(0.748989\pi\)
\(830\) 0 0
\(831\) −30.1914 −1.04733
\(832\) 0 0
\(833\) 6.22923 0.215830
\(834\) 0 0
\(835\) 13.3284i 0.461248i
\(836\) 0 0
\(837\) 22.6562 22.6562i 0.783112 0.783112i
\(838\) 0 0
\(839\) −15.4988 + 15.4988i −0.535077 + 0.535077i −0.922079 0.387002i \(-0.873511\pi\)
0.387002 + 0.922079i \(0.373511\pi\)
\(840\) 0 0
\(841\) 0.293864 0.0101332
\(842\) 0 0
\(843\) −40.2259 + 40.2259i −1.38546 + 1.38546i
\(844\) 0 0
\(845\) 40.7551 32.8306i 1.40202 1.12941i
\(846\) 0 0
\(847\) 3.03348 + 3.03348i 0.104232 + 0.104232i
\(848\) 0 0
\(849\) 57.9899i 1.99021i
\(850\) 0 0
\(851\) −5.59237 5.59237i −0.191704 0.191704i
\(852\) 0 0
\(853\) −2.12764 2.12764i −0.0728492 0.0728492i 0.669743 0.742593i \(-0.266404\pi\)
−0.742593 + 0.669743i \(0.766404\pi\)
\(854\) 0 0
\(855\) 23.2040 0.793559
\(856\) 0 0
\(857\) 27.4076i 0.936226i 0.883669 + 0.468113i \(0.155066\pi\)
−0.883669 + 0.468113i \(0.844934\pi\)
\(858\) 0 0
\(859\) 25.9197i 0.884368i 0.896924 + 0.442184i \(0.145796\pi\)
−0.896924 + 0.442184i \(0.854204\pi\)
\(860\) 0 0
\(861\) 6.49449 0.221332
\(862\) 0 0
\(863\) −2.43101 2.43101i −0.0827525 0.0827525i 0.664519 0.747271i \(-0.268636\pi\)
−0.747271 + 0.664519i \(0.768636\pi\)
\(864\) 0 0
\(865\) −54.3113 54.3113i −1.84664 1.84664i
\(866\) 0 0
\(867\) 46.9454i 1.59435i
\(868\) 0 0
\(869\) 4.38661 + 4.38661i 0.148805 + 0.148805i
\(870\) 0 0
\(871\) −33.5892 + 30.1662i −1.13813 + 1.02214i
\(872\) 0 0
\(873\) 5.97926 5.97926i 0.202367 0.202367i
\(874\) 0 0
\(875\) −6.82980 −0.230889
\(876\) 0 0
\(877\) −2.19199 + 2.19199i −0.0740184 + 0.0740184i −0.743147 0.669128i \(-0.766668\pi\)
0.669128 + 0.743147i \(0.266668\pi\)
\(878\) 0 0
\(879\) 66.0106 66.0106i 2.22648 2.22648i
\(880\) 0 0
\(881\) 2.92715i 0.0986182i −0.998784 0.0493091i \(-0.984298\pi\)
0.998784 0.0493091i \(-0.0157019\pi\)
\(882\) 0 0
\(883\) −6.53632 −0.219965 −0.109982 0.993934i \(-0.535079\pi\)
−0.109982 + 0.993934i \(0.535079\pi\)
\(884\) 0 0
\(885\) 139.436 4.68710
\(886\) 0 0
\(887\) 6.92580i 0.232546i 0.993217 + 0.116273i \(0.0370947\pi\)
−0.993217 + 0.116273i \(0.962905\pi\)
\(888\) 0 0
\(889\) −0.366150 + 0.366150i −0.0122803 + 0.0122803i
\(890\) 0 0
\(891\) 14.6684 14.6684i 0.491410 0.491410i
\(892\) 0 0
\(893\) 11.3066 0.378359
\(894\) 0 0
\(895\) 52.3956 52.3956i 1.75139 1.75139i
\(896\) 0 0
\(897\) 19.7737 + 1.06165i 0.660226 + 0.0354475i
\(898\) 0 0
\(899\) −17.5698 17.5698i −0.585984 0.585984i
\(900\) 0 0
\(901\) 5.12096i 0.170604i
\(902\) 0 0
\(903\) 1.58040 + 1.58040i 0.0525925 + 0.0525925i
\(904\) 0 0
\(905\) −28.4219 28.4219i −0.944777 0.944777i
\(906\) 0 0
\(907\) −45.5812 −1.51350 −0.756749 0.653705i \(-0.773214\pi\)
−0.756749 + 0.653705i \(0.773214\pi\)
\(908\) 0 0
\(909\) 17.4474i 0.578695i
\(910\) 0 0
\(911\) 43.3384i 1.43587i 0.696112 + 0.717933i \(0.254912\pi\)
−0.696112 + 0.717933i \(0.745088\pi\)
\(912\) 0 0
\(913\) 15.6777 0.518858
\(914\) 0 0
\(915\) 24.6360 + 24.6360i 0.814441 + 0.814441i
\(916\) 0 0
\(917\) 3.54262 + 3.54262i 0.116987 + 0.116987i
\(918\) 0 0
\(919\) 50.6508i 1.67082i −0.549629 0.835409i \(-0.685231\pi\)
0.549629 0.835409i \(-0.314769\pi\)
\(920\) 0 0
\(921\) 35.7075 + 35.7075i 1.17660 + 1.17660i
\(922\) 0 0
\(923\) 7.25547 6.51608i 0.238817 0.214479i
\(924\) 0 0
\(925\) 33.0848 33.0848i 1.08782 1.08782i
\(926\) 0 0
\(927\) −45.7782 −1.50355
\(928\) 0 0
\(929\) −2.91463 + 2.91463i −0.0956260 + 0.0956260i −0.753301 0.657675i \(-0.771540\pi\)
0.657675 + 0.753301i \(0.271540\pi\)
\(930\) 0 0
\(931\) −5.22016 + 5.22016i −0.171084 + 0.171084i
\(932\) 0 0
\(933\) 60.9641i 1.99587i
\(934\) 0 0
\(935\) 18.7083 0.611827
\(936\) 0 0
\(937\) −1.02634 −0.0335290 −0.0167645 0.999859i \(-0.505337\pi\)
−0.0167645 + 0.999859i \(0.505337\pi\)
\(938\) 0 0
\(939\) 1.44404i 0.0471243i
\(940\) 0 0
\(941\) −37.9521 + 37.9521i −1.23720 + 1.23720i −0.276065 + 0.961139i \(0.589030\pi\)
−0.961139 + 0.276065i \(0.910970\pi\)
\(942\) 0 0
\(943\) 10.9742 10.9742i 0.357370 0.357370i
\(944\) 0 0
\(945\) −7.68072 −0.249854
\(946\) 0 0
\(947\) 18.0760 18.0760i 0.587392 0.587392i −0.349533 0.936924i \(-0.613660\pi\)
0.936924 + 0.349533i \(0.113660\pi\)
\(948\) 0 0
\(949\) −20.5126 + 18.4222i −0.665867 + 0.598010i
\(950\) 0 0
\(951\) 42.0792 + 42.0792i 1.36451 + 1.36451i
\(952\) 0 0
\(953\) 29.9338i 0.969652i −0.874611 0.484826i \(-0.838883\pi\)
0.874611 0.484826i \(-0.161117\pi\)
\(954\) 0 0
\(955\) −13.6599 13.6599i −0.442024 0.442024i
\(956\) 0 0
\(957\) −57.3315 57.3315i −1.85326 1.85326i
\(958\) 0 0
\(959\) −2.31379 −0.0747160
\(960\) 0 0
\(961\) 9.92417i 0.320135i
\(962\) 0 0
\(963\) 44.8322i 1.44470i
\(964\) 0 0
\(965\) −81.3012 −2.61718
\(966\) 0 0
\(967\) 38.5639 + 38.5639i 1.24013 + 1.24013i 0.959945 + 0.280187i \(0.0903964\pi\)
0.280187 + 0.959945i \(0.409604\pi\)
\(968\) 0 0
\(969\) 1.96593 + 1.96593i 0.0631547 + 0.0631547i
\(970\) 0 0
\(971\) 4.40912i 0.141495i 0.997494 + 0.0707477i \(0.0225385\pi\)
−0.997494 + 0.0707477i \(0.977461\pi\)
\(972\) 0 0
\(973\) 0.253644 + 0.253644i 0.00813145 + 0.00813145i
\(974\) 0 0
\(975\) −6.28078 + 116.983i −0.201146 + 3.74644i
\(976\) 0 0
\(977\) −18.1959 + 18.1959i −0.582140 + 0.582140i −0.935491 0.353351i \(-0.885042\pi\)
0.353351 + 0.935491i \(0.385042\pi\)
\(978\) 0 0
\(979\) −13.1055 −0.418855
\(980\) 0 0
\(981\) −58.0759 + 58.0759i −1.85422 + 1.85422i
\(982\) 0 0
\(983\) 20.0827 20.0827i 0.640538 0.640538i −0.310149 0.950688i \(-0.600379\pi\)
0.950688 + 0.310149i \(0.100379\pi\)
\(984\) 0 0
\(985\) 29.7934i 0.949296i
\(986\) 0 0
\(987\) −8.40706 −0.267600
\(988\) 0 0
\(989\) 5.34105 0.169836
\(990\) 0 0
\(991\) 32.6626i 1.03756i 0.854907 + 0.518781i \(0.173614\pi\)
−0.854907 + 0.518781i \(0.826386\pi\)
\(992\) 0 0
\(993\) −17.9381 + 17.9381i −0.569247 + 0.569247i
\(994\) 0 0
\(995\) 49.1903 49.1903i 1.55944 1.55944i
\(996\) 0 0
\(997\) 40.6365 1.28697 0.643486 0.765458i \(-0.277487\pi\)
0.643486 + 0.765458i \(0.277487\pi\)
\(998\) 0 0
\(999\) 20.6056 20.6056i 0.651933 0.651933i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.k.e.31.4 8
4.3 odd 2 416.2.k.f.31.1 yes 8
8.3 odd 2 832.2.k.i.447.4 8
8.5 even 2 832.2.k.g.447.1 8
13.8 odd 4 416.2.k.f.255.4 yes 8
52.47 even 4 inner 416.2.k.e.255.1 yes 8
104.21 odd 4 832.2.k.i.255.1 8
104.99 even 4 832.2.k.g.255.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.k.e.31.4 8 1.1 even 1 trivial
416.2.k.e.255.1 yes 8 52.47 even 4 inner
416.2.k.f.31.1 yes 8 4.3 odd 2
416.2.k.f.255.4 yes 8 13.8 odd 4
832.2.k.g.255.4 8 104.99 even 4
832.2.k.g.447.1 8 8.5 even 2
832.2.k.i.255.1 8 104.21 odd 4
832.2.k.i.447.4 8 8.3 odd 2