Properties

Label 416.2.f.e
Level 416416
Weight 22
Character orbit 416.f
Analytic conductor 3.3223.322
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(129,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 416.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.321776724093.32177672409
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β3q3β1q5β2q7+2q9+(3β1+2)q13β2q15+3q17+2β2q195β1q212β3q23+4q25β3q27+12β1q97+O(q100) q + \beta_{3} q^{3} - \beta_1 q^{5} - \beta_{2} q^{7} + 2 q^{9} + ( - 3 \beta_1 + 2) q^{13} - \beta_{2} q^{15} + 3 q^{17} + 2 \beta_{2} q^{19} - 5 \beta_1 q^{21} - 2 \beta_{3} q^{23} + 4 q^{25} - \beta_{3} q^{27}+ \cdots - 12 \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q9+8q13+12q17+16q25+8q4924q5312q6540q6944q81+O(q100) 4 q + 8 q^{9} + 8 q^{13} + 12 q^{17} + 16 q^{25} + 8 q^{49} - 24 q^{53} - 12 q^{65} - 40 q^{69} - 44 q^{81}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+3x2+1 x^{4} + 3x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν3+2ν \nu^{3} + 2\nu Copy content Toggle raw display
β2\beta_{2}== ν3+4ν \nu^{3} + 4\nu Copy content Toggle raw display
β3\beta_{3}== 2ν2+3 2\nu^{2} + 3 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β33)/2 ( \beta_{3} - 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== β2+2β1 -\beta_{2} + 2\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
129.1
1.61803i
1.61803i
0.618034i
0.618034i
0 −2.23607 0 1.00000i 0 2.23607i 0 2.00000 0
129.2 0 −2.23607 0 1.00000i 0 2.23607i 0 2.00000 0
129.3 0 2.23607 0 1.00000i 0 2.23607i 0 2.00000 0
129.4 0 2.23607 0 1.00000i 0 2.23607i 0 2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.b even 2 1 inner
52.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.f.e 4
3.b odd 2 1 3744.2.c.k 4
4.b odd 2 1 inner 416.2.f.e 4
8.b even 2 1 832.2.f.h 4
8.d odd 2 1 832.2.f.h 4
12.b even 2 1 3744.2.c.k 4
13.b even 2 1 inner 416.2.f.e 4
13.d odd 4 1 5408.2.a.t 2
13.d odd 4 1 5408.2.a.bb 2
39.d odd 2 1 3744.2.c.k 4
52.b odd 2 1 inner 416.2.f.e 4
52.f even 4 1 5408.2.a.t 2
52.f even 4 1 5408.2.a.bb 2
104.e even 2 1 832.2.f.h 4
104.h odd 2 1 832.2.f.h 4
156.h even 2 1 3744.2.c.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.f.e 4 1.a even 1 1 trivial
416.2.f.e 4 4.b odd 2 1 inner
416.2.f.e 4 13.b even 2 1 inner
416.2.f.e 4 52.b odd 2 1 inner
832.2.f.h 4 8.b even 2 1
832.2.f.h 4 8.d odd 2 1
832.2.f.h 4 104.e even 2 1
832.2.f.h 4 104.h odd 2 1
3744.2.c.k 4 3.b odd 2 1
3744.2.c.k 4 12.b even 2 1
3744.2.c.k 4 39.d odd 2 1
3744.2.c.k 4 156.h even 2 1
5408.2.a.t 2 13.d odd 4 1
5408.2.a.t 2 52.f even 4 1
5408.2.a.bb 2 13.d odd 4 1
5408.2.a.bb 2 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(416,[χ])S_{2}^{\mathrm{new}}(416, [\chi]):

T325 T_{3}^{2} - 5 Copy content Toggle raw display
T52+1 T_{5}^{2} + 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T25)2 (T^{2} - 5)^{2} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 (T2+5)2 (T^{2} + 5)^{2} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 (T24T+13)2 (T^{2} - 4 T + 13)^{2} Copy content Toggle raw display
1717 (T3)4 (T - 3)^{4} Copy content Toggle raw display
1919 (T2+20)2 (T^{2} + 20)^{2} Copy content Toggle raw display
2323 (T220)2 (T^{2} - 20)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+80)2 (T^{2} + 80)^{2} Copy content Toggle raw display
3737 (T2+9)2 (T^{2} + 9)^{2} Copy content Toggle raw display
4141 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
4343 (T245)2 (T^{2} - 45)^{2} Copy content Toggle raw display
4747 (T2+45)2 (T^{2} + 45)^{2} Copy content Toggle raw display
5353 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
5959 (T2+180)2 (T^{2} + 180)^{2} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T2+80)2 (T^{2} + 80)^{2} Copy content Toggle raw display
7171 (T2+45)2 (T^{2} + 45)^{2} Copy content Toggle raw display
7373 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
7979 (T2180)2 (T^{2} - 180)^{2} Copy content Toggle raw display
8383 (T2+180)2 (T^{2} + 180)^{2} Copy content Toggle raw display
8989 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
9797 (T2+144)2 (T^{2} + 144)^{2} Copy content Toggle raw display
show more
show less