gp: [N,k,chi] = [416,2,Mod(129,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.129");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,0,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 3 x 2 + 1 x^{4} + 3x^{2} + 1 x 4 + 3 x 2 + 1
x^4 + 3*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
ν 3 + 2 ν \nu^{3} + 2\nu ν 3 + 2 ν
v^3 + 2*v
β 2 \beta_{2} β 2 = = =
ν 3 + 4 ν \nu^{3} + 4\nu ν 3 + 4 ν
v^3 + 4*v
β 3 \beta_{3} β 3 = = =
2 ν 2 + 3 2\nu^{2} + 3 2 ν 2 + 3
2*v^2 + 3
ν \nu ν = = =
( β 2 − β 1 ) / 2 ( \beta_{2} - \beta_1 ) / 2 ( β 2 − β 1 ) / 2
(b2 - b1) / 2
ν 2 \nu^{2} ν 2 = = =
( β 3 − 3 ) / 2 ( \beta_{3} - 3 ) / 2 ( β 3 − 3 ) / 2
(b3 - 3) / 2
ν 3 \nu^{3} ν 3 = = =
− β 2 + 2 β 1 -\beta_{2} + 2\beta_1 − β 2 + 2 β 1
-b2 + 2*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 416 Z ) × \left(\mathbb{Z}/416\mathbb{Z}\right)^\times ( Z / 4 1 6 Z ) × .
n n n
261 261 2 6 1
287 287 2 8 7
353 353 3 5 3
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 416 , [ χ ] ) S_{2}^{\mathrm{new}}(416, [\chi]) S 2 n e w ( 4 1 6 , [ χ ] ) :
T 3 2 − 5 T_{3}^{2} - 5 T 3 2 − 5
T3^2 - 5
T 5 2 + 1 T_{5}^{2} + 1 T 5 2 + 1
T5^2 + 1
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − 5 ) 2 (T^{2} - 5)^{2} ( T 2 − 5 ) 2
(T^2 - 5)^2
5 5 5
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
7 7 7
( T 2 + 5 ) 2 (T^{2} + 5)^{2} ( T 2 + 5 ) 2
(T^2 + 5)^2
11 11 1 1
T 4 T^{4} T 4
T^4
13 13 1 3
( T 2 − 4 T + 13 ) 2 (T^{2} - 4 T + 13)^{2} ( T 2 − 4 T + 1 3 ) 2
(T^2 - 4*T + 13)^2
17 17 1 7
( T − 3 ) 4 (T - 3)^{4} ( T − 3 ) 4
(T - 3)^4
19 19 1 9
( T 2 + 20 ) 2 (T^{2} + 20)^{2} ( T 2 + 2 0 ) 2
(T^2 + 20)^2
23 23 2 3
( T 2 − 20 ) 2 (T^{2} - 20)^{2} ( T 2 − 2 0 ) 2
(T^2 - 20)^2
29 29 2 9
T 4 T^{4} T 4
T^4
31 31 3 1
( T 2 + 80 ) 2 (T^{2} + 80)^{2} ( T 2 + 8 0 ) 2
(T^2 + 80)^2
37 37 3 7
( T 2 + 9 ) 2 (T^{2} + 9)^{2} ( T 2 + 9 ) 2
(T^2 + 9)^2
41 41 4 1
( T 2 + 64 ) 2 (T^{2} + 64)^{2} ( T 2 + 6 4 ) 2
(T^2 + 64)^2
43 43 4 3
( T 2 − 45 ) 2 (T^{2} - 45)^{2} ( T 2 − 4 5 ) 2
(T^2 - 45)^2
47 47 4 7
( T 2 + 45 ) 2 (T^{2} + 45)^{2} ( T 2 + 4 5 ) 2
(T^2 + 45)^2
53 53 5 3
( T + 6 ) 4 (T + 6)^{4} ( T + 6 ) 4
(T + 6)^4
59 59 5 9
( T 2 + 180 ) 2 (T^{2} + 180)^{2} ( T 2 + 1 8 0 ) 2
(T^2 + 180)^2
61 61 6 1
T 4 T^{4} T 4
T^4
67 67 6 7
( T 2 + 80 ) 2 (T^{2} + 80)^{2} ( T 2 + 8 0 ) 2
(T^2 + 80)^2
71 71 7 1
( T 2 + 45 ) 2 (T^{2} + 45)^{2} ( T 2 + 4 5 ) 2
(T^2 + 45)^2
73 73 7 3
( T 2 + 36 ) 2 (T^{2} + 36)^{2} ( T 2 + 3 6 ) 2
(T^2 + 36)^2
79 79 7 9
( T 2 − 180 ) 2 (T^{2} - 180)^{2} ( T 2 − 1 8 0 ) 2
(T^2 - 180)^2
83 83 8 3
( T 2 + 180 ) 2 (T^{2} + 180)^{2} ( T 2 + 1 8 0 ) 2
(T^2 + 180)^2
89 89 8 9
( T 2 + 196 ) 2 (T^{2} + 196)^{2} ( T 2 + 1 9 6 ) 2
(T^2 + 196)^2
97 97 9 7
( T 2 + 144 ) 2 (T^{2} + 144)^{2} ( T 2 + 1 4 4 ) 2
(T^2 + 144)^2
show more
show less