Properties

Label 416.2.bu.a.383.1
Level $416$
Weight $2$
Character 416.383
Analytic conductor $3.322$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(63,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bu (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-6,0,-2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 383.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.383
Dual form 416.2.bu.a.63.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.36603 - 1.36603i) q^{3} +(0.366025 - 0.366025i) q^{5} +(-1.00000 - 0.267949i) q^{7} +(2.23205 + 3.86603i) q^{9} +(-0.732051 - 2.73205i) q^{11} +(-3.50000 - 0.866025i) q^{13} +(-1.36603 + 0.366025i) q^{15} +(-0.401924 + 0.232051i) q^{17} +(-0.901924 + 3.36603i) q^{19} +(2.00000 + 2.00000i) q^{21} +(-4.36603 + 7.56218i) q^{23} +4.73205i q^{25} -4.00000i q^{27} +(-2.23205 + 3.86603i) q^{29} +(2.46410 + 2.46410i) q^{31} +(-2.00000 + 7.46410i) q^{33} +(-0.464102 + 0.267949i) q^{35} +(-3.59808 + 0.964102i) q^{37} +(7.09808 + 6.83013i) q^{39} +(-3.06218 - 11.4282i) q^{41} +(-5.73205 - 9.92820i) q^{43} +(2.23205 + 0.598076i) q^{45} +(2.46410 - 2.46410i) q^{47} +(-5.13397 - 2.96410i) q^{49} +1.26795 q^{51} +1.73205 q^{53} +(-1.26795 - 0.732051i) q^{55} +(6.73205 - 6.73205i) q^{57} +(5.73205 + 1.53590i) q^{59} +(3.33013 + 5.76795i) q^{61} +(-1.19615 - 4.46410i) q^{63} +(-1.59808 + 0.964102i) q^{65} +(-8.83013 + 2.36603i) q^{67} +(20.6603 - 11.9282i) q^{69} +(-2.56218 + 9.56218i) q^{71} +(-9.29423 - 9.29423i) q^{73} +(6.46410 - 11.1962i) q^{75} +2.92820i q^{77} -9.46410i q^{79} +(1.23205 - 2.13397i) q^{81} +(6.19615 + 6.19615i) q^{83} +(-0.0621778 + 0.232051i) q^{85} +(10.5622 - 6.09808i) q^{87} +(14.5622 - 3.90192i) q^{89} +(3.26795 + 1.80385i) q^{91} +(-2.46410 - 9.19615i) q^{93} +(0.901924 + 1.56218i) q^{95} +(-5.83013 - 1.56218i) q^{97} +(8.92820 - 8.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 2 q^{5} - 4 q^{7} + 2 q^{9} + 4 q^{11} - 14 q^{13} - 2 q^{15} - 12 q^{17} - 14 q^{19} + 8 q^{21} - 14 q^{23} - 2 q^{29} - 4 q^{31} - 8 q^{33} + 12 q^{35} - 4 q^{37} + 18 q^{39} + 12 q^{41}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36603 1.36603i −1.36603 0.788675i −0.375608 0.926779i \(-0.622566\pi\)
−0.990418 + 0.138104i \(0.955899\pi\)
\(4\) 0 0
\(5\) 0.366025 0.366025i 0.163692 0.163692i −0.620508 0.784200i \(-0.713074\pi\)
0.784200 + 0.620508i \(0.213074\pi\)
\(6\) 0 0
\(7\) −1.00000 0.267949i −0.377964 0.101275i 0.0648349 0.997896i \(-0.479348\pi\)
−0.442799 + 0.896621i \(0.646015\pi\)
\(8\) 0 0
\(9\) 2.23205 + 3.86603i 0.744017 + 1.28868i
\(10\) 0 0
\(11\) −0.732051 2.73205i −0.220722 0.823744i −0.984074 0.177762i \(-0.943114\pi\)
0.763352 0.645983i \(-0.223552\pi\)
\(12\) 0 0
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) 0 0
\(15\) −1.36603 + 0.366025i −0.352706 + 0.0945074i
\(16\) 0 0
\(17\) −0.401924 + 0.232051i −0.0974808 + 0.0562806i −0.547948 0.836512i \(-0.684591\pi\)
0.450467 + 0.892793i \(0.351257\pi\)
\(18\) 0 0
\(19\) −0.901924 + 3.36603i −0.206916 + 0.772219i 0.781942 + 0.623352i \(0.214229\pi\)
−0.988857 + 0.148868i \(0.952437\pi\)
\(20\) 0 0
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 0 0
\(23\) −4.36603 + 7.56218i −0.910379 + 1.57682i −0.0968500 + 0.995299i \(0.530877\pi\)
−0.813529 + 0.581524i \(0.802457\pi\)
\(24\) 0 0
\(25\) 4.73205i 0.946410i
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −2.23205 + 3.86603i −0.414481 + 0.717903i −0.995374 0.0960774i \(-0.969370\pi\)
0.580892 + 0.813980i \(0.302704\pi\)
\(30\) 0 0
\(31\) 2.46410 + 2.46410i 0.442566 + 0.442566i 0.892873 0.450308i \(-0.148686\pi\)
−0.450308 + 0.892873i \(0.648686\pi\)
\(32\) 0 0
\(33\) −2.00000 + 7.46410i −0.348155 + 1.29933i
\(34\) 0 0
\(35\) −0.464102 + 0.267949i −0.0784475 + 0.0452917i
\(36\) 0 0
\(37\) −3.59808 + 0.964102i −0.591520 + 0.158497i −0.542148 0.840283i \(-0.682389\pi\)
−0.0493722 + 0.998780i \(0.515722\pi\)
\(38\) 0 0
\(39\) 7.09808 + 6.83013i 1.13660 + 1.09370i
\(40\) 0 0
\(41\) −3.06218 11.4282i −0.478232 1.78479i −0.608775 0.793343i \(-0.708339\pi\)
0.130543 0.991443i \(-0.458328\pi\)
\(42\) 0 0
\(43\) −5.73205 9.92820i −0.874130 1.51404i −0.857687 0.514172i \(-0.828099\pi\)
−0.0164424 0.999865i \(-0.505234\pi\)
\(44\) 0 0
\(45\) 2.23205 + 0.598076i 0.332734 + 0.0891559i
\(46\) 0 0
\(47\) 2.46410 2.46410i 0.359426 0.359426i −0.504175 0.863601i \(-0.668203\pi\)
0.863601 + 0.504175i \(0.168203\pi\)
\(48\) 0 0
\(49\) −5.13397 2.96410i −0.733425 0.423443i
\(50\) 0 0
\(51\) 1.26795 0.177548
\(52\) 0 0
\(53\) 1.73205 0.237915 0.118958 0.992899i \(-0.462045\pi\)
0.118958 + 0.992899i \(0.462045\pi\)
\(54\) 0 0
\(55\) −1.26795 0.732051i −0.170970 0.0987097i
\(56\) 0 0
\(57\) 6.73205 6.73205i 0.891682 0.891682i
\(58\) 0 0
\(59\) 5.73205 + 1.53590i 0.746249 + 0.199957i 0.611854 0.790971i \(-0.290424\pi\)
0.134396 + 0.990928i \(0.457091\pi\)
\(60\) 0 0
\(61\) 3.33013 + 5.76795i 0.426379 + 0.738510i 0.996548 0.0830172i \(-0.0264556\pi\)
−0.570169 + 0.821527i \(0.693122\pi\)
\(62\) 0 0
\(63\) −1.19615 4.46410i −0.150701 0.562424i
\(64\) 0 0
\(65\) −1.59808 + 0.964102i −0.198217 + 0.119582i
\(66\) 0 0
\(67\) −8.83013 + 2.36603i −1.07877 + 0.289056i −0.754093 0.656768i \(-0.771923\pi\)
−0.324679 + 0.945824i \(0.605256\pi\)
\(68\) 0 0
\(69\) 20.6603 11.9282i 2.48720 1.43599i
\(70\) 0 0
\(71\) −2.56218 + 9.56218i −0.304075 + 1.13482i 0.629664 + 0.776867i \(0.283192\pi\)
−0.933739 + 0.357955i \(0.883474\pi\)
\(72\) 0 0
\(73\) −9.29423 9.29423i −1.08781 1.08781i −0.995754 0.0920531i \(-0.970657\pi\)
−0.0920531 0.995754i \(-0.529343\pi\)
\(74\) 0 0
\(75\) 6.46410 11.1962i 0.746410 1.29282i
\(76\) 0 0
\(77\) 2.92820i 0.333700i
\(78\) 0 0
\(79\) 9.46410i 1.06479i −0.846495 0.532397i \(-0.821291\pi\)
0.846495 0.532397i \(-0.178709\pi\)
\(80\) 0 0
\(81\) 1.23205 2.13397i 0.136895 0.237108i
\(82\) 0 0
\(83\) 6.19615 + 6.19615i 0.680116 + 0.680116i 0.960026 0.279910i \(-0.0903047\pi\)
−0.279910 + 0.960026i \(0.590305\pi\)
\(84\) 0 0
\(85\) −0.0621778 + 0.232051i −0.00674413 + 0.0251694i
\(86\) 0 0
\(87\) 10.5622 6.09808i 1.13238 0.653782i
\(88\) 0 0
\(89\) 14.5622 3.90192i 1.54359 0.413603i 0.616165 0.787617i \(-0.288686\pi\)
0.927423 + 0.374014i \(0.122019\pi\)
\(90\) 0 0
\(91\) 3.26795 + 1.80385i 0.342574 + 0.189095i
\(92\) 0 0
\(93\) −2.46410 9.19615i −0.255515 0.953597i
\(94\) 0 0
\(95\) 0.901924 + 1.56218i 0.0925354 + 0.160276i
\(96\) 0 0
\(97\) −5.83013 1.56218i −0.591960 0.158615i −0.0496110 0.998769i \(-0.515798\pi\)
−0.542349 + 0.840153i \(0.682465\pi\)
\(98\) 0 0
\(99\) 8.92820 8.92820i 0.897318 0.897318i
\(100\) 0 0
\(101\) −13.7942 7.96410i −1.37258 0.792458i −0.381325 0.924441i \(-0.624532\pi\)
−0.991252 + 0.131983i \(0.957865\pi\)
\(102\) 0 0
\(103\) −6.73205 −0.663329 −0.331664 0.943397i \(-0.607610\pi\)
−0.331664 + 0.943397i \(0.607610\pi\)
\(104\) 0 0
\(105\) 1.46410 0.142882
\(106\) 0 0
\(107\) 0.633975 + 0.366025i 0.0612886 + 0.0353850i 0.530331 0.847791i \(-0.322068\pi\)
−0.469043 + 0.883176i \(0.655401\pi\)
\(108\) 0 0
\(109\) −11.1962 + 11.1962i −1.07240 + 1.07240i −0.0752308 + 0.997166i \(0.523969\pi\)
−0.997166 + 0.0752308i \(0.976031\pi\)
\(110\) 0 0
\(111\) 9.83013 + 2.63397i 0.933034 + 0.250006i
\(112\) 0 0
\(113\) −1.59808 2.76795i −0.150334 0.260387i 0.781016 0.624511i \(-0.214702\pi\)
−0.931350 + 0.364124i \(0.881368\pi\)
\(114\) 0 0
\(115\) 1.16987 + 4.36603i 0.109091 + 0.407134i
\(116\) 0 0
\(117\) −4.46410 15.4641i −0.412706 1.42966i
\(118\) 0 0
\(119\) 0.464102 0.124356i 0.0425441 0.0113997i
\(120\) 0 0
\(121\) 2.59808 1.50000i 0.236189 0.136364i
\(122\) 0 0
\(123\) −8.36603 + 31.2224i −0.754339 + 2.81523i
\(124\) 0 0
\(125\) 3.56218 + 3.56218i 0.318611 + 0.318611i
\(126\) 0 0
\(127\) 2.90192 5.02628i 0.257504 0.446010i −0.708069 0.706144i \(-0.750433\pi\)
0.965573 + 0.260134i \(0.0837666\pi\)
\(128\) 0 0
\(129\) 31.3205i 2.75762i
\(130\) 0 0
\(131\) 3.80385i 0.332344i −0.986097 0.166172i \(-0.946859\pi\)
0.986097 0.166172i \(-0.0531406\pi\)
\(132\) 0 0
\(133\) 1.80385 3.12436i 0.156413 0.270916i
\(134\) 0 0
\(135\) −1.46410 1.46410i −0.126010 0.126010i
\(136\) 0 0
\(137\) −1.50000 + 5.59808i −0.128154 + 0.478276i −0.999932 0.0116238i \(-0.996300\pi\)
0.871779 + 0.489900i \(0.162967\pi\)
\(138\) 0 0
\(139\) 6.12436 3.53590i 0.519461 0.299911i −0.217253 0.976115i \(-0.569710\pi\)
0.736714 + 0.676204i \(0.236376\pi\)
\(140\) 0 0
\(141\) −9.19615 + 2.46410i −0.774456 + 0.207515i
\(142\) 0 0
\(143\) 0.196152 + 10.1962i 0.0164031 + 0.852645i
\(144\) 0 0
\(145\) 0.598076 + 2.23205i 0.0496675 + 0.185362i
\(146\) 0 0
\(147\) 8.09808 + 14.0263i 0.667918 + 1.15687i
\(148\) 0 0
\(149\) 5.86603 + 1.57180i 0.480564 + 0.128767i 0.490965 0.871179i \(-0.336644\pi\)
−0.0104015 + 0.999946i \(0.503311\pi\)
\(150\) 0 0
\(151\) 0.464102 0.464102i 0.0377681 0.0377681i −0.687971 0.725739i \(-0.741498\pi\)
0.725739 + 0.687971i \(0.241498\pi\)
\(152\) 0 0
\(153\) −1.79423 1.03590i −0.145055 0.0837474i
\(154\) 0 0
\(155\) 1.80385 0.144889
\(156\) 0 0
\(157\) −22.4641 −1.79283 −0.896415 0.443215i \(-0.853838\pi\)
−0.896415 + 0.443215i \(0.853838\pi\)
\(158\) 0 0
\(159\) −4.09808 2.36603i −0.324999 0.187638i
\(160\) 0 0
\(161\) 6.39230 6.39230i 0.503784 0.503784i
\(162\) 0 0
\(163\) −7.73205 2.07180i −0.605621 0.162276i −0.0570383 0.998372i \(-0.518166\pi\)
−0.548583 + 0.836096i \(0.684832\pi\)
\(164\) 0 0
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) 0 0
\(167\) −4.19615 15.6603i −0.324708 1.21183i −0.914605 0.404348i \(-0.867498\pi\)
0.589897 0.807478i \(-0.299168\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 0 0
\(171\) −15.0263 + 4.02628i −1.14909 + 0.307897i
\(172\) 0 0
\(173\) 18.5885 10.7321i 1.41325 0.815943i 0.417561 0.908649i \(-0.362885\pi\)
0.995693 + 0.0927063i \(0.0295518\pi\)
\(174\) 0 0
\(175\) 1.26795 4.73205i 0.0958479 0.357709i
\(176\) 0 0
\(177\) −11.4641 11.4641i −0.861695 0.861695i
\(178\) 0 0
\(179\) 2.73205 4.73205i 0.204203 0.353690i −0.745675 0.666309i \(-0.767873\pi\)
0.949879 + 0.312619i \(0.101206\pi\)
\(180\) 0 0
\(181\) 7.19615i 0.534886i 0.963574 + 0.267443i \(0.0861787\pi\)
−0.963574 + 0.267443i \(0.913821\pi\)
\(182\) 0 0
\(183\) 18.1962i 1.34510i
\(184\) 0 0
\(185\) −0.964102 + 1.66987i −0.0708822 + 0.122772i
\(186\) 0 0
\(187\) 0.928203 + 0.928203i 0.0678769 + 0.0678769i
\(188\) 0 0
\(189\) −1.07180 + 4.00000i −0.0779617 + 0.290957i
\(190\) 0 0
\(191\) −13.9019 + 8.02628i −1.00591 + 0.580761i −0.909991 0.414628i \(-0.863912\pi\)
−0.0959170 + 0.995389i \(0.530578\pi\)
\(192\) 0 0
\(193\) −7.33013 + 1.96410i −0.527634 + 0.141379i −0.512796 0.858511i \(-0.671390\pi\)
−0.0148386 + 0.999890i \(0.504723\pi\)
\(194\) 0 0
\(195\) 5.09808 0.0980762i 0.365081 0.00702338i
\(196\) 0 0
\(197\) 4.83013 + 18.0263i 0.344132 + 1.28432i 0.893623 + 0.448819i \(0.148155\pi\)
−0.549490 + 0.835500i \(0.685178\pi\)
\(198\) 0 0
\(199\) −8.29423 14.3660i −0.587962 1.01838i −0.994499 0.104746i \(-0.966597\pi\)
0.406537 0.913634i \(-0.366736\pi\)
\(200\) 0 0
\(201\) 24.1244 + 6.46410i 1.70160 + 0.455943i
\(202\) 0 0
\(203\) 3.26795 3.26795i 0.229365 0.229365i
\(204\) 0 0
\(205\) −5.30385 3.06218i −0.370437 0.213872i
\(206\) 0 0
\(207\) −38.9808 −2.70935
\(208\) 0 0
\(209\) 9.85641 0.681782
\(210\) 0 0
\(211\) −23.3660 13.4904i −1.60858 0.928716i −0.989688 0.143243i \(-0.954247\pi\)
−0.618896 0.785473i \(-0.712420\pi\)
\(212\) 0 0
\(213\) 19.1244 19.1244i 1.31038 1.31038i
\(214\) 0 0
\(215\) −5.73205 1.53590i −0.390923 0.104747i
\(216\) 0 0
\(217\) −1.80385 3.12436i −0.122453 0.212095i
\(218\) 0 0
\(219\) 9.29423 + 34.6865i 0.628046 + 2.34390i
\(220\) 0 0
\(221\) 1.60770 0.464102i 0.108145 0.0312189i
\(222\) 0 0
\(223\) 4.56218 1.22243i 0.305506 0.0818601i −0.102809 0.994701i \(-0.532783\pi\)
0.408315 + 0.912841i \(0.366116\pi\)
\(224\) 0 0
\(225\) −18.2942 + 10.5622i −1.21962 + 0.704145i
\(226\) 0 0
\(227\) 2.63397 9.83013i 0.174823 0.652448i −0.821759 0.569836i \(-0.807007\pi\)
0.996582 0.0826128i \(-0.0263265\pi\)
\(228\) 0 0
\(229\) 15.7321 + 15.7321i 1.03960 + 1.03960i 0.999183 + 0.0404204i \(0.0128697\pi\)
0.0404204 + 0.999183i \(0.487130\pi\)
\(230\) 0 0
\(231\) 4.00000 6.92820i 0.263181 0.455842i
\(232\) 0 0
\(233\) 8.53590i 0.559205i 0.960116 + 0.279603i \(0.0902027\pi\)
−0.960116 + 0.279603i \(0.909797\pi\)
\(234\) 0 0
\(235\) 1.80385i 0.117670i
\(236\) 0 0
\(237\) −12.9282 + 22.3923i −0.839777 + 1.45454i
\(238\) 0 0
\(239\) 10.7321 + 10.7321i 0.694199 + 0.694199i 0.963153 0.268954i \(-0.0866781\pi\)
−0.268954 + 0.963153i \(0.586678\pi\)
\(240\) 0 0
\(241\) −1.50000 + 5.59808i −0.0966235 + 0.360604i −0.997261 0.0739682i \(-0.976434\pi\)
0.900637 + 0.434572i \(0.143100\pi\)
\(242\) 0 0
\(243\) −16.2224 + 9.36603i −1.04067 + 0.600831i
\(244\) 0 0
\(245\) −2.96410 + 0.794229i −0.189370 + 0.0507414i
\(246\) 0 0
\(247\) 6.07180 11.0000i 0.386339 0.699913i
\(248\) 0 0
\(249\) −6.19615 23.1244i −0.392665 1.46545i
\(250\) 0 0
\(251\) 6.36603 + 11.0263i 0.401820 + 0.695973i 0.993946 0.109873i \(-0.0350444\pi\)
−0.592126 + 0.805846i \(0.701711\pi\)
\(252\) 0 0
\(253\) 23.8564 + 6.39230i 1.49984 + 0.401881i
\(254\) 0 0
\(255\) 0.464102 0.464102i 0.0290632 0.0290632i
\(256\) 0 0
\(257\) 0.232051 + 0.133975i 0.0144749 + 0.00835711i 0.507220 0.861817i \(-0.330673\pi\)
−0.492745 + 0.870174i \(0.664006\pi\)
\(258\) 0 0
\(259\) 3.85641 0.239625
\(260\) 0 0
\(261\) −19.9282 −1.23352
\(262\) 0 0
\(263\) 9.58846 + 5.53590i 0.591250 + 0.341358i 0.765591 0.643327i \(-0.222446\pi\)
−0.174342 + 0.984685i \(0.555780\pi\)
\(264\) 0 0
\(265\) 0.633975 0.633975i 0.0389447 0.0389447i
\(266\) 0 0
\(267\) −39.7846 10.6603i −2.43478 0.652397i
\(268\) 0 0
\(269\) 4.00000 + 6.92820i 0.243884 + 0.422420i 0.961817 0.273692i \(-0.0882449\pi\)
−0.717933 + 0.696112i \(0.754912\pi\)
\(270\) 0 0
\(271\) −6.80385 25.3923i −0.413304 1.54247i −0.788208 0.615409i \(-0.788991\pi\)
0.374904 0.927064i \(-0.377676\pi\)
\(272\) 0 0
\(273\) −5.26795 8.73205i −0.318831 0.528488i
\(274\) 0 0
\(275\) 12.9282 3.46410i 0.779600 0.208893i
\(276\) 0 0
\(277\) −16.3301 + 9.42820i −0.981182 + 0.566486i −0.902627 0.430424i \(-0.858364\pi\)
−0.0785554 + 0.996910i \(0.525031\pi\)
\(278\) 0 0
\(279\) −4.02628 + 15.0263i −0.241047 + 0.899600i
\(280\) 0 0
\(281\) −13.3660 13.3660i −0.797350 0.797350i 0.185327 0.982677i \(-0.440666\pi\)
−0.982677 + 0.185327i \(0.940666\pi\)
\(282\) 0 0
\(283\) −7.00000 + 12.1244i −0.416107 + 0.720718i −0.995544 0.0942988i \(-0.969939\pi\)
0.579437 + 0.815017i \(0.303272\pi\)
\(284\) 0 0
\(285\) 4.92820i 0.291922i
\(286\) 0 0
\(287\) 12.2487i 0.723019i
\(288\) 0 0
\(289\) −8.39230 + 14.5359i −0.493665 + 0.855053i
\(290\) 0 0
\(291\) 11.6603 + 11.6603i 0.683536 + 0.683536i
\(292\) 0 0
\(293\) 3.23205 12.0622i 0.188818 0.704680i −0.804962 0.593326i \(-0.797815\pi\)
0.993781 0.111354i \(-0.0355188\pi\)
\(294\) 0 0
\(295\) 2.66025 1.53590i 0.154886 0.0894235i
\(296\) 0 0
\(297\) −10.9282 + 2.92820i −0.634119 + 0.169912i
\(298\) 0 0
\(299\) 21.8301 22.6865i 1.26247 1.31200i
\(300\) 0 0
\(301\) 3.07180 + 11.4641i 0.177055 + 0.660780i
\(302\) 0 0
\(303\) 21.7583 + 37.6865i 1.24998 + 2.16503i
\(304\) 0 0
\(305\) 3.33013 + 0.892305i 0.190683 + 0.0510932i
\(306\) 0 0
\(307\) 12.2679 12.2679i 0.700169 0.700169i −0.264278 0.964447i \(-0.585134\pi\)
0.964447 + 0.264278i \(0.0851336\pi\)
\(308\) 0 0
\(309\) 15.9282 + 9.19615i 0.906124 + 0.523151i
\(310\) 0 0
\(311\) −24.5885 −1.39428 −0.697142 0.716933i \(-0.745545\pi\)
−0.697142 + 0.716933i \(0.745545\pi\)
\(312\) 0 0
\(313\) −11.4641 −0.647989 −0.323995 0.946059i \(-0.605026\pi\)
−0.323995 + 0.946059i \(0.605026\pi\)
\(314\) 0 0
\(315\) −2.07180 1.19615i −0.116733 0.0673956i
\(316\) 0 0
\(317\) −2.09808 + 2.09808i −0.117840 + 0.117840i −0.763568 0.645728i \(-0.776554\pi\)
0.645728 + 0.763568i \(0.276554\pi\)
\(318\) 0 0
\(319\) 12.1962 + 3.26795i 0.682853 + 0.182970i
\(320\) 0 0
\(321\) −1.00000 1.73205i −0.0558146 0.0966736i
\(322\) 0 0
\(323\) −0.418584 1.56218i −0.0232907 0.0869219i
\(324\) 0 0
\(325\) 4.09808 16.5622i 0.227320 0.918704i
\(326\) 0 0
\(327\) 41.7846 11.1962i 2.31069 0.619149i
\(328\) 0 0
\(329\) −3.12436 + 1.80385i −0.172251 + 0.0994493i
\(330\) 0 0
\(331\) −2.14359 + 8.00000i −0.117823 + 0.439720i −0.999483 0.0321654i \(-0.989760\pi\)
0.881660 + 0.471885i \(0.156426\pi\)
\(332\) 0 0
\(333\) −11.7583 11.7583i −0.644353 0.644353i
\(334\) 0 0
\(335\) −2.36603 + 4.09808i −0.129270 + 0.223902i
\(336\) 0 0
\(337\) 3.14359i 0.171242i −0.996328 0.0856212i \(-0.972713\pi\)
0.996328 0.0856212i \(-0.0272875\pi\)
\(338\) 0 0
\(339\) 8.73205i 0.474260i
\(340\) 0 0
\(341\) 4.92820 8.53590i 0.266877 0.462245i
\(342\) 0 0
\(343\) 9.46410 + 9.46410i 0.511013 + 0.511013i
\(344\) 0 0
\(345\) 3.19615 11.9282i 0.172075 0.642193i
\(346\) 0 0
\(347\) 8.24167 4.75833i 0.442436 0.255441i −0.262194 0.965015i \(-0.584446\pi\)
0.704630 + 0.709575i \(0.251113\pi\)
\(348\) 0 0
\(349\) −4.36603 + 1.16987i −0.233708 + 0.0626219i −0.373772 0.927521i \(-0.621936\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(350\) 0 0
\(351\) −3.46410 + 14.0000i −0.184900 + 0.747265i
\(352\) 0 0
\(353\) 6.64359 + 24.7942i 0.353603 + 1.31966i 0.882234 + 0.470812i \(0.156039\pi\)
−0.528631 + 0.848852i \(0.677294\pi\)
\(354\) 0 0
\(355\) 2.56218 + 4.43782i 0.135986 + 0.235535i
\(356\) 0 0
\(357\) −1.26795 0.339746i −0.0671070 0.0179813i
\(358\) 0 0
\(359\) −22.9282 + 22.9282i −1.21010 + 1.21010i −0.239112 + 0.970992i \(0.576856\pi\)
−0.970992 + 0.239112i \(0.923144\pi\)
\(360\) 0 0
\(361\) 5.93782 + 3.42820i 0.312517 + 0.180432i
\(362\) 0 0
\(363\) −8.19615 −0.430186
\(364\) 0 0
\(365\) −6.80385 −0.356130
\(366\) 0 0
\(367\) −5.49038 3.16987i −0.286596 0.165466i 0.349810 0.936821i \(-0.386246\pi\)
−0.636406 + 0.771355i \(0.719579\pi\)
\(368\) 0 0
\(369\) 37.3468 37.3468i 1.94420 1.94420i
\(370\) 0 0
\(371\) −1.73205 0.464102i −0.0899236 0.0240950i
\(372\) 0 0
\(373\) −11.9641 20.7224i −0.619478 1.07297i −0.989581 0.143976i \(-0.954011\pi\)
0.370103 0.928991i \(-0.379322\pi\)
\(374\) 0 0
\(375\) −3.56218 13.2942i −0.183950 0.686511i
\(376\) 0 0
\(377\) 11.1603 11.5981i 0.574782 0.597331i
\(378\) 0 0
\(379\) 18.0263 4.83013i 0.925948 0.248107i 0.235822 0.971796i \(-0.424222\pi\)
0.690126 + 0.723689i \(0.257555\pi\)
\(380\) 0 0
\(381\) −13.7321 + 7.92820i −0.703514 + 0.406174i
\(382\) 0 0
\(383\) 6.92820 25.8564i 0.354015 1.32120i −0.527705 0.849428i \(-0.676947\pi\)
0.881720 0.471773i \(-0.156386\pi\)
\(384\) 0 0
\(385\) 1.07180 + 1.07180i 0.0546238 + 0.0546238i
\(386\) 0 0
\(387\) 25.5885 44.3205i 1.30073 2.25294i
\(388\) 0 0
\(389\) 6.66025i 0.337688i −0.985643 0.168844i \(-0.945997\pi\)
0.985643 0.168844i \(-0.0540035\pi\)
\(390\) 0 0
\(391\) 4.05256i 0.204947i
\(392\) 0 0
\(393\) −5.19615 + 9.00000i −0.262111 + 0.453990i
\(394\) 0 0
\(395\) −3.46410 3.46410i −0.174298 0.174298i
\(396\) 0 0
\(397\) 7.56218 28.2224i 0.379535 1.41644i −0.467070 0.884221i \(-0.654690\pi\)
0.846604 0.532223i \(-0.178643\pi\)
\(398\) 0 0
\(399\) −8.53590 + 4.92820i −0.427329 + 0.246719i
\(400\) 0 0
\(401\) 9.96410 2.66987i 0.497583 0.133327i −0.00129478 0.999999i \(-0.500412\pi\)
0.498878 + 0.866672i \(0.333745\pi\)
\(402\) 0 0
\(403\) −6.49038 10.7583i −0.323309 0.535911i
\(404\) 0 0
\(405\) −0.330127 1.23205i −0.0164041 0.0612211i
\(406\) 0 0
\(407\) 5.26795 + 9.12436i 0.261123 + 0.452278i
\(408\) 0 0
\(409\) 21.2583 + 5.69615i 1.05116 + 0.281657i 0.742730 0.669591i \(-0.233531\pi\)
0.308427 + 0.951248i \(0.400197\pi\)
\(410\) 0 0
\(411\) 11.1962 11.1962i 0.552265 0.552265i
\(412\) 0 0
\(413\) −5.32051 3.07180i −0.261805 0.151153i
\(414\) 0 0
\(415\) 4.53590 0.222658
\(416\) 0 0
\(417\) −19.3205 −0.946129
\(418\) 0 0
\(419\) −25.0981 14.4904i −1.22612 0.707901i −0.259905 0.965634i \(-0.583691\pi\)
−0.966216 + 0.257733i \(0.917025\pi\)
\(420\) 0 0
\(421\) 3.70577 3.70577i 0.180608 0.180608i −0.611013 0.791621i \(-0.709238\pi\)
0.791621 + 0.611013i \(0.209238\pi\)
\(422\) 0 0
\(423\) 15.0263 + 4.02628i 0.730603 + 0.195764i
\(424\) 0 0
\(425\) −1.09808 1.90192i −0.0532645 0.0922569i
\(426\) 0 0
\(427\) −1.78461 6.66025i −0.0863633 0.322312i
\(428\) 0 0
\(429\) 13.4641 24.3923i 0.650053 1.17767i
\(430\) 0 0
\(431\) 25.1244 6.73205i 1.21020 0.324271i 0.403358 0.915042i \(-0.367843\pi\)
0.806839 + 0.590771i \(0.201176\pi\)
\(432\) 0 0
\(433\) 13.2846 7.66987i 0.638418 0.368591i −0.145587 0.989345i \(-0.546507\pi\)
0.784005 + 0.620755i \(0.213174\pi\)
\(434\) 0 0
\(435\) 1.63397 6.09808i 0.0783431 0.292380i
\(436\) 0 0
\(437\) −21.5167 21.5167i −1.02928 1.02928i
\(438\) 0 0
\(439\) −8.46410 + 14.6603i −0.403970 + 0.699696i −0.994201 0.107538i \(-0.965703\pi\)
0.590231 + 0.807234i \(0.299036\pi\)
\(440\) 0 0
\(441\) 26.4641i 1.26020i
\(442\) 0 0
\(443\) 9.85641i 0.468292i −0.972201 0.234146i \(-0.924771\pi\)
0.972201 0.234146i \(-0.0752294\pi\)
\(444\) 0 0
\(445\) 3.90192 6.75833i 0.184969 0.320376i
\(446\) 0 0
\(447\) −11.7321 11.7321i −0.554907 0.554907i
\(448\) 0 0
\(449\) −1.95448 + 7.29423i −0.0922377 + 0.344236i −0.996586 0.0825590i \(-0.973691\pi\)
0.904348 + 0.426795i \(0.140357\pi\)
\(450\) 0 0
\(451\) −28.9808 + 16.7321i −1.36465 + 0.787882i
\(452\) 0 0
\(453\) −1.73205 + 0.464102i −0.0813788 + 0.0218054i
\(454\) 0 0
\(455\) 1.85641 0.535898i 0.0870297 0.0251233i
\(456\) 0 0
\(457\) 8.25833 + 30.8205i 0.386308 + 1.44172i 0.836094 + 0.548586i \(0.184834\pi\)
−0.449786 + 0.893137i \(0.648500\pi\)
\(458\) 0 0
\(459\) 0.928203 + 1.60770i 0.0433248 + 0.0750408i
\(460\) 0 0
\(461\) 17.3301 + 4.64359i 0.807144 + 0.216274i 0.638718 0.769441i \(-0.279465\pi\)
0.168426 + 0.985714i \(0.446132\pi\)
\(462\) 0 0
\(463\) 7.26795 7.26795i 0.337770 0.337770i −0.517757 0.855528i \(-0.673233\pi\)
0.855528 + 0.517757i \(0.173233\pi\)
\(464\) 0 0
\(465\) −4.26795 2.46410i −0.197921 0.114270i
\(466\) 0 0
\(467\) 13.8564 0.641198 0.320599 0.947215i \(-0.396116\pi\)
0.320599 + 0.947215i \(0.396116\pi\)
\(468\) 0 0
\(469\) 9.46410 0.437012
\(470\) 0 0
\(471\) 53.1506 + 30.6865i 2.44905 + 1.41396i
\(472\) 0 0
\(473\) −22.9282 + 22.9282i −1.05424 + 1.05424i
\(474\) 0 0
\(475\) −15.9282 4.26795i −0.730836 0.195827i
\(476\) 0 0
\(477\) 3.86603 + 6.69615i 0.177013 + 0.306596i
\(478\) 0 0
\(479\) 7.36603 + 27.4904i 0.336562 + 1.25607i 0.902166 + 0.431390i \(0.141977\pi\)
−0.565603 + 0.824678i \(0.691357\pi\)
\(480\) 0 0
\(481\) 13.4282 0.258330i 0.612273 0.0117788i
\(482\) 0 0
\(483\) −23.8564 + 6.39230i −1.08550 + 0.290860i
\(484\) 0 0
\(485\) −2.70577 + 1.56218i −0.122863 + 0.0709348i
\(486\) 0 0
\(487\) −5.00000 + 18.6603i −0.226572 + 0.845577i 0.755197 + 0.655498i \(0.227541\pi\)
−0.981769 + 0.190079i \(0.939126\pi\)
\(488\) 0 0
\(489\) 15.4641 + 15.4641i 0.699311 + 0.699311i
\(490\) 0 0
\(491\) 12.4641 21.5885i 0.562497 0.974273i −0.434781 0.900536i \(-0.643174\pi\)
0.997278 0.0737371i \(-0.0234926\pi\)
\(492\) 0 0
\(493\) 2.07180i 0.0933090i
\(494\) 0 0
\(495\) 6.53590i 0.293767i
\(496\) 0 0
\(497\) 5.12436 8.87564i 0.229859 0.398127i
\(498\) 0 0
\(499\) 13.3923 + 13.3923i 0.599522 + 0.599522i 0.940185 0.340663i \(-0.110652\pi\)
−0.340663 + 0.940185i \(0.610652\pi\)
\(500\) 0 0
\(501\) −11.4641 + 42.7846i −0.512178 + 1.91148i
\(502\) 0 0
\(503\) −7.60770 + 4.39230i −0.339210 + 0.195843i −0.659923 0.751333i \(-0.729411\pi\)
0.320712 + 0.947177i \(0.396078\pi\)
\(504\) 0 0
\(505\) −7.96410 + 2.13397i −0.354398 + 0.0949606i
\(506\) 0 0
\(507\) −18.9282 30.0526i −0.840631 1.33468i
\(508\) 0 0
\(509\) −2.96410 11.0622i −0.131381 0.490322i 0.868605 0.495505i \(-0.165017\pi\)
−0.999987 + 0.00518261i \(0.998350\pi\)
\(510\) 0 0
\(511\) 6.80385 + 11.7846i 0.300984 + 0.521320i
\(512\) 0 0
\(513\) 13.4641 + 3.60770i 0.594455 + 0.159284i
\(514\) 0 0
\(515\) −2.46410 + 2.46410i −0.108581 + 0.108581i
\(516\) 0 0
\(517\) −8.53590 4.92820i −0.375408 0.216742i
\(518\) 0 0
\(519\) −58.6410 −2.57405
\(520\) 0 0
\(521\) −21.3397 −0.934911 −0.467456 0.884017i \(-0.654829\pi\)
−0.467456 + 0.884017i \(0.654829\pi\)
\(522\) 0 0
\(523\) 26.3205 + 15.1962i 1.15092 + 0.664481i 0.949110 0.314944i \(-0.101986\pi\)
0.201805 + 0.979426i \(0.435319\pi\)
\(524\) 0 0
\(525\) −9.46410 + 9.46410i −0.413047 + 0.413047i
\(526\) 0 0
\(527\) −1.56218 0.418584i −0.0680495 0.0182338i
\(528\) 0 0
\(529\) −26.6244 46.1147i −1.15758 2.00499i
\(530\) 0 0
\(531\) 6.85641 + 25.5885i 0.297543 + 1.11044i
\(532\) 0 0
\(533\) 0.820508 + 42.6506i 0.0355401 + 1.84740i
\(534\) 0 0
\(535\) 0.366025 0.0980762i 0.0158247 0.00424020i
\(536\) 0 0
\(537\) −12.9282 + 7.46410i −0.557893 + 0.322100i
\(538\) 0 0
\(539\) −4.33975 + 16.1962i −0.186926 + 0.697618i
\(540\) 0 0
\(541\) −19.4378 19.4378i −0.835697 0.835697i 0.152592 0.988289i \(-0.451238\pi\)
−0.988289 + 0.152592i \(0.951238\pi\)
\(542\) 0 0
\(543\) 9.83013 17.0263i 0.421851 0.730668i
\(544\) 0 0
\(545\) 8.19615i 0.351085i
\(546\) 0 0
\(547\) 18.1962i 0.778011i 0.921235 + 0.389006i \(0.127181\pi\)
−0.921235 + 0.389006i \(0.872819\pi\)
\(548\) 0 0
\(549\) −14.8660 + 25.7487i −0.634467 + 1.09893i
\(550\) 0 0
\(551\) −11.0000 11.0000i −0.468616 0.468616i
\(552\) 0 0
\(553\) −2.53590 + 9.46410i −0.107837 + 0.402455i
\(554\) 0 0
\(555\) 4.56218 2.63397i 0.193654 0.111806i
\(556\) 0 0
\(557\) 9.96410 2.66987i 0.422193 0.113126i −0.0414664 0.999140i \(-0.513203\pi\)
0.463659 + 0.886014i \(0.346536\pi\)
\(558\) 0 0
\(559\) 11.4641 + 39.7128i 0.484880 + 1.67967i
\(560\) 0 0
\(561\) −0.928203 3.46410i −0.0391888 0.146254i
\(562\) 0 0
\(563\) 0.464102 + 0.803848i 0.0195596 + 0.0338781i 0.875640 0.482965i \(-0.160440\pi\)
−0.856080 + 0.516843i \(0.827107\pi\)
\(564\) 0 0
\(565\) −1.59808 0.428203i −0.0672316 0.0180146i
\(566\) 0 0
\(567\) −1.80385 + 1.80385i −0.0757545 + 0.0757545i
\(568\) 0 0
\(569\) −15.0000 8.66025i −0.628833 0.363057i 0.151467 0.988462i \(-0.451600\pi\)
−0.780300 + 0.625406i \(0.784934\pi\)
\(570\) 0 0
\(571\) 8.67949 0.363225 0.181613 0.983370i \(-0.441868\pi\)
0.181613 + 0.983370i \(0.441868\pi\)
\(572\) 0 0
\(573\) 43.8564 1.83213
\(574\) 0 0
\(575\) −35.7846 20.6603i −1.49232 0.861592i
\(576\) 0 0
\(577\) −24.1506 + 24.1506i −1.00540 + 1.00540i −0.00541878 + 0.999985i \(0.501725\pi\)
−0.999985 + 0.00541878i \(0.998275\pi\)
\(578\) 0 0
\(579\) 20.0263 + 5.36603i 0.832264 + 0.223004i
\(580\) 0 0
\(581\) −4.53590 7.85641i −0.188181 0.325939i
\(582\) 0 0
\(583\) −1.26795 4.73205i −0.0525131 0.195982i
\(584\) 0 0
\(585\) −7.29423 4.02628i −0.301579 0.166466i
\(586\) 0 0
\(587\) 6.26795 1.67949i 0.258706 0.0693201i −0.127135 0.991885i \(-0.540578\pi\)
0.385841 + 0.922565i \(0.373911\pi\)
\(588\) 0 0
\(589\) −10.5167 + 6.07180i −0.433331 + 0.250184i
\(590\) 0 0
\(591\) 13.1962 49.2487i 0.542817 2.02582i
\(592\) 0 0
\(593\) 12.1699 + 12.1699i 0.499757 + 0.499757i 0.911362 0.411605i \(-0.135032\pi\)
−0.411605 + 0.911362i \(0.635032\pi\)
\(594\) 0 0
\(595\) 0.124356 0.215390i 0.00509808 0.00883014i
\(596\) 0 0
\(597\) 45.3205i 1.85484i
\(598\) 0 0
\(599\) 16.0526i 0.655890i 0.944697 + 0.327945i \(0.106356\pi\)
−0.944697 + 0.327945i \(0.893644\pi\)
\(600\) 0 0
\(601\) 8.33013 14.4282i 0.339793 0.588539i −0.644601 0.764519i \(-0.722976\pi\)
0.984394 + 0.175981i \(0.0563097\pi\)
\(602\) 0 0
\(603\) −28.8564 28.8564i −1.17512 1.17512i
\(604\) 0 0
\(605\) 0.401924 1.50000i 0.0163405 0.0609837i
\(606\) 0 0
\(607\) 18.8827 10.9019i 0.766425 0.442495i −0.0651731 0.997874i \(-0.520760\pi\)
0.831598 + 0.555379i \(0.187427\pi\)
\(608\) 0 0
\(609\) −12.1962 + 3.26795i −0.494213 + 0.132424i
\(610\) 0 0
\(611\) −10.7583 + 6.49038i −0.435235 + 0.262573i
\(612\) 0 0
\(613\) 7.91858 + 29.5526i 0.319829 + 1.19362i 0.919409 + 0.393302i \(0.128667\pi\)
−0.599581 + 0.800314i \(0.704666\pi\)
\(614\) 0 0
\(615\) 8.36603 + 14.4904i 0.337351 + 0.584309i
\(616\) 0 0
\(617\) −27.6244 7.40192i −1.11211 0.297990i −0.344426 0.938813i \(-0.611927\pi\)
−0.767689 + 0.640823i \(0.778593\pi\)
\(618\) 0 0
\(619\) −13.2679 + 13.2679i −0.533284 + 0.533284i −0.921548 0.388264i \(-0.873075\pi\)
0.388264 + 0.921548i \(0.373075\pi\)
\(620\) 0 0
\(621\) 30.2487 + 17.4641i 1.21384 + 0.700810i
\(622\) 0 0
\(623\) −15.6077 −0.625309
\(624\) 0 0
\(625\) −21.0526 −0.842102
\(626\) 0 0
\(627\) −23.3205 13.4641i −0.931331 0.537704i
\(628\) 0 0
\(629\) 1.22243 1.22243i 0.0487416 0.0487416i
\(630\) 0 0
\(631\) −31.3205 8.39230i −1.24685 0.334092i −0.425731 0.904850i \(-0.639983\pi\)
−0.821119 + 0.570757i \(0.806650\pi\)
\(632\) 0 0
\(633\) 36.8564 + 63.8372i 1.46491 + 2.53730i
\(634\) 0 0
\(635\) −0.777568 2.90192i −0.0308569 0.115159i
\(636\) 0 0
\(637\) 15.4019 + 14.8205i 0.610246 + 0.587210i
\(638\) 0 0
\(639\) −42.6865 + 11.4378i −1.68865 + 0.452473i
\(640\) 0 0
\(641\) 34.3301 19.8205i 1.35596 0.782863i 0.366882 0.930267i \(-0.380425\pi\)
0.989076 + 0.147404i \(0.0470919\pi\)
\(642\) 0 0
\(643\) −3.80385 + 14.1962i −0.150009 + 0.559842i 0.849472 + 0.527634i \(0.176921\pi\)
−0.999481 + 0.0322080i \(0.989746\pi\)
\(644\) 0 0
\(645\) 11.4641 + 11.4641i 0.451399 + 0.451399i
\(646\) 0 0
\(647\) −16.4904 + 28.5622i −0.648304 + 1.12290i 0.335224 + 0.942138i \(0.391188\pi\)
−0.983528 + 0.180757i \(0.942145\pi\)
\(648\) 0 0
\(649\) 16.7846i 0.658854i
\(650\) 0 0
\(651\) 9.85641i 0.386303i
\(652\) 0 0
\(653\) 15.4641 26.7846i 0.605157 1.04816i −0.386870 0.922134i \(-0.626444\pi\)
0.992027 0.126028i \(-0.0402230\pi\)
\(654\) 0 0
\(655\) −1.39230 1.39230i −0.0544019 0.0544019i
\(656\) 0 0
\(657\) 15.1865 56.6769i 0.592483 2.21118i
\(658\) 0 0
\(659\) −22.0526 + 12.7321i −0.859046 + 0.495970i −0.863693 0.504019i \(-0.831854\pi\)
0.00464688 + 0.999989i \(0.498521\pi\)
\(660\) 0 0
\(661\) 37.4545 10.0359i 1.45681 0.390351i 0.558424 0.829556i \(-0.311406\pi\)
0.898387 + 0.439205i \(0.144740\pi\)
\(662\) 0 0
\(663\) −4.43782 1.09808i −0.172351 0.0426457i
\(664\) 0 0
\(665\) −0.483340 1.80385i −0.0187431 0.0699502i
\(666\) 0 0
\(667\) −19.4904 33.7583i −0.754671 1.30713i
\(668\) 0 0
\(669\) −12.4641 3.33975i −0.481890 0.129122i
\(670\) 0 0
\(671\) 13.3205 13.3205i 0.514233 0.514233i
\(672\) 0 0
\(673\) 12.6506 + 7.30385i 0.487646 + 0.281543i 0.723597 0.690222i \(-0.242487\pi\)
−0.235951 + 0.971765i \(0.575821\pi\)
\(674\) 0 0
\(675\) 18.9282 0.728547
\(676\) 0 0
\(677\) −18.9282 −0.727470 −0.363735 0.931502i \(-0.618499\pi\)
−0.363735 + 0.931502i \(0.618499\pi\)
\(678\) 0 0
\(679\) 5.41154 + 3.12436i 0.207676 + 0.119902i
\(680\) 0 0
\(681\) −19.6603 + 19.6603i −0.753383 + 0.753383i
\(682\) 0 0
\(683\) −12.3660 3.31347i −0.473173 0.126786i 0.0143491 0.999897i \(-0.495432\pi\)
−0.487522 + 0.873111i \(0.662099\pi\)
\(684\) 0 0
\(685\) 1.50000 + 2.59808i 0.0573121 + 0.0992674i
\(686\) 0 0
\(687\) −15.7321 58.7128i −0.600215 2.24003i
\(688\) 0 0
\(689\) −6.06218 1.50000i −0.230951 0.0571454i
\(690\) 0 0
\(691\) −37.3205 + 10.0000i −1.41974 + 0.380418i −0.885391 0.464847i \(-0.846109\pi\)
−0.534348 + 0.845265i \(0.679443\pi\)
\(692\) 0 0
\(693\) −11.3205 + 6.53590i −0.430031 + 0.248278i
\(694\) 0 0
\(695\) 0.947441 3.53590i 0.0359385 0.134124i
\(696\) 0 0
\(697\) 3.88269 + 3.88269i 0.147067 + 0.147067i
\(698\) 0 0
\(699\) 11.6603 20.1962i 0.441031 0.763889i
\(700\) 0 0
\(701\) 24.9282i 0.941525i 0.882260 + 0.470763i \(0.156021\pi\)
−0.882260 + 0.470763i \(0.843979\pi\)
\(702\) 0 0
\(703\) 12.9808i 0.489579i
\(704\) 0 0
\(705\) −2.46410 + 4.26795i −0.0928034 + 0.160740i
\(706\) 0 0
\(707\) 11.6603 + 11.6603i 0.438529 + 0.438529i
\(708\) 0 0
\(709\) 7.47372 27.8923i 0.280681 1.04752i −0.671256 0.741225i \(-0.734245\pi\)
0.951938 0.306292i \(-0.0990884\pi\)
\(710\) 0 0
\(711\) 36.5885 21.1244i 1.37217 0.792225i
\(712\) 0 0
\(713\) −29.3923 + 7.87564i −1.10075 + 0.294945i
\(714\) 0 0
\(715\) 3.80385 + 3.66025i 0.142256 + 0.136886i
\(716\) 0 0
\(717\) −10.7321 40.0526i −0.400796 1.49579i
\(718\) 0 0
\(719\) −12.4641 21.5885i −0.464833 0.805114i 0.534361 0.845256i \(-0.320552\pi\)
−0.999194 + 0.0401425i \(0.987219\pi\)
\(720\) 0 0
\(721\) 6.73205 + 1.80385i 0.250715 + 0.0671788i
\(722\) 0 0
\(723\) 11.1962 11.1962i 0.416389 0.416389i
\(724\) 0 0
\(725\) −18.2942 10.5622i −0.679431 0.392269i
\(726\) 0 0
\(727\) 44.7846 1.66097 0.830485 0.557042i \(-0.188064\pi\)
0.830485 + 0.557042i \(0.188064\pi\)
\(728\) 0 0
\(729\) 43.7846 1.62165
\(730\) 0 0
\(731\) 4.60770 + 2.66025i 0.170422 + 0.0983930i
\(732\) 0 0
\(733\) 26.6147 26.6147i 0.983038 0.983038i −0.0168208 0.999859i \(-0.505354\pi\)
0.999859 + 0.0168208i \(0.00535448\pi\)
\(734\) 0 0
\(735\) 8.09808 + 2.16987i 0.298702 + 0.0800370i
\(736\) 0 0
\(737\) 12.9282 + 22.3923i 0.476216 + 0.824831i
\(738\) 0 0
\(739\) 7.66025 + 28.5885i 0.281787 + 1.05164i 0.951155 + 0.308713i \(0.0998982\pi\)
−0.669368 + 0.742931i \(0.733435\pi\)
\(740\) 0 0
\(741\) −29.3923 + 17.7321i −1.07975 + 0.651403i
\(742\) 0 0
\(743\) 15.3923 4.12436i 0.564689 0.151308i 0.0348292 0.999393i \(-0.488911\pi\)
0.529860 + 0.848085i \(0.322245\pi\)
\(744\) 0 0
\(745\) 2.72243 1.57180i 0.0997422 0.0575862i
\(746\) 0 0
\(747\) −10.1244 + 37.7846i −0.370431 + 1.38247i
\(748\) 0 0
\(749\) −0.535898 0.535898i −0.0195813 0.0195813i
\(750\) 0 0
\(751\) −24.1244 + 41.7846i −0.880310 + 1.52474i −0.0293140 + 0.999570i \(0.509332\pi\)
−0.850996 + 0.525172i \(0.824001\pi\)
\(752\) 0 0
\(753\) 34.7846i 1.26762i
\(754\) 0 0
\(755\) 0.339746i 0.0123646i
\(756\) 0 0
\(757\) 1.39230 2.41154i 0.0506042 0.0876490i −0.839614 0.543184i \(-0.817219\pi\)
0.890218 + 0.455535i \(0.150552\pi\)
\(758\) 0 0
\(759\) −47.7128 47.7128i −1.73187 1.73187i
\(760\) 0 0
\(761\) −4.83013 + 18.0263i −0.175092 + 0.653452i 0.821444 + 0.570289i \(0.193169\pi\)
−0.996536 + 0.0831629i \(0.973498\pi\)
\(762\) 0 0
\(763\) 14.1962 8.19615i 0.513935 0.296721i
\(764\) 0 0
\(765\) −1.03590 + 0.277568i −0.0374530 + 0.0100355i
\(766\) 0 0
\(767\) −18.7321 10.3397i −0.676375 0.373347i
\(768\) 0 0
\(769\) 2.09808 + 7.83013i 0.0756586 + 0.282362i 0.993382 0.114859i \(-0.0366415\pi\)
−0.917723 + 0.397220i \(0.869975\pi\)
\(770\) 0 0
\(771\) −0.366025 0.633975i −0.0131821 0.0228320i
\(772\) 0 0
\(773\) −27.2224 7.29423i −0.979123 0.262355i −0.266448 0.963849i \(-0.585850\pi\)
−0.712675 + 0.701494i \(0.752517\pi\)
\(774\) 0 0
\(775\) −11.6603 + 11.6603i −0.418849 + 0.418849i
\(776\) 0 0
\(777\) −9.12436 5.26795i −0.327334 0.188987i
\(778\) 0 0
\(779\) 41.2295 1.47720
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 15.4641 + 8.92820i 0.552642 + 0.319068i
\(784\) 0 0
\(785\) −8.22243 + 8.22243i −0.293471 + 0.293471i
\(786\) 0 0
\(787\) 35.9545 + 9.63397i 1.28164 + 0.343414i 0.834479 0.551040i \(-0.185769\pi\)
0.447160 + 0.894454i \(0.352435\pi\)
\(788\) 0 0
\(789\) −15.1244 26.1962i −0.538441 0.932608i
\(790\) 0 0
\(791\) 0.856406 + 3.19615i 0.0304503 + 0.113642i
\(792\) 0 0
\(793\) −6.66025 23.0718i −0.236513 0.819304i
\(794\) 0 0
\(795\) −2.36603 + 0.633975i −0.0839143 + 0.0224848i
\(796\) 0 0
\(797\) −22.8564 + 13.1962i −0.809615 + 0.467432i −0.846822 0.531876i \(-0.821487\pi\)
0.0372069 + 0.999308i \(0.488154\pi\)
\(798\) 0 0
\(799\) −0.418584 + 1.56218i −0.0148084 + 0.0552659i
\(800\) 0 0
\(801\) 47.5885 + 47.5885i 1.68146 + 1.68146i
\(802\) 0 0
\(803\) −18.5885 + 32.1962i −0.655972 + 1.13618i
\(804\) 0 0
\(805\) 4.67949i 0.164930i
\(806\) 0 0
\(807\) 21.8564i 0.769382i
\(808\) 0 0
\(809\) −10.7942 + 18.6962i −0.379505 + 0.657322i −0.990990 0.133934i \(-0.957239\pi\)
0.611485 + 0.791256i \(0.290572\pi\)
\(810\) 0 0
\(811\) 31.3923 + 31.3923i 1.10233 + 1.10233i 0.994129 + 0.108204i \(0.0345100\pi\)
0.108204 + 0.994129i \(0.465490\pi\)
\(812\) 0 0
\(813\) −18.5885 + 69.3731i −0.651926 + 2.43302i
\(814\) 0 0
\(815\) −3.58846 + 2.07180i −0.125698 + 0.0725719i
\(816\) 0 0
\(817\) 38.5885 10.3397i 1.35004 0.361742i
\(818\) 0 0
\(819\) 0.320508 + 16.6603i 0.0111995 + 0.582156i
\(820\) 0 0
\(821\) −11.9545 44.6147i −0.417214 1.55707i −0.780359 0.625332i \(-0.784963\pi\)
0.363144 0.931733i \(-0.381703\pi\)
\(822\) 0 0
\(823\) −19.0000 32.9090i −0.662298 1.14713i −0.980010 0.198947i \(-0.936248\pi\)
0.317712 0.948187i \(-0.397086\pi\)
\(824\) 0 0
\(825\) −35.3205 9.46410i −1.22970 0.329498i
\(826\) 0 0
\(827\) −11.3205 + 11.3205i −0.393653 + 0.393653i −0.875987 0.482334i \(-0.839789\pi\)
0.482334 + 0.875987i \(0.339789\pi\)
\(828\) 0 0
\(829\) −29.0429 16.7679i −1.00870 0.582375i −0.0978913 0.995197i \(-0.531210\pi\)
−0.910812 + 0.412822i \(0.864543\pi\)
\(830\) 0 0
\(831\) 51.5167 1.78709
\(832\) 0 0
\(833\) 2.75129 0.0953265
\(834\) 0 0
\(835\) −7.26795 4.19615i −0.251518 0.145214i
\(836\) 0 0
\(837\) 9.85641 9.85641i 0.340687 0.340687i
\(838\) 0 0
\(839\) −9.09808 2.43782i −0.314100 0.0841630i 0.0983249 0.995154i \(-0.468652\pi\)
−0.412425 + 0.910991i \(0.635318\pi\)
\(840\) 0 0
\(841\) 4.53590 + 7.85641i 0.156410 + 0.270911i
\(842\) 0 0
\(843\) 13.3660 + 49.8827i 0.460350 + 1.71805i
\(844\) 0 0
\(845\) 6.42820 1.99038i 0.221137 0.0684712i
\(846\) 0 0
\(847\) −3.00000 + 0.803848i −0.103081 + 0.0276205i
\(848\) 0 0
\(849\) 33.1244 19.1244i 1.13682 0.656346i
\(850\) 0 0
\(851\) 8.41858 31.4186i 0.288585 1.07702i
\(852\) 0 0
\(853\) −9.70577 9.70577i −0.332319 0.332319i 0.521147 0.853467i \(-0.325504\pi\)
−0.853467 + 0.521147i \(0.825504\pi\)
\(854\) 0 0
\(855\) −4.02628 + 6.97372i −0.137696 + 0.238496i
\(856\) 0 0
\(857\) 8.94744i 0.305639i 0.988254 + 0.152819i \(0.0488353\pi\)
−0.988254 + 0.152819i \(0.951165\pi\)
\(858\) 0 0
\(859\) 16.7321i 0.570890i 0.958395 + 0.285445i \(0.0921414\pi\)
−0.958395 + 0.285445i \(0.907859\pi\)
\(860\) 0 0
\(861\) 16.7321 28.9808i 0.570227 0.987662i
\(862\) 0 0
\(863\) 40.1962 + 40.1962i 1.36829 + 1.36829i 0.862874 + 0.505419i \(0.168662\pi\)
0.505419 + 0.862874i \(0.331338\pi\)
\(864\) 0 0
\(865\) 2.87564 10.7321i 0.0977748 0.364901i
\(866\) 0 0
\(867\) 39.7128 22.9282i 1.34872 0.778683i
\(868\) 0 0
\(869\) −25.8564 + 6.92820i −0.877119 + 0.235023i
\(870\) 0 0
\(871\) 32.9545 0.633975i 1.11662 0.0214814i
\(872\) 0 0
\(873\) −6.97372 26.0263i −0.236025 0.880856i
\(874\) 0 0
\(875\) −2.60770 4.51666i −0.0881562 0.152691i
\(876\) 0 0
\(877\) −19.1603 5.13397i −0.646996 0.173362i −0.0796256 0.996825i \(-0.525372\pi\)
−0.567370 + 0.823463i \(0.692039\pi\)
\(878\) 0 0
\(879\) −24.1244 + 24.1244i −0.813694 + 0.813694i
\(880\) 0 0
\(881\) 8.89230 + 5.13397i 0.299589 + 0.172968i 0.642258 0.766488i \(-0.277998\pi\)
−0.342669 + 0.939456i \(0.611331\pi\)
\(882\) 0 0
\(883\) 41.6603 1.40198 0.700990 0.713172i \(-0.252742\pi\)
0.700990 + 0.713172i \(0.252742\pi\)
\(884\) 0 0
\(885\) −8.39230 −0.282104
\(886\) 0 0
\(887\) 4.39230 + 2.53590i 0.147479 + 0.0851471i 0.571924 0.820307i \(-0.306197\pi\)
−0.424445 + 0.905454i \(0.639531\pi\)
\(888\) 0 0
\(889\) −4.24871 + 4.24871i −0.142497 + 0.142497i
\(890\) 0 0
\(891\) −6.73205 1.80385i −0.225532 0.0604312i
\(892\) 0 0
\(893\) 6.07180 + 10.5167i 0.203185 + 0.351927i
\(894\) 0 0
\(895\) −0.732051 2.73205i −0.0244698 0.0913224i
\(896\) 0 0
\(897\) −82.6410 + 23.8564i −2.75930 + 0.796542i
\(898\) 0 0
\(899\) −15.0263 + 4.02628i −0.501154 + 0.134284i
\(900\) 0 0
\(901\) −0.696152 + 0.401924i −0.0231922 + 0.0133900i
\(902\) 0 0
\(903\) 8.39230 31.3205i 0.279278 1.04228i
\(904\) 0 0
\(905\) 2.63397 + 2.63397i 0.0875563 + 0.0875563i
\(906\) 0 0
\(907\) −23.0526 + 39.9282i −0.765448 + 1.32579i 0.174562 + 0.984646i \(0.444149\pi\)
−0.940010 + 0.341148i \(0.889184\pi\)
\(908\) 0 0
\(909\) 71.1051i 2.35841i
\(910\) 0 0
\(911\) 19.1769i 0.635360i −0.948198 0.317680i \(-0.897096\pi\)
0.948198 0.317680i \(-0.102904\pi\)
\(912\) 0 0
\(913\) 12.3923 21.4641i 0.410125 0.710358i
\(914\) 0 0
\(915\) −6.66025 6.66025i −0.220181 0.220181i
\(916\) 0 0
\(917\) −1.01924 + 3.80385i −0.0336582 + 0.125614i
\(918\) 0 0
\(919\) −4.56218 + 2.63397i −0.150492 + 0.0868868i −0.573355 0.819307i \(-0.694359\pi\)
0.422863 + 0.906194i \(0.361025\pi\)
\(920\) 0 0
\(921\) −45.7846 + 12.2679i −1.50865 + 0.404243i
\(922\) 0 0
\(923\) 17.2487 31.2487i 0.567748 1.02856i
\(924\) 0 0
\(925\) −4.56218 17.0263i −0.150003 0.559821i
\(926\) 0 0
\(927\) −15.0263 26.0263i −0.493528 0.854815i
\(928\) 0 0
\(929\) −41.6506 11.1603i −1.36651 0.366156i −0.500309 0.865847i \(-0.666780\pi\)
−0.866204 + 0.499691i \(0.833447\pi\)
\(930\) 0 0
\(931\) 14.6077 14.6077i 0.478748 0.478748i
\(932\) 0 0
\(933\) 58.1769 + 33.5885i 1.90463 + 1.09964i
\(934\) 0 0
\(935\) 0.679492 0.0222218
\(936\) 0 0
\(937\) 31.0000 1.01273 0.506363 0.862320i \(-0.330990\pi\)
0.506363 + 0.862320i \(0.330990\pi\)
\(938\) 0 0
\(939\) 27.1244 + 15.6603i 0.885170 + 0.511053i
\(940\) 0 0
\(941\) −1.78461 + 1.78461i −0.0581766 + 0.0581766i −0.735597 0.677420i \(-0.763098\pi\)
0.677420 + 0.735597i \(0.263098\pi\)
\(942\) 0 0
\(943\) 99.7917 + 26.7391i 3.24966 + 0.870745i
\(944\) 0 0
\(945\) 1.07180 + 1.85641i 0.0348656 + 0.0603889i
\(946\) 0 0
\(947\) −10.8301 40.4186i −0.351932 1.31343i −0.884302 0.466916i \(-0.845365\pi\)
0.532370 0.846512i \(-0.321302\pi\)
\(948\) 0 0
\(949\) 24.4808 + 40.5788i 0.794679 + 1.31724i
\(950\) 0 0
\(951\) 7.83013 2.09808i 0.253909 0.0680348i
\(952\) 0 0
\(953\) 40.6410 23.4641i 1.31649 0.760077i 0.333329 0.942811i \(-0.391828\pi\)
0.983162 + 0.182734i \(0.0584946\pi\)
\(954\) 0 0
\(955\) −2.15064 + 8.02628i −0.0695929 + 0.259724i
\(956\) 0 0
\(957\) −24.3923 24.3923i −0.788491 0.788491i
\(958\) 0 0
\(959\) 3.00000 5.19615i 0.0968751 0.167793i
\(960\) 0 0
\(961\) 18.8564i 0.608271i
\(962\) 0 0
\(963\) 3.26795i 0.105308i
\(964\) 0 0
\(965\) −1.96410 + 3.40192i −0.0632267 + 0.109512i
\(966\) 0 0
\(967\) 3.33975 + 3.33975i 0.107399 + 0.107399i 0.758764 0.651365i \(-0.225803\pi\)
−0.651365 + 0.758764i \(0.725803\pi\)
\(968\) 0 0
\(969\) −1.14359 + 4.26795i −0.0367375 + 0.137106i
\(970\) 0 0
\(971\) −22.0070 + 12.7058i −0.706240 + 0.407748i −0.809667 0.586889i \(-0.800352\pi\)
0.103428 + 0.994637i \(0.467019\pi\)
\(972\) 0 0
\(973\) −7.07180 + 1.89488i −0.226711 + 0.0607471i
\(974\) 0 0
\(975\) −32.3205 + 33.5885i −1.03508 + 1.07569i
\(976\) 0 0
\(977\) −7.47372 27.8923i −0.239106 0.892354i −0.976255 0.216624i \(-0.930495\pi\)
0.737150 0.675730i \(-0.236171\pi\)
\(978\) 0 0
\(979\) −21.3205 36.9282i −0.681406 1.18023i
\(980\) 0 0
\(981\) −68.2750 18.2942i −2.17985 0.584090i
\(982\) 0 0
\(983\) 23.7846 23.7846i 0.758611 0.758611i −0.217458 0.976070i \(-0.569777\pi\)
0.976070 + 0.217458i \(0.0697766\pi\)
\(984\) 0 0
\(985\) 8.36603 + 4.83013i 0.266564 + 0.153901i
\(986\) 0 0
\(987\) 9.85641 0.313733
\(988\) 0 0
\(989\) 100.105 3.18316
\(990\) 0 0
\(991\) −18.1699 10.4904i −0.577185 0.333238i 0.182829 0.983145i \(-0.441475\pi\)
−0.760014 + 0.649907i \(0.774808\pi\)
\(992\) 0 0
\(993\) 16.0000 16.0000i 0.507745 0.507745i
\(994\) 0 0
\(995\) −8.29423 2.22243i −0.262945 0.0704558i
\(996\) 0 0
\(997\) 13.5263 + 23.4282i 0.428382 + 0.741979i 0.996730 0.0808096i \(-0.0257506\pi\)
−0.568348 + 0.822788i \(0.692417\pi\)
\(998\) 0 0
\(999\) 3.85641 + 14.3923i 0.122011 + 0.455352i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bu.a.383.1 yes 4
4.3 odd 2 416.2.bu.b.383.1 yes 4
8.3 odd 2 832.2.bu.b.383.1 4
8.5 even 2 832.2.bu.g.383.1 4
13.11 odd 12 416.2.bu.b.63.1 yes 4
52.11 even 12 inner 416.2.bu.a.63.1 4
104.11 even 12 832.2.bu.g.63.1 4
104.37 odd 12 832.2.bu.b.63.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.bu.a.63.1 4 52.11 even 12 inner
416.2.bu.a.383.1 yes 4 1.1 even 1 trivial
416.2.bu.b.63.1 yes 4 13.11 odd 12
416.2.bu.b.383.1 yes 4 4.3 odd 2
832.2.bu.b.63.1 4 104.37 odd 12
832.2.bu.b.383.1 4 8.3 odd 2
832.2.bu.g.63.1 4 104.11 even 12
832.2.bu.g.383.1 4 8.5 even 2