Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(53,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 5, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.53");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 416 = 2^{5} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 416.bf (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.32177672409\) |
Analytic rank: | \(0\) |
Dimension: | \(192\) |
Relative dimension: | \(48\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | −1.41213 | − | 0.0766792i | 2.98623 | − | 1.23694i | 1.98824 | + | 0.216563i | −1.24588 | + | 3.00782i | −4.31180 | + | 1.51774i | 2.81433 | + | 2.81433i | −2.79105 | − | 0.458272i | 5.26623 | − | 5.26623i | 1.98999 | − | 4.15191i |
53.2 | −1.40600 | + | 0.152175i | −0.435996 | + | 0.180596i | 1.95369 | − | 0.427917i | 0.326436 | − | 0.788085i | 0.585530 | − | 0.320266i | 1.89112 | + | 1.89112i | −2.68177 | + | 0.898955i | −1.96384 | + | 1.96384i | −0.339042 | + | 1.15773i |
53.3 | −1.40466 | − | 0.164109i | −1.71912 | + | 0.712084i | 1.94614 | + | 0.461036i | 1.47294 | − | 3.55599i | 2.53164 | − | 0.718111i | −1.70912 | − | 1.70912i | −2.65800 | − | 0.966978i | 0.327000 | − | 0.327000i | −2.65255 | + | 4.75323i |
53.4 | −1.34738 | + | 0.429614i | 2.33432 | − | 0.966908i | 1.63086 | − | 1.15771i | 1.29458 | − | 3.12540i | −2.72982 | + | 2.30565i | −0.532783 | − | 0.532783i | −1.70002 | + | 2.26051i | 2.39283 | − | 2.39283i | −0.401578 | + | 4.76727i |
53.5 | −1.33922 | − | 0.454405i | −3.06223 | + | 1.26842i | 1.58703 | + | 1.21710i | −0.807892 | + | 1.95042i | 4.67738 | − | 0.307199i | 2.62405 | + | 2.62405i | −1.57233 | − | 2.35112i | 5.64706 | − | 5.64706i | 1.96823 | − | 2.24494i |
53.6 | −1.30913 | + | 0.534951i | −2.18213 | + | 0.903868i | 1.42765 | − | 1.40064i | −0.245375 | + | 0.592388i | 2.37317 | − | 2.35062i | −0.0561050 | − | 0.0561050i | −1.11971 | + | 2.59735i | 1.82339 | − | 1.82339i | 0.00432984 | − | 0.906777i |
53.7 | −1.28283 | − | 0.595266i | −1.29613 | + | 0.536874i | 1.29132 | + | 1.52725i | −0.0161519 | + | 0.0389942i | 1.98230 | + | 0.0828216i | −1.32535 | − | 1.32535i | −0.747423 | − | 2.72789i | −0.729605 | + | 0.729605i | 0.0439321 | − | 0.0404083i |
53.8 | −1.22753 | − | 0.702263i | 0.795910 | − | 0.329677i | 1.01365 | + | 1.72410i | −0.746776 | + | 1.80288i | −1.20852 | − | 0.154250i | −0.218632 | − | 0.218632i | −0.0335206 | − | 2.82823i | −1.59653 | + | 1.59653i | 2.18278 | − | 1.68865i |
53.9 | −1.19033 | − | 0.763623i | 2.04342 | − | 0.846410i | 0.833761 | + | 1.81792i | 1.04561 | − | 2.52432i | −3.07867 | − | 0.552892i | −1.49027 | − | 1.49027i | 0.395758 | − | 2.80060i | 1.33781 | − | 1.33781i | −3.17224 | + | 2.20631i |
53.10 | −1.13640 | + | 0.841781i | −1.01781 | + | 0.421589i | 0.582811 | − | 1.91320i | −1.65824 | + | 4.00334i | 0.801750 | − | 1.33586i | 0.742191 | + | 0.742191i | 0.948187 | + | 2.66476i | −1.26313 | + | 1.26313i | −1.48551 | − | 5.94527i |
53.11 | −1.07659 | + | 0.917037i | 1.38221 | − | 0.572530i | 0.318088 | − | 1.97454i | −0.0209193 | + | 0.0505036i | −0.963042 | + | 1.88392i | 3.16119 | + | 3.16119i | 1.46828 | + | 2.41747i | −0.538605 | + | 0.538605i | −0.0237922 | − | 0.0735553i |
53.12 | −0.948103 | − | 1.04933i | −0.976242 | + | 0.404373i | −0.202200 | + | 1.98975i | −0.597830 | + | 1.44329i | 1.34990 | + | 0.641016i | 2.62460 | + | 2.62460i | 2.27962 | − | 1.67432i | −1.33179 | + | 1.33179i | 2.08130 | − | 0.741064i |
53.13 | −0.914272 | + | 1.07894i | −0.832888 | + | 0.344993i | −0.328213 | − | 1.97289i | 0.202993 | − | 0.490067i | 0.389260 | − | 1.21405i | −3.33390 | − | 3.33390i | 2.42870 | + | 1.44963i | −1.54664 | + | 1.54664i | 0.343162 | + | 0.667071i |
53.14 | −0.894410 | + | 1.09546i | 0.0294720 | − | 0.0122077i | −0.400063 | − | 1.95958i | 1.27084 | − | 3.06808i | −0.0129870 | + | 0.0432041i | −0.470428 | − | 0.470428i | 2.50446 | + | 1.31441i | −2.12060 | + | 2.12060i | 2.22431 | + | 4.13628i |
53.15 | −0.884565 | − | 1.10342i | −0.349851 | + | 0.144913i | −0.435089 | + | 1.95210i | 1.55977 | − | 3.76561i | 0.469367 | + | 0.257849i | 3.21782 | + | 3.21782i | 2.53886 | − | 1.24667i | −2.01992 | + | 2.01992i | −5.53478 | + | 1.60984i |
53.16 | −0.738912 | − | 1.20582i | 2.63272 | − | 1.09051i | −0.908017 | + | 1.78199i | −0.0873689 | + | 0.210927i | −3.26031 | − | 2.36880i | 0.671813 | + | 0.671813i | 2.81971 | − | 0.221831i | 3.62067 | − | 3.62067i | 0.318899 | − | 0.0505053i |
53.17 | −0.706943 | − | 1.22484i | −3.07212 | + | 1.27251i | −1.00046 | + | 1.73178i | 0.840287 | − | 2.02863i | 3.73043 | + | 2.86325i | −1.05731 | − | 1.05731i | 2.82843 | + | 0.00113391i | 5.69729 | − | 5.69729i | −3.07878 | + | 0.404911i |
53.18 | −0.705052 | + | 1.22593i | 3.06559 | − | 1.26981i | −1.00580 | − | 1.72869i | 0.112862 | − | 0.272473i | −0.604704 | + | 4.65347i | −1.80857 | − | 1.80857i | 2.82839 | − | 0.0142285i | 5.66408 | − | 5.66408i | 0.254459 | + | 0.330468i |
53.19 | −0.561631 | − | 1.29791i | −1.77289 | + | 0.734354i | −1.36914 | + | 1.45789i | −1.54177 | + | 3.72217i | 1.94884 | + | 1.88861i | −2.71316 | − | 2.71316i | 2.66117 | + | 0.958222i | 0.482536 | − | 0.482536i | 5.69694 | − | 0.0894043i |
53.20 | −0.493432 | + | 1.32534i | 1.01315 | − | 0.419661i | −1.51305 | − | 1.30793i | −1.26766 | + | 3.06041i | 0.0562725 | + | 1.54984i | −0.757044 | − | 0.757044i | 2.48004 | − | 1.35993i | −1.27096 | + | 1.27096i | −3.43058 | − | 3.19019i |
See next 80 embeddings (of 192 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
32.g | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.bf.a | ✓ | 192 |
32.g | even | 8 | 1 | inner | 416.2.bf.a | ✓ | 192 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.2.bf.a | ✓ | 192 | 1.a | even | 1 | 1 | trivial |
416.2.bf.a | ✓ | 192 | 32.g | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(416, [\chi])\).