Properties

Label 415.4.a.c.1.7
Level $415$
Weight $4$
Character 415.1
Self dual yes
Analytic conductor $24.486$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,4,Mod(1,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 415.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4857926524\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70189 q^{2} -4.13473 q^{3} -0.699769 q^{4} -5.00000 q^{5} +11.1716 q^{6} +4.29122 q^{7} +23.5059 q^{8} -9.90398 q^{9} +13.5095 q^{10} -34.9071 q^{11} +2.89336 q^{12} +7.72746 q^{13} -11.5944 q^{14} +20.6737 q^{15} -57.9122 q^{16} +41.4349 q^{17} +26.7595 q^{18} +98.8477 q^{19} +3.49885 q^{20} -17.7431 q^{21} +94.3153 q^{22} +35.8174 q^{23} -97.1904 q^{24} +25.0000 q^{25} -20.8788 q^{26} +152.588 q^{27} -3.00287 q^{28} +101.422 q^{29} -55.8581 q^{30} +195.195 q^{31} -31.5743 q^{32} +144.332 q^{33} -111.953 q^{34} -21.4561 q^{35} +6.93050 q^{36} -70.6428 q^{37} -267.076 q^{38} -31.9510 q^{39} -117.529 q^{40} +268.214 q^{41} +47.9399 q^{42} -277.083 q^{43} +24.4269 q^{44} +49.5199 q^{45} -96.7749 q^{46} -543.139 q^{47} +239.451 q^{48} -324.585 q^{49} -67.5473 q^{50} -171.322 q^{51} -5.40744 q^{52} -369.045 q^{53} -412.277 q^{54} +174.536 q^{55} +100.869 q^{56} -408.709 q^{57} -274.032 q^{58} -410.547 q^{59} -14.4668 q^{60} +751.190 q^{61} -527.397 q^{62} -42.5002 q^{63} +548.608 q^{64} -38.6373 q^{65} -389.969 q^{66} +78.1829 q^{67} -28.9949 q^{68} -148.096 q^{69} +57.9721 q^{70} +208.576 q^{71} -232.801 q^{72} -105.398 q^{73} +190.869 q^{74} -103.368 q^{75} -69.1706 q^{76} -149.794 q^{77} +86.3282 q^{78} -968.969 q^{79} +289.561 q^{80} -363.504 q^{81} -724.685 q^{82} +83.0000 q^{83} +12.4161 q^{84} -207.175 q^{85} +748.649 q^{86} -419.354 q^{87} -820.521 q^{88} +222.017 q^{89} -133.797 q^{90} +33.1603 q^{91} -25.0639 q^{92} -807.080 q^{93} +1467.50 q^{94} -494.238 q^{95} +130.551 q^{96} -541.705 q^{97} +876.995 q^{98} +345.719 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 5 q^{2} - 12 q^{3} + 87 q^{4} - 105 q^{5} - 7 q^{6} - 11 q^{7} - 84 q^{8} + 153 q^{9} + 25 q^{10} - 30 q^{11} - 244 q^{12} - 89 q^{13} - 191 q^{14} + 60 q^{15} + 583 q^{16} - 357 q^{17} - 281 q^{18}+ \cdots - 5369 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.70189 −0.955264 −0.477632 0.878560i \(-0.658505\pi\)
−0.477632 + 0.878560i \(0.658505\pi\)
\(3\) −4.13473 −0.795730 −0.397865 0.917444i \(-0.630249\pi\)
−0.397865 + 0.917444i \(0.630249\pi\)
\(4\) −0.699769 −0.0874712
\(5\) −5.00000 −0.447214
\(6\) 11.1716 0.760132
\(7\) 4.29122 0.231704 0.115852 0.993266i \(-0.463040\pi\)
0.115852 + 0.993266i \(0.463040\pi\)
\(8\) 23.5059 1.03882
\(9\) −9.90398 −0.366814
\(10\) 13.5095 0.427207
\(11\) −34.9071 −0.956808 −0.478404 0.878140i \(-0.658785\pi\)
−0.478404 + 0.878140i \(0.658785\pi\)
\(12\) 2.89336 0.0696034
\(13\) 7.72746 0.164862 0.0824312 0.996597i \(-0.473732\pi\)
0.0824312 + 0.996597i \(0.473732\pi\)
\(14\) −11.5944 −0.221339
\(15\) 20.6737 0.355861
\(16\) −57.9122 −0.904878
\(17\) 41.4349 0.591144 0.295572 0.955320i \(-0.404490\pi\)
0.295572 + 0.955320i \(0.404490\pi\)
\(18\) 26.7595 0.350404
\(19\) 98.8477 1.19354 0.596769 0.802413i \(-0.296451\pi\)
0.596769 + 0.802413i \(0.296451\pi\)
\(20\) 3.49885 0.0391183
\(21\) −17.7431 −0.184374
\(22\) 94.3153 0.914004
\(23\) 35.8174 0.324715 0.162358 0.986732i \(-0.448090\pi\)
0.162358 + 0.986732i \(0.448090\pi\)
\(24\) −97.1904 −0.826622
\(25\) 25.0000 0.200000
\(26\) −20.8788 −0.157487
\(27\) 152.588 1.08761
\(28\) −3.00287 −0.0202674
\(29\) 101.422 0.649436 0.324718 0.945811i \(-0.394731\pi\)
0.324718 + 0.945811i \(0.394731\pi\)
\(30\) −55.8581 −0.339941
\(31\) 195.195 1.13091 0.565453 0.824780i \(-0.308701\pi\)
0.565453 + 0.824780i \(0.308701\pi\)
\(32\) −31.5743 −0.174425
\(33\) 144.332 0.761361
\(34\) −111.953 −0.564699
\(35\) −21.4561 −0.103621
\(36\) 6.93050 0.0320856
\(37\) −70.6428 −0.313881 −0.156941 0.987608i \(-0.550163\pi\)
−0.156941 + 0.987608i \(0.550163\pi\)
\(38\) −267.076 −1.14014
\(39\) −31.9510 −0.131186
\(40\) −117.529 −0.464575
\(41\) 268.214 1.02166 0.510829 0.859682i \(-0.329339\pi\)
0.510829 + 0.859682i \(0.329339\pi\)
\(42\) 47.9399 0.176126
\(43\) −277.083 −0.982669 −0.491335 0.870971i \(-0.663491\pi\)
−0.491335 + 0.870971i \(0.663491\pi\)
\(44\) 24.4269 0.0836931
\(45\) 49.5199 0.164044
\(46\) −96.7749 −0.310189
\(47\) −543.139 −1.68564 −0.842819 0.538197i \(-0.819106\pi\)
−0.842819 + 0.538197i \(0.819106\pi\)
\(48\) 239.451 0.720038
\(49\) −324.585 −0.946313
\(50\) −67.5473 −0.191053
\(51\) −171.322 −0.470391
\(52\) −5.40744 −0.0144207
\(53\) −369.045 −0.956457 −0.478229 0.878235i \(-0.658721\pi\)
−0.478229 + 0.878235i \(0.658721\pi\)
\(54\) −412.277 −1.03896
\(55\) 174.536 0.427898
\(56\) 100.869 0.240699
\(57\) −408.709 −0.949733
\(58\) −274.032 −0.620383
\(59\) −410.547 −0.905909 −0.452955 0.891534i \(-0.649630\pi\)
−0.452955 + 0.891534i \(0.649630\pi\)
\(60\) −14.4668 −0.0311276
\(61\) 751.190 1.57672 0.788361 0.615213i \(-0.210930\pi\)
0.788361 + 0.615213i \(0.210930\pi\)
\(62\) −527.397 −1.08031
\(63\) −42.5002 −0.0849924
\(64\) 548.608 1.07150
\(65\) −38.6373 −0.0737287
\(66\) −389.969 −0.727300
\(67\) 78.1829 0.142561 0.0712803 0.997456i \(-0.477292\pi\)
0.0712803 + 0.997456i \(0.477292\pi\)
\(68\) −28.9949 −0.0517081
\(69\) −148.096 −0.258386
\(70\) 57.9721 0.0989857
\(71\) 208.576 0.348640 0.174320 0.984689i \(-0.444227\pi\)
0.174320 + 0.984689i \(0.444227\pi\)
\(72\) −232.801 −0.381054
\(73\) −105.398 −0.168984 −0.0844921 0.996424i \(-0.526927\pi\)
−0.0844921 + 0.996424i \(0.526927\pi\)
\(74\) 190.869 0.299839
\(75\) −103.368 −0.159146
\(76\) −69.1706 −0.104400
\(77\) −149.794 −0.221697
\(78\) 86.3282 0.125317
\(79\) −968.969 −1.37997 −0.689985 0.723824i \(-0.742383\pi\)
−0.689985 + 0.723824i \(0.742383\pi\)
\(80\) 289.561 0.404674
\(81\) −363.504 −0.498634
\(82\) −724.685 −0.975952
\(83\) 83.0000 0.109764
\(84\) 12.4161 0.0161274
\(85\) −207.175 −0.264368
\(86\) 748.649 0.938708
\(87\) −419.354 −0.516776
\(88\) −820.521 −0.993953
\(89\) 222.017 0.264425 0.132212 0.991221i \(-0.457792\pi\)
0.132212 + 0.991221i \(0.457792\pi\)
\(90\) −133.797 −0.156705
\(91\) 33.1603 0.0381993
\(92\) −25.0639 −0.0284032
\(93\) −807.080 −0.899896
\(94\) 1467.50 1.61023
\(95\) −494.238 −0.533766
\(96\) 130.551 0.138795
\(97\) −541.705 −0.567029 −0.283515 0.958968i \(-0.591500\pi\)
−0.283515 + 0.958968i \(0.591500\pi\)
\(98\) 876.995 0.903979
\(99\) 345.719 0.350971
\(100\) −17.4942 −0.0174942
\(101\) −613.770 −0.604677 −0.302339 0.953201i \(-0.597767\pi\)
−0.302339 + 0.953201i \(0.597767\pi\)
\(102\) 462.895 0.449347
\(103\) −116.700 −0.111638 −0.0558192 0.998441i \(-0.517777\pi\)
−0.0558192 + 0.998441i \(0.517777\pi\)
\(104\) 181.641 0.171263
\(105\) 88.7153 0.0824546
\(106\) 997.121 0.913669
\(107\) −412.532 −0.372720 −0.186360 0.982482i \(-0.559669\pi\)
−0.186360 + 0.982482i \(0.559669\pi\)
\(108\) −106.776 −0.0951349
\(109\) −824.001 −0.724083 −0.362041 0.932162i \(-0.617920\pi\)
−0.362041 + 0.932162i \(0.617920\pi\)
\(110\) −471.576 −0.408755
\(111\) 292.089 0.249765
\(112\) −248.514 −0.209664
\(113\) −1702.27 −1.41714 −0.708568 0.705642i \(-0.750659\pi\)
−0.708568 + 0.705642i \(0.750659\pi\)
\(114\) 1104.29 0.907246
\(115\) −179.087 −0.145217
\(116\) −70.9722 −0.0568070
\(117\) −76.5326 −0.0604739
\(118\) 1109.25 0.865382
\(119\) 177.807 0.136971
\(120\) 485.952 0.369676
\(121\) −112.494 −0.0845184
\(122\) −2029.64 −1.50619
\(123\) −1108.99 −0.812963
\(124\) −136.592 −0.0989217
\(125\) −125.000 −0.0894427
\(126\) 114.831 0.0811901
\(127\) 699.691 0.488878 0.244439 0.969665i \(-0.421396\pi\)
0.244439 + 0.969665i \(0.421396\pi\)
\(128\) −1229.69 −0.849140
\(129\) 1145.66 0.781939
\(130\) 104.394 0.0704304
\(131\) 646.088 0.430908 0.215454 0.976514i \(-0.430877\pi\)
0.215454 + 0.976514i \(0.430877\pi\)
\(132\) −100.999 −0.0665971
\(133\) 424.177 0.276548
\(134\) −211.242 −0.136183
\(135\) −762.941 −0.486396
\(136\) 973.964 0.614093
\(137\) −337.668 −0.210576 −0.105288 0.994442i \(-0.533576\pi\)
−0.105288 + 0.994442i \(0.533576\pi\)
\(138\) 400.139 0.246826
\(139\) 1893.93 1.15569 0.577845 0.816146i \(-0.303894\pi\)
0.577845 + 0.816146i \(0.303894\pi\)
\(140\) 15.0143 0.00906388
\(141\) 2245.74 1.34131
\(142\) −563.551 −0.333043
\(143\) −269.743 −0.157742
\(144\) 573.561 0.331922
\(145\) −507.112 −0.290437
\(146\) 284.773 0.161425
\(147\) 1342.07 0.753010
\(148\) 49.4337 0.0274555
\(149\) −2773.00 −1.52465 −0.762324 0.647195i \(-0.775942\pi\)
−0.762324 + 0.647195i \(0.775942\pi\)
\(150\) 279.290 0.152026
\(151\) 2072.88 1.11714 0.558571 0.829457i \(-0.311350\pi\)
0.558571 + 0.829457i \(0.311350\pi\)
\(152\) 2323.50 1.23987
\(153\) −410.371 −0.216840
\(154\) 404.728 0.211779
\(155\) −975.976 −0.505757
\(156\) 22.3583 0.0114750
\(157\) 201.042 0.102197 0.0510984 0.998694i \(-0.483728\pi\)
0.0510984 + 0.998694i \(0.483728\pi\)
\(158\) 2618.05 1.31823
\(159\) 1525.90 0.761082
\(160\) 157.871 0.0780052
\(161\) 153.701 0.0752379
\(162\) 982.149 0.476327
\(163\) 1061.03 0.509852 0.254926 0.966961i \(-0.417949\pi\)
0.254926 + 0.966961i \(0.417949\pi\)
\(164\) −187.688 −0.0893656
\(165\) −721.658 −0.340491
\(166\) −224.257 −0.104854
\(167\) 780.416 0.361619 0.180810 0.983518i \(-0.442128\pi\)
0.180810 + 0.983518i \(0.442128\pi\)
\(168\) −417.066 −0.191532
\(169\) −2137.29 −0.972820
\(170\) 559.764 0.252541
\(171\) −978.985 −0.437806
\(172\) 193.894 0.0859552
\(173\) 2190.71 0.962755 0.481377 0.876513i \(-0.340137\pi\)
0.481377 + 0.876513i \(0.340137\pi\)
\(174\) 1133.05 0.493657
\(175\) 107.281 0.0463409
\(176\) 2021.55 0.865794
\(177\) 1697.50 0.720859
\(178\) −599.867 −0.252595
\(179\) 699.942 0.292269 0.146135 0.989265i \(-0.453317\pi\)
0.146135 + 0.989265i \(0.453317\pi\)
\(180\) −34.6525 −0.0143491
\(181\) 2777.32 1.14053 0.570267 0.821459i \(-0.306840\pi\)
0.570267 + 0.821459i \(0.306840\pi\)
\(182\) −89.5955 −0.0364904
\(183\) −3105.97 −1.25465
\(184\) 841.920 0.337321
\(185\) 353.214 0.140372
\(186\) 2180.65 0.859638
\(187\) −1446.37 −0.565611
\(188\) 380.072 0.147445
\(189\) 654.790 0.252005
\(190\) 1335.38 0.509887
\(191\) −3071.79 −1.16370 −0.581851 0.813296i \(-0.697671\pi\)
−0.581851 + 0.813296i \(0.697671\pi\)
\(192\) −2268.35 −0.852624
\(193\) −698.123 −0.260373 −0.130187 0.991490i \(-0.541558\pi\)
−0.130187 + 0.991490i \(0.541558\pi\)
\(194\) 1463.63 0.541663
\(195\) 159.755 0.0586682
\(196\) 227.135 0.0827751
\(197\) 180.409 0.0652469 0.0326234 0.999468i \(-0.489614\pi\)
0.0326234 + 0.999468i \(0.489614\pi\)
\(198\) −934.097 −0.335269
\(199\) 65.4047 0.0232986 0.0116493 0.999932i \(-0.496292\pi\)
0.0116493 + 0.999932i \(0.496292\pi\)
\(200\) 587.646 0.207764
\(201\) −323.266 −0.113440
\(202\) 1658.34 0.577626
\(203\) 435.226 0.150477
\(204\) 119.886 0.0411457
\(205\) −1341.07 −0.456899
\(206\) 315.310 0.106644
\(207\) −354.735 −0.119110
\(208\) −447.514 −0.149180
\(209\) −3450.49 −1.14199
\(210\) −239.699 −0.0787659
\(211\) 4409.01 1.43852 0.719262 0.694739i \(-0.244480\pi\)
0.719262 + 0.694739i \(0.244480\pi\)
\(212\) 258.246 0.0836625
\(213\) −862.407 −0.277423
\(214\) 1114.62 0.356045
\(215\) 1385.42 0.439463
\(216\) 3586.71 1.12984
\(217\) 837.626 0.262036
\(218\) 2226.36 0.691690
\(219\) 435.791 0.134466
\(220\) −122.135 −0.0374287
\(221\) 320.187 0.0974575
\(222\) −789.194 −0.238591
\(223\) 931.924 0.279849 0.139924 0.990162i \(-0.455314\pi\)
0.139924 + 0.990162i \(0.455314\pi\)
\(224\) −135.492 −0.0404150
\(225\) −247.599 −0.0733628
\(226\) 4599.36 1.35374
\(227\) −5299.76 −1.54959 −0.774796 0.632211i \(-0.782147\pi\)
−0.774796 + 0.632211i \(0.782147\pi\)
\(228\) 286.002 0.0830743
\(229\) −1638.18 −0.472724 −0.236362 0.971665i \(-0.575955\pi\)
−0.236362 + 0.971665i \(0.575955\pi\)
\(230\) 483.875 0.138721
\(231\) 619.359 0.176411
\(232\) 2384.02 0.674649
\(233\) −4858.00 −1.36592 −0.682958 0.730458i \(-0.739307\pi\)
−0.682958 + 0.730458i \(0.739307\pi\)
\(234\) 206.783 0.0577685
\(235\) 2715.70 0.753840
\(236\) 287.288 0.0792409
\(237\) 4006.43 1.09808
\(238\) −480.414 −0.130843
\(239\) −7178.62 −1.94287 −0.971435 0.237305i \(-0.923736\pi\)
−0.971435 + 0.237305i \(0.923736\pi\)
\(240\) −1197.26 −0.322011
\(241\) 386.962 0.103429 0.0517145 0.998662i \(-0.483531\pi\)
0.0517145 + 0.998662i \(0.483531\pi\)
\(242\) 303.947 0.0807373
\(243\) −2616.89 −0.690837
\(244\) −525.660 −0.137918
\(245\) 1622.93 0.423204
\(246\) 2996.38 0.776594
\(247\) 763.841 0.196770
\(248\) 4588.23 1.17481
\(249\) −343.183 −0.0873427
\(250\) 337.737 0.0854414
\(251\) −6661.72 −1.67524 −0.837618 0.546257i \(-0.816052\pi\)
−0.837618 + 0.546257i \(0.816052\pi\)
\(252\) 29.7403 0.00743438
\(253\) −1250.28 −0.310690
\(254\) −1890.49 −0.467008
\(255\) 856.612 0.210365
\(256\) −1066.38 −0.260347
\(257\) 5071.91 1.23104 0.615519 0.788122i \(-0.288946\pi\)
0.615519 + 0.788122i \(0.288946\pi\)
\(258\) −3095.46 −0.746958
\(259\) −303.144 −0.0727276
\(260\) 27.0372 0.00644914
\(261\) −1004.48 −0.238222
\(262\) −1745.66 −0.411631
\(263\) −4324.87 −1.01400 −0.507001 0.861945i \(-0.669246\pi\)
−0.507001 + 0.861945i \(0.669246\pi\)
\(264\) 3392.64 0.790918
\(265\) 1845.23 0.427741
\(266\) −1146.08 −0.264176
\(267\) −917.982 −0.210411
\(268\) −54.7100 −0.0124699
\(269\) 461.214 0.104538 0.0522689 0.998633i \(-0.483355\pi\)
0.0522689 + 0.998633i \(0.483355\pi\)
\(270\) 2061.38 0.464637
\(271\) 6164.37 1.38177 0.690884 0.722966i \(-0.257222\pi\)
0.690884 + 0.722966i \(0.257222\pi\)
\(272\) −2399.59 −0.534913
\(273\) −137.109 −0.0303964
\(274\) 912.344 0.201156
\(275\) −872.678 −0.191362
\(276\) 103.633 0.0226013
\(277\) −4943.06 −1.07220 −0.536100 0.844154i \(-0.680103\pi\)
−0.536100 + 0.844154i \(0.680103\pi\)
\(278\) −5117.20 −1.10399
\(279\) −1933.21 −0.414832
\(280\) −504.344 −0.107644
\(281\) 4380.40 0.929939 0.464970 0.885327i \(-0.346065\pi\)
0.464970 + 0.885327i \(0.346065\pi\)
\(282\) −6067.74 −1.28131
\(283\) −4396.33 −0.923444 −0.461722 0.887025i \(-0.652768\pi\)
−0.461722 + 0.887025i \(0.652768\pi\)
\(284\) −145.955 −0.0304960
\(285\) 2043.54 0.424734
\(286\) 728.818 0.150685
\(287\) 1150.97 0.236722
\(288\) 312.711 0.0639815
\(289\) −3196.15 −0.650549
\(290\) 1370.16 0.277444
\(291\) 2239.81 0.451202
\(292\) 73.7540 0.0147813
\(293\) 826.604 0.164815 0.0824074 0.996599i \(-0.473739\pi\)
0.0824074 + 0.996599i \(0.473739\pi\)
\(294\) −3626.14 −0.719323
\(295\) 2052.73 0.405135
\(296\) −1660.52 −0.326067
\(297\) −5326.41 −1.04064
\(298\) 7492.34 1.45644
\(299\) 276.778 0.0535334
\(300\) 72.3340 0.0139207
\(301\) −1189.03 −0.227689
\(302\) −5600.69 −1.06716
\(303\) 2537.78 0.481160
\(304\) −5724.48 −1.08001
\(305\) −3755.95 −0.705132
\(306\) 1108.78 0.207139
\(307\) 5818.77 1.08174 0.540871 0.841106i \(-0.318095\pi\)
0.540871 + 0.841106i \(0.318095\pi\)
\(308\) 104.821 0.0193921
\(309\) 482.522 0.0888340
\(310\) 2636.98 0.483131
\(311\) 6201.04 1.13064 0.565319 0.824872i \(-0.308753\pi\)
0.565319 + 0.824872i \(0.308753\pi\)
\(312\) −751.035 −0.136279
\(313\) −1646.68 −0.297368 −0.148684 0.988885i \(-0.547504\pi\)
−0.148684 + 0.988885i \(0.547504\pi\)
\(314\) −543.195 −0.0976250
\(315\) 212.501 0.0380097
\(316\) 678.055 0.120708
\(317\) −10701.5 −1.89608 −0.948042 0.318146i \(-0.896940\pi\)
−0.948042 + 0.318146i \(0.896940\pi\)
\(318\) −4122.83 −0.727034
\(319\) −3540.36 −0.621386
\(320\) −2743.04 −0.479189
\(321\) 1705.71 0.296584
\(322\) −415.283 −0.0718721
\(323\) 4095.75 0.705552
\(324\) 254.369 0.0436161
\(325\) 193.187 0.0329725
\(326\) −2866.78 −0.487043
\(327\) 3407.03 0.576174
\(328\) 6304.59 1.06132
\(329\) −2330.73 −0.390569
\(330\) 1949.84 0.325259
\(331\) 5391.95 0.895374 0.447687 0.894190i \(-0.352248\pi\)
0.447687 + 0.894190i \(0.352248\pi\)
\(332\) −58.0809 −0.00960121
\(333\) 699.644 0.115136
\(334\) −2108.60 −0.345442
\(335\) −390.915 −0.0637551
\(336\) 1027.54 0.166836
\(337\) −945.945 −0.152905 −0.0764524 0.997073i \(-0.524359\pi\)
−0.0764524 + 0.997073i \(0.524359\pi\)
\(338\) 5774.72 0.929300
\(339\) 7038.45 1.12766
\(340\) 144.975 0.0231246
\(341\) −6813.70 −1.08206
\(342\) 2645.11 0.418220
\(343\) −2864.76 −0.450969
\(344\) −6513.07 −1.02082
\(345\) 740.478 0.115554
\(346\) −5919.07 −0.919685
\(347\) −7733.16 −1.19636 −0.598182 0.801361i \(-0.704110\pi\)
−0.598182 + 0.801361i \(0.704110\pi\)
\(348\) 293.451 0.0452030
\(349\) 1012.14 0.155240 0.0776198 0.996983i \(-0.475268\pi\)
0.0776198 + 0.996983i \(0.475268\pi\)
\(350\) −289.861 −0.0442677
\(351\) 1179.12 0.179307
\(352\) 1102.17 0.166891
\(353\) −1253.87 −0.189056 −0.0945278 0.995522i \(-0.530134\pi\)
−0.0945278 + 0.995522i \(0.530134\pi\)
\(354\) −4586.47 −0.688610
\(355\) −1042.88 −0.155917
\(356\) −155.361 −0.0231295
\(357\) −735.183 −0.108992
\(358\) −1891.17 −0.279194
\(359\) −8185.81 −1.20343 −0.601714 0.798712i \(-0.705515\pi\)
−0.601714 + 0.798712i \(0.705515\pi\)
\(360\) 1164.01 0.170413
\(361\) 2911.86 0.424531
\(362\) −7504.03 −1.08951
\(363\) 465.132 0.0672538
\(364\) −23.2045 −0.00334134
\(365\) 526.988 0.0755721
\(366\) 8392.01 1.19852
\(367\) −4895.39 −0.696287 −0.348143 0.937441i \(-0.613188\pi\)
−0.348143 + 0.937441i \(0.613188\pi\)
\(368\) −2074.27 −0.293828
\(369\) −2656.38 −0.374758
\(370\) −954.346 −0.134092
\(371\) −1583.65 −0.221615
\(372\) 564.770 0.0787150
\(373\) −2564.38 −0.355975 −0.177987 0.984033i \(-0.556959\pi\)
−0.177987 + 0.984033i \(0.556959\pi\)
\(374\) 3907.95 0.540308
\(375\) 516.842 0.0711722
\(376\) −12766.9 −1.75108
\(377\) 783.737 0.107068
\(378\) −1769.17 −0.240731
\(379\) 5914.78 0.801641 0.400820 0.916157i \(-0.368725\pi\)
0.400820 + 0.916157i \(0.368725\pi\)
\(380\) 345.853 0.0466891
\(381\) −2893.04 −0.389015
\(382\) 8299.65 1.11164
\(383\) −9394.94 −1.25342 −0.626709 0.779254i \(-0.715598\pi\)
−0.626709 + 0.779254i \(0.715598\pi\)
\(384\) 5084.42 0.675686
\(385\) 748.971 0.0991457
\(386\) 1886.25 0.248725
\(387\) 2744.22 0.360457
\(388\) 379.069 0.0495987
\(389\) −13960.2 −1.81957 −0.909784 0.415082i \(-0.863753\pi\)
−0.909784 + 0.415082i \(0.863753\pi\)
\(390\) −431.641 −0.0560436
\(391\) 1484.09 0.191954
\(392\) −7629.66 −0.983051
\(393\) −2671.40 −0.342886
\(394\) −487.447 −0.0623280
\(395\) 4844.85 0.617141
\(396\) −241.924 −0.0306998
\(397\) 1146.97 0.144999 0.0724997 0.997368i \(-0.476902\pi\)
0.0724997 + 0.997368i \(0.476902\pi\)
\(398\) −176.717 −0.0222563
\(399\) −1753.86 −0.220057
\(400\) −1447.80 −0.180976
\(401\) 9147.37 1.13915 0.569573 0.821940i \(-0.307108\pi\)
0.569573 + 0.821940i \(0.307108\pi\)
\(402\) 873.429 0.108365
\(403\) 1508.36 0.186444
\(404\) 429.497 0.0528918
\(405\) 1817.52 0.222996
\(406\) −1175.93 −0.143745
\(407\) 2465.93 0.300324
\(408\) −4027.08 −0.488652
\(409\) 1583.57 0.191449 0.0957245 0.995408i \(-0.469483\pi\)
0.0957245 + 0.995408i \(0.469483\pi\)
\(410\) 3623.43 0.436459
\(411\) 1396.17 0.167562
\(412\) 81.6629 0.00976515
\(413\) −1761.75 −0.209903
\(414\) 958.457 0.113782
\(415\) −415.000 −0.0490881
\(416\) −243.989 −0.0287561
\(417\) −7830.90 −0.919618
\(418\) 9322.85 1.09090
\(419\) 10673.4 1.24447 0.622233 0.782832i \(-0.286225\pi\)
0.622233 + 0.782832i \(0.286225\pi\)
\(420\) −62.0803 −0.00721240
\(421\) 1218.36 0.141043 0.0705214 0.997510i \(-0.477534\pi\)
0.0705214 + 0.997510i \(0.477534\pi\)
\(422\) −11912.7 −1.37417
\(423\) 5379.24 0.618316
\(424\) −8674.72 −0.993589
\(425\) 1035.87 0.118229
\(426\) 2330.13 0.265012
\(427\) 3223.53 0.365333
\(428\) 288.677 0.0326022
\(429\) 1115.32 0.125520
\(430\) −3743.25 −0.419803
\(431\) −12037.4 −1.34529 −0.672646 0.739964i \(-0.734842\pi\)
−0.672646 + 0.739964i \(0.734842\pi\)
\(432\) −8836.71 −0.984158
\(433\) −12055.7 −1.33801 −0.669006 0.743257i \(-0.733280\pi\)
−0.669006 + 0.743257i \(0.733280\pi\)
\(434\) −2263.18 −0.250313
\(435\) 2096.77 0.231109
\(436\) 576.611 0.0633363
\(437\) 3540.47 0.387560
\(438\) −1177.46 −0.128450
\(439\) 10406.7 1.13140 0.565698 0.824613i \(-0.308607\pi\)
0.565698 + 0.824613i \(0.308607\pi\)
\(440\) 4102.61 0.444509
\(441\) 3214.69 0.347121
\(442\) −865.111 −0.0930976
\(443\) 14079.4 1.51000 0.755002 0.655722i \(-0.227636\pi\)
0.755002 + 0.655722i \(0.227636\pi\)
\(444\) −204.395 −0.0218472
\(445\) −1110.09 −0.118254
\(446\) −2517.96 −0.267329
\(447\) 11465.6 1.21321
\(448\) 2354.20 0.248271
\(449\) 3961.90 0.416423 0.208211 0.978084i \(-0.433236\pi\)
0.208211 + 0.978084i \(0.433236\pi\)
\(450\) 668.987 0.0700808
\(451\) −9362.57 −0.977530
\(452\) 1191.20 0.123959
\(453\) −8570.80 −0.888943
\(454\) 14319.4 1.48027
\(455\) −165.801 −0.0170833
\(456\) −9607.05 −0.986604
\(457\) −19434.5 −1.98929 −0.994646 0.103344i \(-0.967046\pi\)
−0.994646 + 0.103344i \(0.967046\pi\)
\(458\) 4426.18 0.451576
\(459\) 6322.48 0.642937
\(460\) 125.320 0.0127023
\(461\) −5885.64 −0.594624 −0.297312 0.954780i \(-0.596090\pi\)
−0.297312 + 0.954780i \(0.596090\pi\)
\(462\) −1673.44 −0.168519
\(463\) −654.532 −0.0656991 −0.0328495 0.999460i \(-0.510458\pi\)
−0.0328495 + 0.999460i \(0.510458\pi\)
\(464\) −5873.59 −0.587660
\(465\) 4035.40 0.402446
\(466\) 13125.8 1.30481
\(467\) −4551.81 −0.451034 −0.225517 0.974239i \(-0.572407\pi\)
−0.225517 + 0.974239i \(0.572407\pi\)
\(468\) 53.5552 0.00528972
\(469\) 335.500 0.0330319
\(470\) −7337.52 −0.720116
\(471\) −831.256 −0.0813211
\(472\) −9650.25 −0.941078
\(473\) 9672.17 0.940226
\(474\) −10824.9 −1.04896
\(475\) 2471.19 0.238707
\(476\) −124.424 −0.0119810
\(477\) 3655.01 0.350842
\(478\) 19395.9 1.85595
\(479\) −2908.50 −0.277438 −0.138719 0.990332i \(-0.544298\pi\)
−0.138719 + 0.990332i \(0.544298\pi\)
\(480\) −652.757 −0.0620711
\(481\) −545.889 −0.0517472
\(482\) −1045.53 −0.0988019
\(483\) −635.511 −0.0598691
\(484\) 78.7198 0.00739292
\(485\) 2708.53 0.253583
\(486\) 7070.55 0.659932
\(487\) 6664.89 0.620154 0.310077 0.950711i \(-0.399645\pi\)
0.310077 + 0.950711i \(0.399645\pi\)
\(488\) 17657.4 1.63793
\(489\) −4387.06 −0.405705
\(490\) −4384.98 −0.404272
\(491\) −8035.09 −0.738531 −0.369265 0.929324i \(-0.620391\pi\)
−0.369265 + 0.929324i \(0.620391\pi\)
\(492\) 776.039 0.0711109
\(493\) 4202.43 0.383910
\(494\) −2063.82 −0.187967
\(495\) −1728.60 −0.156959
\(496\) −11304.2 −1.02333
\(497\) 895.047 0.0807814
\(498\) 927.244 0.0834353
\(499\) 17863.7 1.60258 0.801292 0.598274i \(-0.204147\pi\)
0.801292 + 0.598274i \(0.204147\pi\)
\(500\) 87.4712 0.00782366
\(501\) −3226.81 −0.287751
\(502\) 17999.3 1.60029
\(503\) −21.6941 −0.00192305 −0.000961524 1.00000i \(-0.500306\pi\)
−0.000961524 1.00000i \(0.500306\pi\)
\(504\) −999.003 −0.0882919
\(505\) 3068.85 0.270420
\(506\) 3378.13 0.296791
\(507\) 8837.11 0.774102
\(508\) −489.622 −0.0427627
\(509\) 2233.11 0.194462 0.0972309 0.995262i \(-0.469001\pi\)
0.0972309 + 0.995262i \(0.469001\pi\)
\(510\) −2314.48 −0.200954
\(511\) −452.285 −0.0391544
\(512\) 12718.7 1.09784
\(513\) 15083.0 1.29811
\(514\) −13703.8 −1.17597
\(515\) 583.498 0.0499262
\(516\) −801.701 −0.0683971
\(517\) 18959.4 1.61283
\(518\) 819.063 0.0694740
\(519\) −9058.00 −0.766093
\(520\) −908.203 −0.0765910
\(521\) 17882.6 1.50375 0.751874 0.659307i \(-0.229150\pi\)
0.751874 + 0.659307i \(0.229150\pi\)
\(522\) 2714.01 0.227565
\(523\) −1377.75 −0.115191 −0.0575953 0.998340i \(-0.518343\pi\)
−0.0575953 + 0.998340i \(0.518343\pi\)
\(524\) −452.113 −0.0376920
\(525\) −443.577 −0.0368748
\(526\) 11685.3 0.968640
\(527\) 8087.90 0.668529
\(528\) −8358.56 −0.688938
\(529\) −10884.1 −0.894560
\(530\) −4985.60 −0.408605
\(531\) 4066.05 0.332300
\(532\) −296.826 −0.0241899
\(533\) 2072.61 0.168433
\(534\) 2480.29 0.200998
\(535\) 2062.66 0.166685
\(536\) 1837.76 0.148095
\(537\) −2894.08 −0.232567
\(538\) −1246.15 −0.0998612
\(539\) 11330.3 0.905440
\(540\) 533.882 0.0425456
\(541\) −20403.2 −1.62145 −0.810723 0.585430i \(-0.800926\pi\)
−0.810723 + 0.585430i \(0.800926\pi\)
\(542\) −16655.5 −1.31995
\(543\) −11483.5 −0.907558
\(544\) −1308.28 −0.103110
\(545\) 4120.01 0.323820
\(546\) 370.454 0.0290365
\(547\) 20662.2 1.61509 0.807543 0.589808i \(-0.200797\pi\)
0.807543 + 0.589808i \(0.200797\pi\)
\(548\) 236.290 0.0184194
\(549\) −7439.77 −0.578364
\(550\) 2357.88 0.182801
\(551\) 10025.4 0.775126
\(552\) −3481.11 −0.268417
\(553\) −4158.06 −0.319745
\(554\) 13355.6 1.02423
\(555\) −1460.45 −0.111698
\(556\) −1325.31 −0.101090
\(557\) −17223.8 −1.31023 −0.655115 0.755530i \(-0.727380\pi\)
−0.655115 + 0.755530i \(0.727380\pi\)
\(558\) 5223.33 0.396274
\(559\) −2141.15 −0.162005
\(560\) 1242.57 0.0937646
\(561\) 5980.37 0.450074
\(562\) −11835.4 −0.888337
\(563\) 12743.4 0.953947 0.476974 0.878918i \(-0.341734\pi\)
0.476974 + 0.878918i \(0.341734\pi\)
\(564\) −1571.50 −0.117326
\(565\) 8511.37 0.633763
\(566\) 11878.4 0.882133
\(567\) −1559.88 −0.115536
\(568\) 4902.76 0.362175
\(569\) −26985.6 −1.98822 −0.994108 0.108391i \(-0.965430\pi\)
−0.994108 + 0.108391i \(0.965430\pi\)
\(570\) −5521.44 −0.405733
\(571\) 11153.0 0.817403 0.408701 0.912668i \(-0.365982\pi\)
0.408701 + 0.912668i \(0.365982\pi\)
\(572\) 188.758 0.0137979
\(573\) 12701.0 0.925992
\(574\) −3109.79 −0.226132
\(575\) 895.436 0.0649431
\(576\) −5433.40 −0.393041
\(577\) −12032.8 −0.868164 −0.434082 0.900873i \(-0.642927\pi\)
−0.434082 + 0.900873i \(0.642927\pi\)
\(578\) 8635.65 0.621446
\(579\) 2886.55 0.207187
\(580\) 354.861 0.0254048
\(581\) 356.172 0.0254328
\(582\) −6051.72 −0.431017
\(583\) 12882.3 0.915146
\(584\) −2477.46 −0.175545
\(585\) 382.663 0.0270447
\(586\) −2233.40 −0.157442
\(587\) −12326.6 −0.866737 −0.433369 0.901217i \(-0.642675\pi\)
−0.433369 + 0.901217i \(0.642675\pi\)
\(588\) −939.142 −0.0658666
\(589\) 19294.6 1.34978
\(590\) −5546.27 −0.387011
\(591\) −745.945 −0.0519189
\(592\) 4091.08 0.284024
\(593\) −20938.7 −1.45000 −0.724998 0.688751i \(-0.758159\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(594\) 14391.4 0.994084
\(595\) −889.033 −0.0612551
\(596\) 1940.46 0.133363
\(597\) −270.431 −0.0185394
\(598\) −747.825 −0.0511385
\(599\) 14441.0 0.985045 0.492523 0.870300i \(-0.336075\pi\)
0.492523 + 0.870300i \(0.336075\pi\)
\(600\) −2429.76 −0.165324
\(601\) −3102.85 −0.210596 −0.105298 0.994441i \(-0.533580\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(602\) 3212.62 0.217503
\(603\) −774.322 −0.0522932
\(604\) −1450.54 −0.0977177
\(605\) 562.470 0.0377978
\(606\) −6856.80 −0.459634
\(607\) 4582.40 0.306415 0.153208 0.988194i \(-0.451040\pi\)
0.153208 + 0.988194i \(0.451040\pi\)
\(608\) −3121.05 −0.208183
\(609\) −1799.54 −0.119739
\(610\) 10148.2 0.673587
\(611\) −4197.09 −0.277898
\(612\) 287.165 0.0189672
\(613\) 8219.91 0.541597 0.270799 0.962636i \(-0.412712\pi\)
0.270799 + 0.962636i \(0.412712\pi\)
\(614\) −15721.7 −1.03335
\(615\) 5544.96 0.363568
\(616\) −3521.04 −0.230303
\(617\) 6422.32 0.419049 0.209524 0.977803i \(-0.432808\pi\)
0.209524 + 0.977803i \(0.432808\pi\)
\(618\) −1303.72 −0.0848599
\(619\) −189.749 −0.0123209 −0.00616046 0.999981i \(-0.501961\pi\)
−0.00616046 + 0.999981i \(0.501961\pi\)
\(620\) 682.958 0.0442391
\(621\) 5465.32 0.353165
\(622\) −16754.5 −1.08006
\(623\) 952.726 0.0612683
\(624\) 1850.35 0.118707
\(625\) 625.000 0.0400000
\(626\) 4449.16 0.284064
\(627\) 14266.8 0.908712
\(628\) −140.683 −0.00893928
\(629\) −2927.08 −0.185549
\(630\) −574.155 −0.0363093
\(631\) −804.709 −0.0507685 −0.0253843 0.999678i \(-0.508081\pi\)
−0.0253843 + 0.999678i \(0.508081\pi\)
\(632\) −22776.4 −1.43354
\(633\) −18230.1 −1.14468
\(634\) 28914.4 1.81126
\(635\) −3498.45 −0.218633
\(636\) −1067.78 −0.0665727
\(637\) −2508.22 −0.156012
\(638\) 9565.68 0.593587
\(639\) −2065.73 −0.127886
\(640\) 6148.43 0.379747
\(641\) −29738.1 −1.83243 −0.916214 0.400690i \(-0.868771\pi\)
−0.916214 + 0.400690i \(0.868771\pi\)
\(642\) −4608.65 −0.283316
\(643\) −24675.8 −1.51340 −0.756701 0.653762i \(-0.773190\pi\)
−0.756701 + 0.653762i \(0.773190\pi\)
\(644\) −107.555 −0.00658115
\(645\) −5728.32 −0.349694
\(646\) −11066.3 −0.673989
\(647\) −5733.00 −0.348358 −0.174179 0.984714i \(-0.555727\pi\)
−0.174179 + 0.984714i \(0.555727\pi\)
\(648\) −8544.47 −0.517991
\(649\) 14331.0 0.866781
\(650\) −521.970 −0.0314974
\(651\) −3463.36 −0.208510
\(652\) −742.473 −0.0445974
\(653\) 1179.74 0.0706993 0.0353496 0.999375i \(-0.488746\pi\)
0.0353496 + 0.999375i \(0.488746\pi\)
\(654\) −9205.42 −0.550398
\(655\) −3230.44 −0.192708
\(656\) −15532.8 −0.924475
\(657\) 1043.86 0.0619858
\(658\) 6297.39 0.373097
\(659\) 14538.5 0.859391 0.429696 0.902974i \(-0.358621\pi\)
0.429696 + 0.902974i \(0.358621\pi\)
\(660\) 504.994 0.0297831
\(661\) 5617.64 0.330561 0.165281 0.986247i \(-0.447147\pi\)
0.165281 + 0.986247i \(0.447147\pi\)
\(662\) −14568.5 −0.855318
\(663\) −1323.89 −0.0775498
\(664\) 1950.99 0.114026
\(665\) −2120.89 −0.123676
\(666\) −1890.37 −0.109985
\(667\) 3632.69 0.210882
\(668\) −546.112 −0.0316313
\(669\) −3853.26 −0.222684
\(670\) 1056.21 0.0609029
\(671\) −26221.9 −1.50862
\(672\) 560.225 0.0321594
\(673\) −14475.7 −0.829118 −0.414559 0.910022i \(-0.636064\pi\)
−0.414559 + 0.910022i \(0.636064\pi\)
\(674\) 2555.84 0.146064
\(675\) 3814.70 0.217523
\(676\) 1495.61 0.0850937
\(677\) −17886.9 −1.01544 −0.507718 0.861523i \(-0.669511\pi\)
−0.507718 + 0.861523i \(0.669511\pi\)
\(678\) −19017.1 −1.07721
\(679\) −2324.58 −0.131383
\(680\) −4869.82 −0.274631
\(681\) 21913.1 1.23306
\(682\) 18409.9 1.03365
\(683\) 18163.2 1.01756 0.508782 0.860896i \(-0.330096\pi\)
0.508782 + 0.860896i \(0.330096\pi\)
\(684\) 685.064 0.0382954
\(685\) 1688.34 0.0941726
\(686\) 7740.27 0.430794
\(687\) 6773.43 0.376161
\(688\) 16046.5 0.889195
\(689\) −2851.78 −0.157684
\(690\) −2000.69 −0.110384
\(691\) 15759.1 0.867591 0.433795 0.901011i \(-0.357174\pi\)
0.433795 + 0.901011i \(0.357174\pi\)
\(692\) −1532.99 −0.0842133
\(693\) 1483.56 0.0813214
\(694\) 20894.2 1.14284
\(695\) −9469.65 −0.516841
\(696\) −9857.28 −0.536838
\(697\) 11113.4 0.603947
\(698\) −2734.70 −0.148295
\(699\) 20086.5 1.08690
\(700\) −75.0717 −0.00405349
\(701\) 13059.9 0.703658 0.351829 0.936064i \(-0.385560\pi\)
0.351829 + 0.936064i \(0.385560\pi\)
\(702\) −3185.85 −0.171285
\(703\) −6982.87 −0.374629
\(704\) −19150.3 −1.02522
\(705\) −11228.7 −0.599853
\(706\) 3387.82 0.180598
\(707\) −2633.82 −0.140106
\(708\) −1187.86 −0.0630544
\(709\) −4348.41 −0.230336 −0.115168 0.993346i \(-0.536741\pi\)
−0.115168 + 0.993346i \(0.536741\pi\)
\(710\) 2817.75 0.148941
\(711\) 9596.65 0.506192
\(712\) 5218.71 0.274690
\(713\) 6991.39 0.367223
\(714\) 1986.39 0.104116
\(715\) 1348.72 0.0705443
\(716\) −489.798 −0.0255651
\(717\) 29681.7 1.54600
\(718\) 22117.2 1.14959
\(719\) 25468.2 1.32101 0.660504 0.750822i \(-0.270343\pi\)
0.660504 + 0.750822i \(0.270343\pi\)
\(720\) −2867.80 −0.148440
\(721\) −500.784 −0.0258671
\(722\) −7867.53 −0.405539
\(723\) −1599.98 −0.0823015
\(724\) −1943.49 −0.0997639
\(725\) 2535.56 0.129887
\(726\) −1256.74 −0.0642451
\(727\) 3070.74 0.156654 0.0783270 0.996928i \(-0.475042\pi\)
0.0783270 + 0.996928i \(0.475042\pi\)
\(728\) 779.460 0.0396823
\(729\) 20634.7 1.04835
\(730\) −1423.87 −0.0721913
\(731\) −11480.9 −0.580899
\(732\) 2173.46 0.109745
\(733\) −23632.2 −1.19083 −0.595413 0.803420i \(-0.703011\pi\)
−0.595413 + 0.803420i \(0.703011\pi\)
\(734\) 13226.8 0.665137
\(735\) −6710.37 −0.336756
\(736\) −1130.91 −0.0566385
\(737\) −2729.14 −0.136403
\(738\) 7177.27 0.357993
\(739\) −14914.1 −0.742388 −0.371194 0.928555i \(-0.621051\pi\)
−0.371194 + 0.928555i \(0.621051\pi\)
\(740\) −247.168 −0.0122785
\(741\) −3158.28 −0.156575
\(742\) 4278.87 0.211701
\(743\) −1679.54 −0.0829292 −0.0414646 0.999140i \(-0.513202\pi\)
−0.0414646 + 0.999140i \(0.513202\pi\)
\(744\) −18971.1 −0.934832
\(745\) 13865.0 0.681844
\(746\) 6928.68 0.340050
\(747\) −822.030 −0.0402631
\(748\) 1012.13 0.0494747
\(749\) −1770.27 −0.0863607
\(750\) −1396.45 −0.0679883
\(751\) 3454.58 0.167856 0.0839278 0.996472i \(-0.473253\pi\)
0.0839278 + 0.996472i \(0.473253\pi\)
\(752\) 31454.4 1.52530
\(753\) 27544.4 1.33303
\(754\) −2117.57 −0.102278
\(755\) −10364.4 −0.499601
\(756\) −458.202 −0.0220432
\(757\) 26211.2 1.25847 0.629236 0.777214i \(-0.283368\pi\)
0.629236 + 0.777214i \(0.283368\pi\)
\(758\) −15981.1 −0.765778
\(759\) 5169.59 0.247226
\(760\) −11617.5 −0.554488
\(761\) −19099.6 −0.909802 −0.454901 0.890542i \(-0.650325\pi\)
−0.454901 + 0.890542i \(0.650325\pi\)
\(762\) 7816.67 0.371612
\(763\) −3535.97 −0.167773
\(764\) 2149.55 0.101790
\(765\) 2051.85 0.0969738
\(766\) 25384.1 1.19734
\(767\) −3172.48 −0.149350
\(768\) 4409.21 0.207166
\(769\) −23151.4 −1.08565 −0.542823 0.839847i \(-0.682645\pi\)
−0.542823 + 0.839847i \(0.682645\pi\)
\(770\) −2023.64 −0.0947103
\(771\) −20971.0 −0.979574
\(772\) 488.525 0.0227751
\(773\) −1481.99 −0.0689564 −0.0344782 0.999405i \(-0.510977\pi\)
−0.0344782 + 0.999405i \(0.510977\pi\)
\(774\) −7414.60 −0.344331
\(775\) 4879.88 0.226181
\(776\) −12733.2 −0.589043
\(777\) 1253.42 0.0578715
\(778\) 37719.1 1.73817
\(779\) 26512.3 1.21939
\(780\) −111.792 −0.00513177
\(781\) −7280.79 −0.333582
\(782\) −4009.86 −0.183366
\(783\) 15475.8 0.706337
\(784\) 18797.4 0.856298
\(785\) −1005.21 −0.0457038
\(786\) 7217.84 0.327547
\(787\) −34437.7 −1.55981 −0.779906 0.625897i \(-0.784733\pi\)
−0.779906 + 0.625897i \(0.784733\pi\)
\(788\) −126.245 −0.00570722
\(789\) 17882.2 0.806872
\(790\) −13090.3 −0.589532
\(791\) −7304.84 −0.328357
\(792\) 8126.42 0.364596
\(793\) 5804.79 0.259942
\(794\) −3098.99 −0.138513
\(795\) −7629.52 −0.340366
\(796\) −45.7682 −0.00203795
\(797\) 8944.29 0.397519 0.198760 0.980048i \(-0.436309\pi\)
0.198760 + 0.980048i \(0.436309\pi\)
\(798\) 4738.74 0.210213
\(799\) −22504.9 −0.996455
\(800\) −789.357 −0.0348850
\(801\) −2198.85 −0.0969946
\(802\) −24715.2 −1.08819
\(803\) 3679.12 0.161686
\(804\) 226.211 0.00992271
\(805\) −768.503 −0.0336474
\(806\) −4075.44 −0.178103
\(807\) −1907.00 −0.0831839
\(808\) −14427.2 −0.628152
\(809\) 8554.01 0.371747 0.185873 0.982574i \(-0.440489\pi\)
0.185873 + 0.982574i \(0.440489\pi\)
\(810\) −4910.74 −0.213020
\(811\) 10051.6 0.435215 0.217608 0.976036i \(-0.430175\pi\)
0.217608 + 0.976036i \(0.430175\pi\)
\(812\) −304.558 −0.0131624
\(813\) −25488.0 −1.09951
\(814\) −6662.69 −0.286889
\(815\) −5305.13 −0.228013
\(816\) 9921.65 0.425646
\(817\) −27389.0 −1.17285
\(818\) −4278.65 −0.182884
\(819\) −328.418 −0.0140121
\(820\) 938.439 0.0399655
\(821\) −10118.1 −0.430113 −0.215057 0.976602i \(-0.568994\pi\)
−0.215057 + 0.976602i \(0.568994\pi\)
\(822\) −3772.30 −0.160066
\(823\) −38789.2 −1.64290 −0.821449 0.570282i \(-0.806834\pi\)
−0.821449 + 0.570282i \(0.806834\pi\)
\(824\) −2743.13 −0.115972
\(825\) 3608.29 0.152272
\(826\) 4760.06 0.200513
\(827\) 4171.29 0.175393 0.0876965 0.996147i \(-0.472049\pi\)
0.0876965 + 0.996147i \(0.472049\pi\)
\(828\) 248.233 0.0104187
\(829\) −38792.4 −1.62523 −0.812615 0.582801i \(-0.801957\pi\)
−0.812615 + 0.582801i \(0.801957\pi\)
\(830\) 1121.29 0.0468921
\(831\) 20438.2 0.853182
\(832\) 4239.35 0.176650
\(833\) −13449.2 −0.559407
\(834\) 21158.2 0.878478
\(835\) −3902.08 −0.161721
\(836\) 2414.54 0.0998909
\(837\) 29784.5 1.22999
\(838\) −28838.5 −1.18879
\(839\) −30724.6 −1.26428 −0.632140 0.774854i \(-0.717823\pi\)
−0.632140 + 0.774854i \(0.717823\pi\)
\(840\) 2085.33 0.0856556
\(841\) −14102.5 −0.578232
\(842\) −3291.87 −0.134733
\(843\) −18111.8 −0.739981
\(844\) −3085.29 −0.125829
\(845\) 10686.4 0.435058
\(846\) −14534.1 −0.590654
\(847\) −482.737 −0.0195833
\(848\) 21372.2 0.865477
\(849\) 18177.7 0.734812
\(850\) −2798.82 −0.112940
\(851\) −2530.24 −0.101922
\(852\) 603.486 0.0242665
\(853\) −13541.7 −0.543564 −0.271782 0.962359i \(-0.587613\pi\)
−0.271782 + 0.962359i \(0.587613\pi\)
\(854\) −8709.62 −0.348990
\(855\) 4894.92 0.195793
\(856\) −9696.92 −0.387189
\(857\) 12515.7 0.498867 0.249433 0.968392i \(-0.419756\pi\)
0.249433 + 0.968392i \(0.419756\pi\)
\(858\) −3013.47 −0.119905
\(859\) 8297.54 0.329579 0.164789 0.986329i \(-0.447306\pi\)
0.164789 + 0.986329i \(0.447306\pi\)
\(860\) −969.471 −0.0384403
\(861\) −4758.93 −0.188367
\(862\) 32523.8 1.28511
\(863\) 4006.21 0.158022 0.0790110 0.996874i \(-0.474824\pi\)
0.0790110 + 0.996874i \(0.474824\pi\)
\(864\) −4817.86 −0.189707
\(865\) −10953.6 −0.430557
\(866\) 32573.2 1.27815
\(867\) 13215.2 0.517661
\(868\) −586.145 −0.0229206
\(869\) 33823.9 1.32037
\(870\) −5665.25 −0.220770
\(871\) 604.156 0.0235029
\(872\) −19368.9 −0.752193
\(873\) 5365.04 0.207994
\(874\) −9565.97 −0.370222
\(875\) −536.403 −0.0207243
\(876\) −304.953 −0.0117619
\(877\) 11533.6 0.444085 0.222042 0.975037i \(-0.428728\pi\)
0.222042 + 0.975037i \(0.428728\pi\)
\(878\) −28117.7 −1.08078
\(879\) −3417.79 −0.131148
\(880\) −10107.7 −0.387195
\(881\) 13409.5 0.512803 0.256401 0.966570i \(-0.417463\pi\)
0.256401 + 0.966570i \(0.417463\pi\)
\(882\) −8685.74 −0.331592
\(883\) 42702.9 1.62748 0.813740 0.581229i \(-0.197428\pi\)
0.813740 + 0.581229i \(0.197428\pi\)
\(884\) −224.057 −0.00852472
\(885\) −8487.51 −0.322378
\(886\) −38041.0 −1.44245
\(887\) 179.541 0.00679640 0.00339820 0.999994i \(-0.498918\pi\)
0.00339820 + 0.999994i \(0.498918\pi\)
\(888\) 6865.80 0.259461
\(889\) 3002.53 0.113275
\(890\) 2999.34 0.112964
\(891\) 12688.9 0.477097
\(892\) −652.132 −0.0244787
\(893\) −53688.0 −2.01187
\(894\) −30978.8 −1.15893
\(895\) −3499.71 −0.130707
\(896\) −5276.85 −0.196749
\(897\) −1144.40 −0.0425981
\(898\) −10704.6 −0.397793
\(899\) 19797.2 0.734452
\(900\) 173.263 0.00641713
\(901\) −15291.4 −0.565404
\(902\) 25296.7 0.933799
\(903\) 4916.30 0.181179
\(904\) −40013.4 −1.47215
\(905\) −13886.6 −0.510063
\(906\) 23157.4 0.849175
\(907\) 19252.7 0.704825 0.352413 0.935845i \(-0.385361\pi\)
0.352413 + 0.935845i \(0.385361\pi\)
\(908\) 3708.61 0.135545
\(909\) 6078.76 0.221804
\(910\) 447.978 0.0163190
\(911\) −9052.76 −0.329233 −0.164617 0.986358i \(-0.552639\pi\)
−0.164617 + 0.986358i \(0.552639\pi\)
\(912\) 23669.2 0.859392
\(913\) −2897.29 −0.105023
\(914\) 52509.9 1.90030
\(915\) 15529.9 0.561094
\(916\) 1146.35 0.0413497
\(917\) 2772.51 0.0998432
\(918\) −17082.7 −0.614174
\(919\) −32293.2 −1.15915 −0.579573 0.814921i \(-0.696780\pi\)
−0.579573 + 0.814921i \(0.696780\pi\)
\(920\) −4209.60 −0.150855
\(921\) −24059.0 −0.860774
\(922\) 15902.4 0.568022
\(923\) 1611.76 0.0574777
\(924\) −433.408 −0.0154308
\(925\) −1766.07 −0.0627762
\(926\) 1768.48 0.0627600
\(927\) 1155.79 0.0409505
\(928\) −3202.34 −0.113278
\(929\) 17991.9 0.635409 0.317704 0.948190i \(-0.397088\pi\)
0.317704 + 0.948190i \(0.397088\pi\)
\(930\) −10903.2 −0.384442
\(931\) −32084.5 −1.12946
\(932\) 3399.48 0.119478
\(933\) −25639.6 −0.899683
\(934\) 12298.5 0.430856
\(935\) 7231.87 0.252949
\(936\) −1798.96 −0.0628216
\(937\) 20624.3 0.719068 0.359534 0.933132i \(-0.382936\pi\)
0.359534 + 0.933132i \(0.382936\pi\)
\(938\) −906.486 −0.0315542
\(939\) 6808.60 0.236624
\(940\) −1900.36 −0.0659393
\(941\) 7261.75 0.251569 0.125784 0.992058i \(-0.459855\pi\)
0.125784 + 0.992058i \(0.459855\pi\)
\(942\) 2245.97 0.0776831
\(943\) 9606.73 0.331748
\(944\) 23775.7 0.819737
\(945\) −3273.95 −0.112700
\(946\) −26133.2 −0.898163
\(947\) 1275.28 0.0437603 0.0218802 0.999761i \(-0.493035\pi\)
0.0218802 + 0.999761i \(0.493035\pi\)
\(948\) −2803.58 −0.0960506
\(949\) −814.456 −0.0278592
\(950\) −6676.90 −0.228029
\(951\) 44248.0 1.50877
\(952\) 4179.50 0.142288
\(953\) −25371.9 −0.862410 −0.431205 0.902254i \(-0.641911\pi\)
−0.431205 + 0.902254i \(0.641911\pi\)
\(954\) −9875.46 −0.335147
\(955\) 15359.0 0.520423
\(956\) 5023.38 0.169945
\(957\) 14638.4 0.494455
\(958\) 7858.45 0.265026
\(959\) −1449.01 −0.0487914
\(960\) 11341.7 0.381305
\(961\) 8310.18 0.278949
\(962\) 1474.94 0.0494322
\(963\) 4085.71 0.136719
\(964\) −270.784 −0.00904705
\(965\) 3490.62 0.116442
\(966\) 1717.08 0.0571907
\(967\) −1269.50 −0.0422174 −0.0211087 0.999777i \(-0.506720\pi\)
−0.0211087 + 0.999777i \(0.506720\pi\)
\(968\) −2644.27 −0.0877995
\(969\) −16934.8 −0.561429
\(970\) −7318.15 −0.242239
\(971\) −34501.7 −1.14028 −0.570139 0.821548i \(-0.693111\pi\)
−0.570139 + 0.821548i \(0.693111\pi\)
\(972\) 1831.22 0.0604283
\(973\) 8127.28 0.267779
\(974\) −18007.8 −0.592411
\(975\) −798.775 −0.0262372
\(976\) −43503.1 −1.42674
\(977\) 28452.3 0.931699 0.465849 0.884864i \(-0.345749\pi\)
0.465849 + 0.884864i \(0.345749\pi\)
\(978\) 11853.4 0.387555
\(979\) −7749.98 −0.253004
\(980\) −1135.67 −0.0370182
\(981\) 8160.89 0.265604
\(982\) 21710.0 0.705492
\(983\) 26457.9 0.858470 0.429235 0.903193i \(-0.358783\pi\)
0.429235 + 0.903193i \(0.358783\pi\)
\(984\) −26067.8 −0.844524
\(985\) −902.047 −0.0291793
\(986\) −11354.5 −0.366736
\(987\) 9636.95 0.310788
\(988\) −534.513 −0.0172117
\(989\) −9924.41 −0.319088
\(990\) 4670.48 0.149937
\(991\) −8296.46 −0.265939 −0.132970 0.991120i \(-0.542451\pi\)
−0.132970 + 0.991120i \(0.542451\pi\)
\(992\) −6163.15 −0.197258
\(993\) −22294.3 −0.712475
\(994\) −2418.32 −0.0771675
\(995\) −327.023 −0.0104194
\(996\) 240.149 0.00763997
\(997\) −20090.9 −0.638201 −0.319101 0.947721i \(-0.603381\pi\)
−0.319101 + 0.947721i \(0.603381\pi\)
\(998\) −48265.8 −1.53089
\(999\) −10779.2 −0.341382
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.4.a.c.1.7 21
5.4 even 2 2075.4.a.g.1.15 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.a.c.1.7 21 1.1 even 1 trivial
2075.4.a.g.1.15 21 5.4 even 2