Properties

Label 415.4.a.c.1.19
Level $415$
Weight $4$
Character 415.1
Self dual yes
Analytic conductor $24.486$
Analytic rank $1$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [415,4,Mod(1,415)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("415.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(415, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 415 = 5 \cdot 83 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 415.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.4857926524\)
Analytic rank: \(1\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.28686 q^{2} -0.965562 q^{3} +10.3772 q^{4} -5.00000 q^{5} -4.13923 q^{6} +6.97800 q^{7} +10.1906 q^{8} -26.0677 q^{9} -21.4343 q^{10} -52.3762 q^{11} -10.0198 q^{12} -27.1779 q^{13} +29.9137 q^{14} +4.82781 q^{15} -39.3317 q^{16} -4.95837 q^{17} -111.749 q^{18} +105.160 q^{19} -51.8858 q^{20} -6.73769 q^{21} -224.530 q^{22} -160.148 q^{23} -9.83965 q^{24} +25.0000 q^{25} -116.508 q^{26} +51.2401 q^{27} +72.4119 q^{28} -94.5851 q^{29} +20.6961 q^{30} +4.25766 q^{31} -250.134 q^{32} +50.5725 q^{33} -21.2558 q^{34} -34.8900 q^{35} -270.509 q^{36} +396.186 q^{37} +450.807 q^{38} +26.2419 q^{39} -50.9530 q^{40} -122.063 q^{41} -28.8835 q^{42} -111.330 q^{43} -543.517 q^{44} +130.338 q^{45} -686.532 q^{46} +238.641 q^{47} +37.9772 q^{48} -294.307 q^{49} +107.172 q^{50} +4.78761 q^{51} -282.029 q^{52} -187.155 q^{53} +219.659 q^{54} +261.881 q^{55} +71.1100 q^{56} -101.539 q^{57} -405.473 q^{58} -231.622 q^{59} +50.0990 q^{60} +5.25376 q^{61} +18.2520 q^{62} -181.900 q^{63} -757.637 q^{64} +135.889 q^{65} +216.797 q^{66} -336.053 q^{67} -51.4539 q^{68} +154.633 q^{69} -149.569 q^{70} -705.184 q^{71} -265.645 q^{72} +675.753 q^{73} +1698.39 q^{74} -24.1390 q^{75} +1091.27 q^{76} -365.482 q^{77} +112.495 q^{78} +512.587 q^{79} +196.659 q^{80} +654.352 q^{81} -523.267 q^{82} +83.0000 q^{83} -69.9182 q^{84} +24.7919 q^{85} -477.254 q^{86} +91.3277 q^{87} -533.745 q^{88} -123.522 q^{89} +558.743 q^{90} -189.647 q^{91} -1661.88 q^{92} -4.11103 q^{93} +1023.02 q^{94} -525.801 q^{95} +241.520 q^{96} -302.081 q^{97} -1261.65 q^{98} +1365.33 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q - 5 q^{2} - 12 q^{3} + 87 q^{4} - 105 q^{5} - 7 q^{6} - 11 q^{7} - 84 q^{8} + 153 q^{9} + 25 q^{10} - 30 q^{11} - 244 q^{12} - 89 q^{13} - 191 q^{14} + 60 q^{15} + 583 q^{16} - 357 q^{17} - 281 q^{18}+ \cdots - 5369 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.28686 1.51563 0.757817 0.652467i \(-0.226266\pi\)
0.757817 + 0.652467i \(0.226266\pi\)
\(3\) −0.965562 −0.185822 −0.0929112 0.995674i \(-0.529617\pi\)
−0.0929112 + 0.995674i \(0.529617\pi\)
\(4\) 10.3772 1.29715
\(5\) −5.00000 −0.447214
\(6\) −4.13923 −0.281639
\(7\) 6.97800 0.376777 0.188388 0.982095i \(-0.439674\pi\)
0.188388 + 0.982095i \(0.439674\pi\)
\(8\) 10.1906 0.450365
\(9\) −26.0677 −0.965470
\(10\) −21.4343 −0.677812
\(11\) −52.3762 −1.43564 −0.717820 0.696229i \(-0.754860\pi\)
−0.717820 + 0.696229i \(0.754860\pi\)
\(12\) −10.0198 −0.241039
\(13\) −27.1779 −0.579829 −0.289915 0.957052i \(-0.593627\pi\)
−0.289915 + 0.957052i \(0.593627\pi\)
\(14\) 29.9137 0.571056
\(15\) 4.82781 0.0831023
\(16\) −39.3317 −0.614558
\(17\) −4.95837 −0.0707401 −0.0353701 0.999374i \(-0.511261\pi\)
−0.0353701 + 0.999374i \(0.511261\pi\)
\(18\) −111.749 −1.46330
\(19\) 105.160 1.26976 0.634880 0.772611i \(-0.281050\pi\)
0.634880 + 0.772611i \(0.281050\pi\)
\(20\) −51.8858 −0.580101
\(21\) −6.73769 −0.0700136
\(22\) −224.530 −2.17590
\(23\) −160.148 −1.45188 −0.725938 0.687760i \(-0.758594\pi\)
−0.725938 + 0.687760i \(0.758594\pi\)
\(24\) −9.83965 −0.0836879
\(25\) 25.0000 0.200000
\(26\) −116.508 −0.878809
\(27\) 51.2401 0.365228
\(28\) 72.4119 0.488735
\(29\) −94.5851 −0.605656 −0.302828 0.953045i \(-0.597931\pi\)
−0.302828 + 0.953045i \(0.597931\pi\)
\(30\) 20.6961 0.125953
\(31\) 4.25766 0.0246677 0.0123338 0.999924i \(-0.496074\pi\)
0.0123338 + 0.999924i \(0.496074\pi\)
\(32\) −250.134 −1.38181
\(33\) 50.5725 0.266774
\(34\) −21.2558 −0.107216
\(35\) −34.8900 −0.168500
\(36\) −270.509 −1.25236
\(37\) 396.186 1.76034 0.880170 0.474659i \(-0.157429\pi\)
0.880170 + 0.474659i \(0.157429\pi\)
\(38\) 450.807 1.92449
\(39\) 26.2419 0.107745
\(40\) −50.9530 −0.201409
\(41\) −122.063 −0.464952 −0.232476 0.972602i \(-0.574683\pi\)
−0.232476 + 0.972602i \(0.574683\pi\)
\(42\) −28.8835 −0.106115
\(43\) −111.330 −0.394828 −0.197414 0.980320i \(-0.563254\pi\)
−0.197414 + 0.980320i \(0.563254\pi\)
\(44\) −543.517 −1.86223
\(45\) 130.338 0.431771
\(46\) −686.532 −2.20051
\(47\) 238.641 0.740623 0.370312 0.928908i \(-0.379251\pi\)
0.370312 + 0.928908i \(0.379251\pi\)
\(48\) 37.9772 0.114199
\(49\) −294.307 −0.858039
\(50\) 107.172 0.303127
\(51\) 4.78761 0.0131451
\(52\) −282.029 −0.752123
\(53\) −187.155 −0.485050 −0.242525 0.970145i \(-0.577976\pi\)
−0.242525 + 0.970145i \(0.577976\pi\)
\(54\) 219.659 0.553553
\(55\) 261.881 0.642037
\(56\) 71.1100 0.169687
\(57\) −101.539 −0.235950
\(58\) −405.473 −0.917952
\(59\) −231.622 −0.511096 −0.255548 0.966796i \(-0.582256\pi\)
−0.255548 + 0.966796i \(0.582256\pi\)
\(60\) 50.0990 0.107796
\(61\) 5.25376 0.0110275 0.00551373 0.999985i \(-0.498245\pi\)
0.00551373 + 0.999985i \(0.498245\pi\)
\(62\) 18.2520 0.0373872
\(63\) −181.900 −0.363767
\(64\) −757.637 −1.47976
\(65\) 135.889 0.259308
\(66\) 216.797 0.404332
\(67\) −336.053 −0.612768 −0.306384 0.951908i \(-0.599119\pi\)
−0.306384 + 0.951908i \(0.599119\pi\)
\(68\) −51.4539 −0.0917603
\(69\) 154.633 0.269791
\(70\) −149.569 −0.255384
\(71\) −705.184 −1.17873 −0.589366 0.807866i \(-0.700622\pi\)
−0.589366 + 0.807866i \(0.700622\pi\)
\(72\) −265.645 −0.434814
\(73\) 675.753 1.08344 0.541718 0.840560i \(-0.317774\pi\)
0.541718 + 0.840560i \(0.317774\pi\)
\(74\) 1698.39 2.66803
\(75\) −24.1390 −0.0371645
\(76\) 1091.27 1.64706
\(77\) −365.482 −0.540915
\(78\) 112.495 0.163302
\(79\) 512.587 0.730007 0.365003 0.931006i \(-0.381068\pi\)
0.365003 + 0.931006i \(0.381068\pi\)
\(80\) 196.659 0.274839
\(81\) 654.352 0.897602
\(82\) −523.267 −0.704698
\(83\) 83.0000 0.109764
\(84\) −69.9182 −0.0908178
\(85\) 24.7919 0.0316359
\(86\) −477.254 −0.598414
\(87\) 91.3277 0.112544
\(88\) −533.745 −0.646561
\(89\) −123.522 −0.147116 −0.0735578 0.997291i \(-0.523435\pi\)
−0.0735578 + 0.997291i \(0.523435\pi\)
\(90\) 558.743 0.654407
\(91\) −189.647 −0.218466
\(92\) −1661.88 −1.88330
\(93\) −4.11103 −0.00458381
\(94\) 1023.02 1.12251
\(95\) −525.801 −0.567854
\(96\) 241.520 0.256771
\(97\) −302.081 −0.316203 −0.158102 0.987423i \(-0.550537\pi\)
−0.158102 + 0.987423i \(0.550537\pi\)
\(98\) −1261.65 −1.30047
\(99\) 1365.33 1.38607
\(100\) 259.429 0.259429
\(101\) −951.443 −0.937348 −0.468674 0.883371i \(-0.655268\pi\)
−0.468674 + 0.883371i \(0.655268\pi\)
\(102\) 20.5238 0.0199232
\(103\) 969.995 0.927927 0.463963 0.885854i \(-0.346427\pi\)
0.463963 + 0.885854i \(0.346427\pi\)
\(104\) −276.958 −0.261135
\(105\) 33.6885 0.0313110
\(106\) −802.306 −0.735159
\(107\) −347.744 −0.314184 −0.157092 0.987584i \(-0.550212\pi\)
−0.157092 + 0.987584i \(0.550212\pi\)
\(108\) 531.727 0.473755
\(109\) 341.509 0.300098 0.150049 0.988679i \(-0.452057\pi\)
0.150049 + 0.988679i \(0.452057\pi\)
\(110\) 1122.65 0.973094
\(111\) −382.542 −0.327111
\(112\) −274.457 −0.231551
\(113\) 1701.22 1.41626 0.708131 0.706081i \(-0.249539\pi\)
0.708131 + 0.706081i \(0.249539\pi\)
\(114\) −435.282 −0.357613
\(115\) 800.740 0.649299
\(116\) −981.526 −0.785624
\(117\) 708.464 0.559808
\(118\) −992.933 −0.774635
\(119\) −34.5995 −0.0266532
\(120\) 49.1982 0.0374264
\(121\) 1412.27 1.06106
\(122\) 22.5221 0.0167136
\(123\) 117.859 0.0863986
\(124\) 44.1825 0.0319976
\(125\) −125.000 −0.0894427
\(126\) −779.782 −0.551337
\(127\) −2285.71 −1.59704 −0.798521 0.601967i \(-0.794384\pi\)
−0.798521 + 0.601967i \(0.794384\pi\)
\(128\) −1246.81 −0.860964
\(129\) 107.496 0.0733678
\(130\) 582.538 0.393015
\(131\) −1334.11 −0.889784 −0.444892 0.895584i \(-0.646758\pi\)
−0.444892 + 0.895584i \(0.646758\pi\)
\(132\) 524.799 0.346045
\(133\) 733.809 0.478416
\(134\) −1440.61 −0.928732
\(135\) −256.201 −0.163335
\(136\) −50.5288 −0.0318589
\(137\) 997.257 0.621908 0.310954 0.950425i \(-0.399351\pi\)
0.310954 + 0.950425i \(0.399351\pi\)
\(138\) 662.889 0.408905
\(139\) 2365.08 1.44319 0.721595 0.692316i \(-0.243409\pi\)
0.721595 + 0.692316i \(0.243409\pi\)
\(140\) −362.060 −0.218569
\(141\) −230.422 −0.137624
\(142\) −3023.03 −1.78653
\(143\) 1423.47 0.832426
\(144\) 1025.29 0.593337
\(145\) 472.926 0.270857
\(146\) 2896.86 1.64209
\(147\) 284.172 0.159443
\(148\) 4111.29 2.28342
\(149\) 36.4519 0.0200420 0.0100210 0.999950i \(-0.496810\pi\)
0.0100210 + 0.999950i \(0.496810\pi\)
\(150\) −103.481 −0.0563278
\(151\) 2527.30 1.36204 0.681022 0.732263i \(-0.261536\pi\)
0.681022 + 0.732263i \(0.261536\pi\)
\(152\) 1071.65 0.571855
\(153\) 129.253 0.0682975
\(154\) −1566.77 −0.819830
\(155\) −21.2883 −0.0110317
\(156\) 272.317 0.139761
\(157\) 779.620 0.396309 0.198154 0.980171i \(-0.436505\pi\)
0.198154 + 0.980171i \(0.436505\pi\)
\(158\) 2197.39 1.10642
\(159\) 180.709 0.0901332
\(160\) 1250.67 0.617964
\(161\) −1117.51 −0.547033
\(162\) 2805.12 1.36044
\(163\) −726.658 −0.349179 −0.174590 0.984641i \(-0.555860\pi\)
−0.174590 + 0.984641i \(0.555860\pi\)
\(164\) −1266.67 −0.603111
\(165\) −252.862 −0.119305
\(166\) 355.809 0.166362
\(167\) −901.997 −0.417956 −0.208978 0.977920i \(-0.567014\pi\)
−0.208978 + 0.977920i \(0.567014\pi\)
\(168\) −68.6611 −0.0315317
\(169\) −1458.36 −0.663798
\(170\) 106.279 0.0479485
\(171\) −2741.29 −1.22591
\(172\) −1155.29 −0.512149
\(173\) 991.536 0.435752 0.217876 0.975976i \(-0.430087\pi\)
0.217876 + 0.975976i \(0.430087\pi\)
\(174\) 391.509 0.170576
\(175\) 174.450 0.0753554
\(176\) 2060.05 0.882283
\(177\) 223.646 0.0949731
\(178\) −529.521 −0.222973
\(179\) −2921.59 −1.21995 −0.609973 0.792422i \(-0.708820\pi\)
−0.609973 + 0.792422i \(0.708820\pi\)
\(180\) 1352.54 0.560071
\(181\) −2746.34 −1.12781 −0.563905 0.825840i \(-0.690702\pi\)
−0.563905 + 0.825840i \(0.690702\pi\)
\(182\) −812.991 −0.331115
\(183\) −5.07283 −0.00204915
\(184\) −1632.00 −0.653874
\(185\) −1980.93 −0.787248
\(186\) −17.6234 −0.00694738
\(187\) 259.701 0.101557
\(188\) 2476.41 0.960697
\(189\) 357.554 0.137610
\(190\) −2254.04 −0.860658
\(191\) 1926.08 0.729667 0.364833 0.931073i \(-0.381126\pi\)
0.364833 + 0.931073i \(0.381126\pi\)
\(192\) 731.545 0.274973
\(193\) −1638.01 −0.610916 −0.305458 0.952206i \(-0.598810\pi\)
−0.305458 + 0.952206i \(0.598810\pi\)
\(194\) −1294.98 −0.479249
\(195\) −131.209 −0.0481852
\(196\) −3054.08 −1.11300
\(197\) −5382.81 −1.94675 −0.973374 0.229222i \(-0.926382\pi\)
−0.973374 + 0.229222i \(0.926382\pi\)
\(198\) 5852.97 2.10077
\(199\) −1051.48 −0.374560 −0.187280 0.982307i \(-0.559967\pi\)
−0.187280 + 0.982307i \(0.559967\pi\)
\(200\) 254.765 0.0900730
\(201\) 324.480 0.113866
\(202\) −4078.71 −1.42068
\(203\) −660.015 −0.228197
\(204\) 49.6819 0.0170511
\(205\) 610.315 0.207933
\(206\) 4158.23 1.40640
\(207\) 4174.69 1.40174
\(208\) 1068.95 0.356339
\(209\) −5507.90 −1.82292
\(210\) 144.418 0.0474560
\(211\) −1207.30 −0.393906 −0.196953 0.980413i \(-0.563105\pi\)
−0.196953 + 0.980413i \(0.563105\pi\)
\(212\) −1942.14 −0.629181
\(213\) 680.899 0.219035
\(214\) −1490.73 −0.476188
\(215\) 556.648 0.176572
\(216\) 522.167 0.164486
\(217\) 29.7100 0.00929421
\(218\) 1464.00 0.454839
\(219\) −652.481 −0.201327
\(220\) 2717.59 0.832816
\(221\) 134.758 0.0410172
\(222\) −1639.90 −0.495780
\(223\) −2398.85 −0.720353 −0.360177 0.932884i \(-0.617284\pi\)
−0.360177 + 0.932884i \(0.617284\pi\)
\(224\) −1745.44 −0.520634
\(225\) −651.692 −0.193094
\(226\) 7292.90 2.14653
\(227\) −2963.53 −0.866505 −0.433252 0.901273i \(-0.642634\pi\)
−0.433252 + 0.901273i \(0.642634\pi\)
\(228\) −1053.68 −0.306061
\(229\) −2097.05 −0.605139 −0.302569 0.953127i \(-0.597844\pi\)
−0.302569 + 0.953127i \(0.597844\pi\)
\(230\) 3432.66 0.984099
\(231\) 352.895 0.100514
\(232\) −963.878 −0.272766
\(233\) −1029.34 −0.289418 −0.144709 0.989474i \(-0.546225\pi\)
−0.144709 + 0.989474i \(0.546225\pi\)
\(234\) 3037.09 0.848464
\(235\) −1193.20 −0.331217
\(236\) −2403.59 −0.662966
\(237\) −494.934 −0.135652
\(238\) −148.323 −0.0403965
\(239\) 4082.53 1.10492 0.552462 0.833538i \(-0.313688\pi\)
0.552462 + 0.833538i \(0.313688\pi\)
\(240\) −189.886 −0.0510712
\(241\) −178.223 −0.0476364 −0.0238182 0.999716i \(-0.507582\pi\)
−0.0238182 + 0.999716i \(0.507582\pi\)
\(242\) 6054.21 1.60818
\(243\) −2015.30 −0.532023
\(244\) 54.5192 0.0143042
\(245\) 1471.54 0.383727
\(246\) 505.247 0.130949
\(247\) −2858.03 −0.736244
\(248\) 43.3881 0.0111095
\(249\) −80.1416 −0.0203967
\(250\) −535.858 −0.135562
\(251\) 0.912359 0.000229433 0 0.000114716 1.00000i \(-0.499963\pi\)
0.000114716 1.00000i \(0.499963\pi\)
\(252\) −1887.61 −0.471859
\(253\) 8387.95 2.08437
\(254\) −9798.54 −2.42053
\(255\) −23.9381 −0.00587867
\(256\) 716.198 0.174853
\(257\) 1726.48 0.419046 0.209523 0.977804i \(-0.432809\pi\)
0.209523 + 0.977804i \(0.432809\pi\)
\(258\) 460.818 0.111199
\(259\) 2764.59 0.663255
\(260\) 1410.15 0.336360
\(261\) 2465.62 0.584742
\(262\) −5719.14 −1.34859
\(263\) −2823.34 −0.661957 −0.330978 0.943638i \(-0.607379\pi\)
−0.330978 + 0.943638i \(0.607379\pi\)
\(264\) 515.364 0.120146
\(265\) 935.773 0.216921
\(266\) 3145.74 0.725103
\(267\) 119.268 0.0273374
\(268\) −3487.28 −0.794850
\(269\) −1169.54 −0.265086 −0.132543 0.991177i \(-0.542314\pi\)
−0.132543 + 0.991177i \(0.542314\pi\)
\(270\) −1098.30 −0.247556
\(271\) −5681.99 −1.27364 −0.636820 0.771013i \(-0.719750\pi\)
−0.636820 + 0.771013i \(0.719750\pi\)
\(272\) 195.021 0.0434739
\(273\) 183.116 0.0405959
\(274\) 4275.10 0.942585
\(275\) −1309.41 −0.287128
\(276\) 1604.65 0.349959
\(277\) 2726.28 0.591359 0.295680 0.955287i \(-0.404454\pi\)
0.295680 + 0.955287i \(0.404454\pi\)
\(278\) 10138.8 2.18735
\(279\) −110.987 −0.0238159
\(280\) −355.550 −0.0758863
\(281\) 8522.15 1.80921 0.904606 0.426249i \(-0.140165\pi\)
0.904606 + 0.426249i \(0.140165\pi\)
\(282\) −987.788 −0.208588
\(283\) 4143.06 0.870245 0.435122 0.900371i \(-0.356705\pi\)
0.435122 + 0.900371i \(0.356705\pi\)
\(284\) −7317.82 −1.52899
\(285\) 507.694 0.105520
\(286\) 6102.23 1.26165
\(287\) −851.757 −0.175183
\(288\) 6520.42 1.33410
\(289\) −4888.41 −0.994996
\(290\) 2027.37 0.410521
\(291\) 291.678 0.0587577
\(292\) 7012.40 1.40538
\(293\) 8918.68 1.77828 0.889138 0.457639i \(-0.151305\pi\)
0.889138 + 0.457639i \(0.151305\pi\)
\(294\) 1218.21 0.241657
\(295\) 1158.11 0.228569
\(296\) 4037.37 0.792795
\(297\) −2683.77 −0.524336
\(298\) 156.264 0.0303763
\(299\) 4352.48 0.841840
\(300\) −250.495 −0.0482078
\(301\) −776.858 −0.148762
\(302\) 10834.2 2.06436
\(303\) 918.677 0.174180
\(304\) −4136.13 −0.780341
\(305\) −26.2688 −0.00493163
\(306\) 554.091 0.103514
\(307\) −4995.61 −0.928712 −0.464356 0.885649i \(-0.653714\pi\)
−0.464356 + 0.885649i \(0.653714\pi\)
\(308\) −3792.66 −0.701646
\(309\) −936.590 −0.172430
\(310\) −91.2600 −0.0167201
\(311\) −7955.03 −1.45044 −0.725222 0.688515i \(-0.758263\pi\)
−0.725222 + 0.688515i \(0.758263\pi\)
\(312\) 267.420 0.0485247
\(313\) −8063.51 −1.45616 −0.728078 0.685495i \(-0.759586\pi\)
−0.728078 + 0.685495i \(0.759586\pi\)
\(314\) 3342.12 0.600659
\(315\) 909.502 0.162681
\(316\) 5319.20 0.946925
\(317\) −6333.42 −1.12215 −0.561073 0.827766i \(-0.689611\pi\)
−0.561073 + 0.827766i \(0.689611\pi\)
\(318\) 774.676 0.136609
\(319\) 4954.01 0.869503
\(320\) 3788.18 0.661769
\(321\) 335.768 0.0583824
\(322\) −4790.62 −0.829102
\(323\) −521.424 −0.0898229
\(324\) 6790.32 1.16432
\(325\) −679.446 −0.115966
\(326\) −3115.08 −0.529228
\(327\) −329.748 −0.0557649
\(328\) −1243.90 −0.209398
\(329\) 1665.23 0.279050
\(330\) −1083.99 −0.180823
\(331\) 5520.41 0.916704 0.458352 0.888771i \(-0.348440\pi\)
0.458352 + 0.888771i \(0.348440\pi\)
\(332\) 861.305 0.142380
\(333\) −10327.7 −1.69956
\(334\) −3866.74 −0.633468
\(335\) 1680.27 0.274038
\(336\) 265.005 0.0430274
\(337\) −7886.38 −1.27477 −0.637386 0.770544i \(-0.719984\pi\)
−0.637386 + 0.770544i \(0.719984\pi\)
\(338\) −6251.80 −1.00607
\(339\) −1642.64 −0.263173
\(340\) 257.269 0.0410364
\(341\) −223.000 −0.0354139
\(342\) −11751.5 −1.85804
\(343\) −4447.13 −0.700066
\(344\) −1134.51 −0.177817
\(345\) −773.163 −0.120654
\(346\) 4250.58 0.660440
\(347\) 9528.99 1.47419 0.737094 0.675790i \(-0.236198\pi\)
0.737094 + 0.675790i \(0.236198\pi\)
\(348\) 947.724 0.145987
\(349\) 1209.76 0.185549 0.0927747 0.995687i \(-0.470426\pi\)
0.0927747 + 0.995687i \(0.470426\pi\)
\(350\) 747.843 0.114211
\(351\) −1392.60 −0.211770
\(352\) 13101.1 1.98378
\(353\) −11162.7 −1.68309 −0.841544 0.540188i \(-0.818353\pi\)
−0.841544 + 0.540188i \(0.818353\pi\)
\(354\) 958.738 0.143944
\(355\) 3525.92 0.527145
\(356\) −1281.81 −0.190830
\(357\) 33.4080 0.00495277
\(358\) −12524.5 −1.84899
\(359\) 5231.99 0.769176 0.384588 0.923088i \(-0.374344\pi\)
0.384588 + 0.923088i \(0.374344\pi\)
\(360\) 1328.23 0.194455
\(361\) 4199.69 0.612289
\(362\) −11773.2 −1.70935
\(363\) −1363.63 −0.197169
\(364\) −1968.00 −0.283383
\(365\) −3378.76 −0.484527
\(366\) −21.7465 −0.00310576
\(367\) −2266.27 −0.322339 −0.161170 0.986927i \(-0.551527\pi\)
−0.161170 + 0.986927i \(0.551527\pi\)
\(368\) 6298.89 0.892262
\(369\) 3181.90 0.448898
\(370\) −8491.97 −1.19318
\(371\) −1305.97 −0.182756
\(372\) −42.6609 −0.00594587
\(373\) −14018.3 −1.94595 −0.972976 0.230905i \(-0.925831\pi\)
−0.972976 + 0.230905i \(0.925831\pi\)
\(374\) 1113.30 0.153924
\(375\) 120.695 0.0166205
\(376\) 2431.89 0.333551
\(377\) 2570.62 0.351177
\(378\) 1532.78 0.208566
\(379\) −4261.85 −0.577617 −0.288808 0.957387i \(-0.593259\pi\)
−0.288808 + 0.957387i \(0.593259\pi\)
\(380\) −5456.33 −0.736589
\(381\) 2207.00 0.296766
\(382\) 8256.84 1.10591
\(383\) 1332.68 0.177798 0.0888991 0.996041i \(-0.471665\pi\)
0.0888991 + 0.996041i \(0.471665\pi\)
\(384\) 1203.87 0.159986
\(385\) 1827.41 0.241905
\(386\) −7021.94 −0.925925
\(387\) 2902.10 0.381194
\(388\) −3134.75 −0.410162
\(389\) 12000.6 1.56416 0.782078 0.623180i \(-0.214160\pi\)
0.782078 + 0.623180i \(0.214160\pi\)
\(390\) −562.477 −0.0730311
\(391\) 794.073 0.102706
\(392\) −2999.17 −0.386431
\(393\) 1288.16 0.165342
\(394\) −23075.4 −2.95056
\(395\) −2562.93 −0.326469
\(396\) 14168.2 1.79793
\(397\) −14026.0 −1.77316 −0.886579 0.462577i \(-0.846925\pi\)
−0.886579 + 0.462577i \(0.846925\pi\)
\(398\) −4507.54 −0.567695
\(399\) −708.538 −0.0889004
\(400\) −983.293 −0.122912
\(401\) −2185.21 −0.272130 −0.136065 0.990700i \(-0.543446\pi\)
−0.136065 + 0.990700i \(0.543446\pi\)
\(402\) 1391.00 0.172579
\(403\) −115.714 −0.0143031
\(404\) −9873.29 −1.21588
\(405\) −3271.76 −0.401420
\(406\) −2829.39 −0.345863
\(407\) −20750.7 −2.52721
\(408\) 48.7886 0.00592009
\(409\) −12102.4 −1.46314 −0.731569 0.681768i \(-0.761211\pi\)
−0.731569 + 0.681768i \(0.761211\pi\)
\(410\) 2616.34 0.315150
\(411\) −962.913 −0.115564
\(412\) 10065.8 1.20366
\(413\) −1616.26 −0.192569
\(414\) 17896.3 2.12453
\(415\) −415.000 −0.0490881
\(416\) 6798.11 0.801214
\(417\) −2283.63 −0.268177
\(418\) −23611.6 −2.76287
\(419\) 6549.47 0.763634 0.381817 0.924238i \(-0.375298\pi\)
0.381817 + 0.924238i \(0.375298\pi\)
\(420\) 349.591 0.0406150
\(421\) 7319.82 0.847379 0.423689 0.905808i \(-0.360735\pi\)
0.423689 + 0.905808i \(0.360735\pi\)
\(422\) −5175.54 −0.597018
\(423\) −6220.81 −0.715050
\(424\) −1907.22 −0.218450
\(425\) −123.959 −0.0141480
\(426\) 2918.92 0.331977
\(427\) 36.6608 0.00415489
\(428\) −3608.60 −0.407542
\(429\) −1374.45 −0.154683
\(430\) 2386.27 0.267619
\(431\) −15959.4 −1.78361 −0.891804 0.452422i \(-0.850560\pi\)
−0.891804 + 0.452422i \(0.850560\pi\)
\(432\) −2015.36 −0.224454
\(433\) −6991.45 −0.775953 −0.387977 0.921669i \(-0.626826\pi\)
−0.387977 + 0.921669i \(0.626826\pi\)
\(434\) 127.363 0.0140866
\(435\) −456.639 −0.0503314
\(436\) 3543.90 0.389271
\(437\) −16841.2 −1.84353
\(438\) −2797.09 −0.305138
\(439\) 17104.6 1.85959 0.929793 0.368082i \(-0.119985\pi\)
0.929793 + 0.368082i \(0.119985\pi\)
\(440\) 2668.72 0.289151
\(441\) 7671.92 0.828411
\(442\) 577.688 0.0621670
\(443\) −3203.62 −0.343586 −0.171793 0.985133i \(-0.554956\pi\)
−0.171793 + 0.985133i \(0.554956\pi\)
\(444\) −3969.70 −0.424310
\(445\) 617.609 0.0657921
\(446\) −10283.5 −1.09179
\(447\) −35.1965 −0.00372425
\(448\) −5286.79 −0.557539
\(449\) −85.9418 −0.00903306 −0.00451653 0.999990i \(-0.501438\pi\)
−0.00451653 + 0.999990i \(0.501438\pi\)
\(450\) −2793.71 −0.292660
\(451\) 6393.21 0.667504
\(452\) 17653.9 1.83710
\(453\) −2440.26 −0.253098
\(454\) −12704.2 −1.31330
\(455\) 948.236 0.0977011
\(456\) −1034.74 −0.106263
\(457\) −4747.44 −0.485943 −0.242972 0.970033i \(-0.578122\pi\)
−0.242972 + 0.970033i \(0.578122\pi\)
\(458\) −8989.74 −0.917168
\(459\) −254.068 −0.0258363
\(460\) 8309.41 0.842235
\(461\) 1456.22 0.147121 0.0735606 0.997291i \(-0.476564\pi\)
0.0735606 + 0.997291i \(0.476564\pi\)
\(462\) 1512.81 0.152343
\(463\) 1387.55 0.139276 0.0696379 0.997572i \(-0.477816\pi\)
0.0696379 + 0.997572i \(0.477816\pi\)
\(464\) 3720.19 0.372210
\(465\) 20.5552 0.00204994
\(466\) −4412.64 −0.438651
\(467\) 19129.3 1.89550 0.947752 0.319009i \(-0.103350\pi\)
0.947752 + 0.319009i \(0.103350\pi\)
\(468\) 7351.85 0.726153
\(469\) −2344.98 −0.230877
\(470\) −5115.09 −0.502003
\(471\) −752.772 −0.0736431
\(472\) −2360.37 −0.230180
\(473\) 5831.02 0.566830
\(474\) −2121.71 −0.205598
\(475\) 2629.01 0.253952
\(476\) −359.045 −0.0345731
\(477\) 4878.69 0.468302
\(478\) 17501.2 1.67466
\(479\) −8270.27 −0.788890 −0.394445 0.918920i \(-0.629063\pi\)
−0.394445 + 0.918920i \(0.629063\pi\)
\(480\) −1207.60 −0.114832
\(481\) −10767.5 −1.02070
\(482\) −764.018 −0.0721993
\(483\) 1079.03 0.101651
\(484\) 14655.4 1.37635
\(485\) 1510.41 0.141410
\(486\) −8639.31 −0.806352
\(487\) −2872.91 −0.267318 −0.133659 0.991027i \(-0.542673\pi\)
−0.133659 + 0.991027i \(0.542673\pi\)
\(488\) 53.5390 0.00496638
\(489\) 701.633 0.0648854
\(490\) 6308.27 0.581589
\(491\) 9727.08 0.894046 0.447023 0.894522i \(-0.352484\pi\)
0.447023 + 0.894522i \(0.352484\pi\)
\(492\) 1223.05 0.112072
\(493\) 468.988 0.0428441
\(494\) −12252.0 −1.11588
\(495\) −6826.64 −0.619868
\(496\) −167.461 −0.0151597
\(497\) −4920.78 −0.444119
\(498\) −343.556 −0.0309139
\(499\) 10723.6 0.962032 0.481016 0.876712i \(-0.340268\pi\)
0.481016 + 0.876712i \(0.340268\pi\)
\(500\) −1297.15 −0.116020
\(501\) 870.934 0.0776656
\(502\) 3.91116 0.000347736 0
\(503\) 1896.04 0.168072 0.0840359 0.996463i \(-0.473219\pi\)
0.0840359 + 0.996463i \(0.473219\pi\)
\(504\) −1853.67 −0.163828
\(505\) 4757.22 0.419195
\(506\) 35957.9 3.15914
\(507\) 1408.14 0.123349
\(508\) −23719.2 −2.07160
\(509\) −11790.8 −1.02675 −0.513377 0.858163i \(-0.671606\pi\)
−0.513377 + 0.858163i \(0.671606\pi\)
\(510\) −102.619 −0.00890991
\(511\) 4715.40 0.408214
\(512\) 13044.7 1.12598
\(513\) 5388.43 0.463752
\(514\) 7401.18 0.635121
\(515\) −4849.98 −0.414982
\(516\) 1115.50 0.0951688
\(517\) −12499.1 −1.06327
\(518\) 11851.4 1.00525
\(519\) −957.389 −0.0809725
\(520\) 1384.79 0.116783
\(521\) 11954.0 1.00521 0.502606 0.864515i \(-0.332374\pi\)
0.502606 + 0.864515i \(0.332374\pi\)
\(522\) 10569.7 0.886255
\(523\) −3495.14 −0.292221 −0.146111 0.989268i \(-0.546676\pi\)
−0.146111 + 0.989268i \(0.546676\pi\)
\(524\) −13844.3 −1.15418
\(525\) −168.442 −0.0140027
\(526\) −12103.3 −1.00328
\(527\) −21.1111 −0.00174500
\(528\) −1989.10 −0.163948
\(529\) 13480.4 1.10794
\(530\) 4011.53 0.328773
\(531\) 6037.86 0.493448
\(532\) 7614.86 0.620575
\(533\) 3317.41 0.269593
\(534\) 511.285 0.0414334
\(535\) 1738.72 0.140507
\(536\) −3424.58 −0.275969
\(537\) 2820.98 0.226693
\(538\) −5013.65 −0.401773
\(539\) 15414.7 1.23183
\(540\) −2658.64 −0.211870
\(541\) 8672.76 0.689226 0.344613 0.938745i \(-0.388010\pi\)
0.344613 + 0.938745i \(0.388010\pi\)
\(542\) −24357.9 −1.93037
\(543\) 2651.76 0.209572
\(544\) 1240.26 0.0977494
\(545\) −1707.55 −0.134208
\(546\) 784.993 0.0615286
\(547\) −444.731 −0.0347629 −0.0173815 0.999849i \(-0.505533\pi\)
−0.0173815 + 0.999849i \(0.505533\pi\)
\(548\) 10348.7 0.806706
\(549\) −136.953 −0.0106467
\(550\) −5613.24 −0.435181
\(551\) −9946.60 −0.769037
\(552\) 1575.80 0.121504
\(553\) 3576.83 0.275049
\(554\) 11687.2 0.896284
\(555\) 1912.71 0.146288
\(556\) 24542.8 1.87203
\(557\) −9207.39 −0.700412 −0.350206 0.936673i \(-0.613888\pi\)
−0.350206 + 0.936673i \(0.613888\pi\)
\(558\) −475.787 −0.0360962
\(559\) 3025.70 0.228933
\(560\) 1372.28 0.103553
\(561\) −250.757 −0.0188716
\(562\) 36533.2 2.74210
\(563\) −5847.84 −0.437757 −0.218878 0.975752i \(-0.570240\pi\)
−0.218878 + 0.975752i \(0.570240\pi\)
\(564\) −2391.13 −0.178519
\(565\) −8506.11 −0.633372
\(566\) 17760.7 1.31897
\(567\) 4566.07 0.338196
\(568\) −7186.24 −0.530859
\(569\) 20778.2 1.53088 0.765439 0.643509i \(-0.222522\pi\)
0.765439 + 0.643509i \(0.222522\pi\)
\(570\) 2176.41 0.159930
\(571\) 13434.1 0.984588 0.492294 0.870429i \(-0.336158\pi\)
0.492294 + 0.870429i \(0.336158\pi\)
\(572\) 14771.6 1.07978
\(573\) −1859.75 −0.135588
\(574\) −3651.36 −0.265514
\(575\) −4003.70 −0.290375
\(576\) 19749.8 1.42866
\(577\) −4042.64 −0.291677 −0.145838 0.989308i \(-0.546588\pi\)
−0.145838 + 0.989308i \(0.546588\pi\)
\(578\) −20955.9 −1.50805
\(579\) 1581.60 0.113522
\(580\) 4907.63 0.351342
\(581\) 579.174 0.0413566
\(582\) 1250.38 0.0890551
\(583\) 9802.46 0.696357
\(584\) 6886.32 0.487942
\(585\) −3542.32 −0.250354
\(586\) 38233.1 2.69522
\(587\) 18469.8 1.29869 0.649343 0.760496i \(-0.275044\pi\)
0.649343 + 0.760496i \(0.275044\pi\)
\(588\) 2948.90 0.206821
\(589\) 447.737 0.0313220
\(590\) 4964.66 0.346427
\(591\) 5197.44 0.361749
\(592\) −15582.7 −1.08183
\(593\) −27615.5 −1.91237 −0.956183 0.292770i \(-0.905423\pi\)
−0.956183 + 0.292770i \(0.905423\pi\)
\(594\) −11504.9 −0.794702
\(595\) 172.998 0.0119197
\(596\) 378.267 0.0259974
\(597\) 1015.27 0.0696016
\(598\) 18658.5 1.27592
\(599\) −14244.0 −0.971608 −0.485804 0.874068i \(-0.661473\pi\)
−0.485804 + 0.874068i \(0.661473\pi\)
\(600\) −245.991 −0.0167376
\(601\) −17520.0 −1.18911 −0.594557 0.804054i \(-0.702672\pi\)
−0.594557 + 0.804054i \(0.702672\pi\)
\(602\) −3330.28 −0.225469
\(603\) 8760.14 0.591609
\(604\) 26226.2 1.76677
\(605\) −7061.35 −0.474520
\(606\) 3938.24 0.263994
\(607\) −3521.60 −0.235482 −0.117741 0.993044i \(-0.537565\pi\)
−0.117741 + 0.993044i \(0.537565\pi\)
\(608\) −26304.2 −1.75457
\(609\) 637.285 0.0424041
\(610\) −112.611 −0.00747455
\(611\) −6485.74 −0.429435
\(612\) 1341.28 0.0885918
\(613\) −7234.78 −0.476689 −0.238344 0.971181i \(-0.576605\pi\)
−0.238344 + 0.971181i \(0.576605\pi\)
\(614\) −21415.5 −1.40759
\(615\) −589.297 −0.0386386
\(616\) −3724.47 −0.243609
\(617\) −4347.40 −0.283662 −0.141831 0.989891i \(-0.545299\pi\)
−0.141831 + 0.989891i \(0.545299\pi\)
\(618\) −4015.03 −0.261340
\(619\) 30075.4 1.95288 0.976440 0.215788i \(-0.0692321\pi\)
0.976440 + 0.215788i \(0.0692321\pi\)
\(620\) −220.912 −0.0143098
\(621\) −8206.00 −0.530266
\(622\) −34102.1 −2.19834
\(623\) −861.935 −0.0554297
\(624\) −1032.14 −0.0662157
\(625\) 625.000 0.0400000
\(626\) −34567.1 −2.20700
\(627\) 5318.22 0.338739
\(628\) 8090.25 0.514070
\(629\) −1964.44 −0.124527
\(630\) 3898.91 0.246565
\(631\) 10308.2 0.650337 0.325169 0.945656i \(-0.394579\pi\)
0.325169 + 0.945656i \(0.394579\pi\)
\(632\) 5223.56 0.328769
\(633\) 1165.73 0.0731966
\(634\) −27150.5 −1.70076
\(635\) 11428.6 0.714219
\(636\) 1875.25 0.116916
\(637\) 7998.65 0.497516
\(638\) 21237.2 1.31785
\(639\) 18382.5 1.13803
\(640\) 6234.05 0.385035
\(641\) 29151.5 1.79628 0.898139 0.439712i \(-0.144919\pi\)
0.898139 + 0.439712i \(0.144919\pi\)
\(642\) 1439.39 0.0884864
\(643\) 17612.1 1.08018 0.540088 0.841609i \(-0.318391\pi\)
0.540088 + 0.841609i \(0.318391\pi\)
\(644\) −11596.6 −0.709582
\(645\) −537.478 −0.0328111
\(646\) −2235.27 −0.136139
\(647\) 16602.2 1.00881 0.504403 0.863468i \(-0.331712\pi\)
0.504403 + 0.863468i \(0.331712\pi\)
\(648\) 6668.24 0.404249
\(649\) 12131.5 0.733750
\(650\) −2912.69 −0.175762
\(651\) −28.6868 −0.00172707
\(652\) −7540.65 −0.452937
\(653\) 10158.9 0.608804 0.304402 0.952544i \(-0.401543\pi\)
0.304402 + 0.952544i \(0.401543\pi\)
\(654\) −1413.59 −0.0845192
\(655\) 6670.55 0.397923
\(656\) 4800.95 0.285740
\(657\) −17615.3 −1.04603
\(658\) 7138.63 0.422937
\(659\) 11885.5 0.702570 0.351285 0.936269i \(-0.385745\pi\)
0.351285 + 0.936269i \(0.385745\pi\)
\(660\) −2624.00 −0.154756
\(661\) −4255.12 −0.250386 −0.125193 0.992132i \(-0.539955\pi\)
−0.125193 + 0.992132i \(0.539955\pi\)
\(662\) 23665.2 1.38939
\(663\) −130.117 −0.00762191
\(664\) 845.819 0.0494340
\(665\) −3669.04 −0.213954
\(666\) −44273.2 −2.57590
\(667\) 15147.6 0.879337
\(668\) −9360.18 −0.542150
\(669\) 2316.24 0.133858
\(670\) 7203.07 0.415342
\(671\) −275.172 −0.0158315
\(672\) 1685.33 0.0967454
\(673\) 10526.8 0.602941 0.301471 0.953475i \(-0.402522\pi\)
0.301471 + 0.953475i \(0.402522\pi\)
\(674\) −33807.8 −1.93209
\(675\) 1281.00 0.0730457
\(676\) −15133.7 −0.861043
\(677\) 5964.60 0.338609 0.169304 0.985564i \(-0.445848\pi\)
0.169304 + 0.985564i \(0.445848\pi\)
\(678\) −7041.75 −0.398874
\(679\) −2107.93 −0.119138
\(680\) 252.644 0.0142477
\(681\) 2861.47 0.161016
\(682\) −955.971 −0.0536745
\(683\) −8544.58 −0.478696 −0.239348 0.970934i \(-0.576934\pi\)
−0.239348 + 0.970934i \(0.576934\pi\)
\(684\) −28446.8 −1.59019
\(685\) −4986.29 −0.278126
\(686\) −19064.2 −1.06104
\(687\) 2024.83 0.112448
\(688\) 4378.78 0.242645
\(689\) 5086.46 0.281246
\(690\) −3314.44 −0.182868
\(691\) −11730.3 −0.645793 −0.322896 0.946434i \(-0.604657\pi\)
−0.322896 + 0.946434i \(0.604657\pi\)
\(692\) 10289.3 0.565234
\(693\) 9527.26 0.522238
\(694\) 40849.5 2.23433
\(695\) −11825.4 −0.645414
\(696\) 930.684 0.0506860
\(697\) 605.234 0.0328908
\(698\) 5186.05 0.281225
\(699\) 993.891 0.0537803
\(700\) 1810.30 0.0977469
\(701\) −26902.9 −1.44951 −0.724756 0.689005i \(-0.758048\pi\)
−0.724756 + 0.689005i \(0.758048\pi\)
\(702\) −5969.87 −0.320966
\(703\) 41663.0 2.23521
\(704\) 39682.2 2.12440
\(705\) 1152.11 0.0615475
\(706\) −47852.9 −2.55095
\(707\) −6639.18 −0.353171
\(708\) 2320.81 0.123194
\(709\) 27066.5 1.43371 0.716857 0.697220i \(-0.245580\pi\)
0.716857 + 0.697220i \(0.245580\pi\)
\(710\) 15115.1 0.798959
\(711\) −13362.0 −0.704799
\(712\) −1258.76 −0.0662556
\(713\) −681.856 −0.0358144
\(714\) 143.215 0.00750658
\(715\) −7117.37 −0.372272
\(716\) −30317.9 −1.58245
\(717\) −3941.93 −0.205320
\(718\) 22428.8 1.16579
\(719\) −28978.7 −1.50309 −0.751547 0.659680i \(-0.770692\pi\)
−0.751547 + 0.659680i \(0.770692\pi\)
\(720\) −5126.43 −0.265349
\(721\) 6768.63 0.349621
\(722\) 18003.5 0.928005
\(723\) 172.086 0.00885191
\(724\) −28499.2 −1.46293
\(725\) −2364.63 −0.121131
\(726\) −5845.71 −0.298836
\(727\) −489.486 −0.0249712 −0.0124856 0.999922i \(-0.503974\pi\)
−0.0124856 + 0.999922i \(0.503974\pi\)
\(728\) −1932.62 −0.0983895
\(729\) −15721.6 −0.798741
\(730\) −14484.3 −0.734366
\(731\) 552.013 0.0279302
\(732\) −52.6416 −0.00265805
\(733\) 33466.1 1.68636 0.843178 0.537634i \(-0.180682\pi\)
0.843178 + 0.537634i \(0.180682\pi\)
\(734\) −9715.19 −0.488548
\(735\) −1420.86 −0.0713051
\(736\) 40058.5 2.00622
\(737\) 17601.2 0.879714
\(738\) 13640.4 0.680365
\(739\) 35051.3 1.74477 0.872384 0.488821i \(-0.162573\pi\)
0.872384 + 0.488821i \(0.162573\pi\)
\(740\) −20556.4 −1.02118
\(741\) 2759.61 0.136811
\(742\) −5598.49 −0.276991
\(743\) −5545.26 −0.273803 −0.136902 0.990585i \(-0.543714\pi\)
−0.136902 + 0.990585i \(0.543714\pi\)
\(744\) −41.8939 −0.00206439
\(745\) −182.259 −0.00896304
\(746\) −60094.5 −2.94935
\(747\) −2163.62 −0.105974
\(748\) 2694.96 0.131735
\(749\) −2426.56 −0.118377
\(750\) 517.403 0.0251905
\(751\) 24128.8 1.17240 0.586200 0.810167i \(-0.300623\pi\)
0.586200 + 0.810167i \(0.300623\pi\)
\(752\) −9386.14 −0.455156
\(753\) −0.880939 −4.26337e−5 0
\(754\) 11019.9 0.532256
\(755\) −12636.5 −0.609125
\(756\) 3710.40 0.178500
\(757\) −9476.21 −0.454978 −0.227489 0.973781i \(-0.573052\pi\)
−0.227489 + 0.973781i \(0.573052\pi\)
\(758\) −18270.0 −0.875455
\(759\) −8099.08 −0.387323
\(760\) −5358.23 −0.255741
\(761\) −9722.18 −0.463113 −0.231556 0.972821i \(-0.574382\pi\)
−0.231556 + 0.972821i \(0.574382\pi\)
\(762\) 9461.09 0.449789
\(763\) 2383.05 0.113070
\(764\) 19987.3 0.946484
\(765\) −646.267 −0.0305436
\(766\) 5713.01 0.269477
\(767\) 6295.00 0.296349
\(768\) −691.533 −0.0324916
\(769\) −13355.4 −0.626278 −0.313139 0.949707i \(-0.601381\pi\)
−0.313139 + 0.949707i \(0.601381\pi\)
\(770\) 7833.84 0.366639
\(771\) −1667.02 −0.0778682
\(772\) −16997.9 −0.792448
\(773\) 2832.38 0.131790 0.0658949 0.997827i \(-0.479010\pi\)
0.0658949 + 0.997827i \(0.479010\pi\)
\(774\) 12440.9 0.577751
\(775\) 106.442 0.00493354
\(776\) −3078.39 −0.142407
\(777\) −2669.38 −0.123248
\(778\) 51445.1 2.37069
\(779\) −12836.2 −0.590378
\(780\) −1361.58 −0.0625032
\(781\) 36934.9 1.69223
\(782\) 3404.08 0.155665
\(783\) −4846.55 −0.221203
\(784\) 11575.6 0.527315
\(785\) −3898.10 −0.177235
\(786\) 5522.18 0.250598
\(787\) −20653.8 −0.935485 −0.467743 0.883865i \(-0.654933\pi\)
−0.467743 + 0.883865i \(0.654933\pi\)
\(788\) −55858.3 −2.52522
\(789\) 2726.11 0.123006
\(790\) −10986.9 −0.494807
\(791\) 11871.1 0.533615
\(792\) 13913.5 0.624236
\(793\) −142.786 −0.00639405
\(794\) −60127.4 −2.68746
\(795\) −903.547 −0.0403088
\(796\) −10911.4 −0.485859
\(797\) 19838.2 0.881689 0.440845 0.897583i \(-0.354679\pi\)
0.440845 + 0.897583i \(0.354679\pi\)
\(798\) −3037.40 −0.134740
\(799\) −1183.27 −0.0523918
\(800\) −6253.36 −0.276362
\(801\) 3219.93 0.142036
\(802\) −9367.67 −0.412449
\(803\) −35393.4 −1.55542
\(804\) 3367.19 0.147701
\(805\) 5587.56 0.244641
\(806\) −496.050 −0.0216782
\(807\) 1129.26 0.0492589
\(808\) −9695.77 −0.422149
\(809\) 268.004 0.0116471 0.00582356 0.999983i \(-0.498146\pi\)
0.00582356 + 0.999983i \(0.498146\pi\)
\(810\) −14025.6 −0.608406
\(811\) 43842.9 1.89831 0.949157 0.314802i \(-0.101938\pi\)
0.949157 + 0.314802i \(0.101938\pi\)
\(812\) −6849.09 −0.296005
\(813\) 5486.31 0.236671
\(814\) −88955.5 −3.83033
\(815\) 3633.29 0.156158
\(816\) −188.305 −0.00807843
\(817\) −11707.4 −0.501336
\(818\) −51881.1 −2.21758
\(819\) 4943.66 0.210923
\(820\) 6333.35 0.269720
\(821\) 8176.44 0.347576 0.173788 0.984783i \(-0.444399\pi\)
0.173788 + 0.984783i \(0.444399\pi\)
\(822\) −4127.87 −0.175153
\(823\) 30938.9 1.31041 0.655203 0.755453i \(-0.272583\pi\)
0.655203 + 0.755453i \(0.272583\pi\)
\(824\) 9884.83 0.417906
\(825\) 1264.31 0.0533548
\(826\) −6928.69 −0.291864
\(827\) −24349.4 −1.02383 −0.511917 0.859035i \(-0.671065\pi\)
−0.511917 + 0.859035i \(0.671065\pi\)
\(828\) 43321.4 1.81827
\(829\) 37034.8 1.55159 0.775796 0.630983i \(-0.217348\pi\)
0.775796 + 0.630983i \(0.217348\pi\)
\(830\) −1779.05 −0.0743995
\(831\) −2632.40 −0.109888
\(832\) 20590.9 0.858008
\(833\) 1459.29 0.0606978
\(834\) −9789.60 −0.406458
\(835\) 4509.99 0.186916
\(836\) −57156.4 −2.36459
\(837\) 218.163 0.00900934
\(838\) 28076.7 1.15739
\(839\) −26184.0 −1.07744 −0.538721 0.842484i \(-0.681092\pi\)
−0.538721 + 0.842484i \(0.681092\pi\)
\(840\) 343.305 0.0141014
\(841\) −15442.7 −0.633181
\(842\) 31379.1 1.28432
\(843\) −8228.66 −0.336192
\(844\) −12528.4 −0.510954
\(845\) 7291.82 0.296859
\(846\) −26667.7 −1.08375
\(847\) 9854.83 0.399783
\(848\) 7361.11 0.298092
\(849\) −4000.38 −0.161711
\(850\) −531.396 −0.0214432
\(851\) −63448.4 −2.55580
\(852\) 7065.80 0.284120
\(853\) −17761.7 −0.712952 −0.356476 0.934304i \(-0.616022\pi\)
−0.356476 + 0.934304i \(0.616022\pi\)
\(854\) 157.160 0.00629730
\(855\) 13706.4 0.548246
\(856\) −3543.72 −0.141497
\(857\) 29199.5 1.16387 0.581934 0.813236i \(-0.302296\pi\)
0.581934 + 0.813236i \(0.302296\pi\)
\(858\) −5892.08 −0.234443
\(859\) 29166.3 1.15849 0.579244 0.815155i \(-0.303348\pi\)
0.579244 + 0.815155i \(0.303348\pi\)
\(860\) 5776.43 0.229040
\(861\) 822.424 0.0325530
\(862\) −68415.5 −2.70330
\(863\) −20705.9 −0.816727 −0.408364 0.912819i \(-0.633900\pi\)
−0.408364 + 0.912819i \(0.633900\pi\)
\(864\) −12816.9 −0.504676
\(865\) −4957.68 −0.194874
\(866\) −29971.4 −1.17606
\(867\) 4720.07 0.184893
\(868\) 308.305 0.0120560
\(869\) −26847.4 −1.04803
\(870\) −1957.55 −0.0762840
\(871\) 9133.21 0.355301
\(872\) 3480.18 0.135154
\(873\) 7874.57 0.305285
\(874\) −72195.9 −2.79412
\(875\) −872.250 −0.0336999
\(876\) −6770.90 −0.261150
\(877\) −22623.3 −0.871078 −0.435539 0.900170i \(-0.643442\pi\)
−0.435539 + 0.900170i \(0.643442\pi\)
\(878\) 73325.1 2.81845
\(879\) −8611.53 −0.330444
\(880\) −10300.2 −0.394569
\(881\) −47624.8 −1.82125 −0.910625 0.413234i \(-0.864399\pi\)
−0.910625 + 0.413234i \(0.864399\pi\)
\(882\) 32888.4 1.25557
\(883\) −7294.60 −0.278010 −0.139005 0.990292i \(-0.544390\pi\)
−0.139005 + 0.990292i \(0.544390\pi\)
\(884\) 1398.41 0.0532053
\(885\) −1118.23 −0.0424733
\(886\) −13733.5 −0.520751
\(887\) 21150.9 0.800652 0.400326 0.916373i \(-0.368897\pi\)
0.400326 + 0.916373i \(0.368897\pi\)
\(888\) −3898.33 −0.147319
\(889\) −15949.7 −0.601728
\(890\) 2647.60 0.0997167
\(891\) −34272.5 −1.28863
\(892\) −24893.3 −0.934404
\(893\) 25095.5 0.940413
\(894\) −150.883 −0.00564460
\(895\) 14608.0 0.545576
\(896\) −8700.24 −0.324391
\(897\) −4202.59 −0.156433
\(898\) −368.421 −0.0136908
\(899\) −402.711 −0.0149401
\(900\) −6762.72 −0.250471
\(901\) 927.982 0.0343125
\(902\) 27406.8 1.01169
\(903\) 750.104 0.0276433
\(904\) 17336.5 0.637835
\(905\) 13731.7 0.504372
\(906\) −10461.1 −0.383605
\(907\) −14494.5 −0.530630 −0.265315 0.964162i \(-0.585476\pi\)
−0.265315 + 0.964162i \(0.585476\pi\)
\(908\) −30753.1 −1.12398
\(909\) 24801.9 0.904982
\(910\) 4064.95 0.148079
\(911\) 23395.2 0.850842 0.425421 0.904995i \(-0.360126\pi\)
0.425421 + 0.904995i \(0.360126\pi\)
\(912\) 3993.69 0.145005
\(913\) −4347.23 −0.157582
\(914\) −20351.6 −0.736512
\(915\) 25.3642 0.000916408 0
\(916\) −21761.4 −0.784953
\(917\) −9309.42 −0.335250
\(918\) −1089.15 −0.0391584
\(919\) 18784.8 0.674271 0.337135 0.941456i \(-0.390542\pi\)
0.337135 + 0.941456i \(0.390542\pi\)
\(920\) 8160.01 0.292421
\(921\) 4823.57 0.172576
\(922\) 6242.60 0.222982
\(923\) 19165.4 0.683463
\(924\) 3662.05 0.130382
\(925\) 9904.65 0.352068
\(926\) 5948.22 0.211091
\(927\) −25285.5 −0.895886
\(928\) 23659.0 0.836901
\(929\) −41261.1 −1.45719 −0.728597 0.684943i \(-0.759827\pi\)
−0.728597 + 0.684943i \(0.759827\pi\)
\(930\) 88.1172 0.00310696
\(931\) −30949.5 −1.08950
\(932\) −10681.6 −0.375417
\(933\) 7681.07 0.269525
\(934\) 82004.8 2.87289
\(935\) −1298.50 −0.0454178
\(936\) 7219.67 0.252118
\(937\) 29809.8 1.03932 0.519661 0.854372i \(-0.326058\pi\)
0.519661 + 0.854372i \(0.326058\pi\)
\(938\) −10052.6 −0.349925
\(939\) 7785.82 0.270586
\(940\) −12382.1 −0.429637
\(941\) 4889.81 0.169398 0.0846988 0.996407i \(-0.473007\pi\)
0.0846988 + 0.996407i \(0.473007\pi\)
\(942\) −3227.03 −0.111616
\(943\) 19548.1 0.675053
\(944\) 9110.11 0.314098
\(945\) −1787.77 −0.0615409
\(946\) 24996.8 0.859107
\(947\) 51182.2 1.75628 0.878141 0.478402i \(-0.158784\pi\)
0.878141 + 0.478402i \(0.158784\pi\)
\(948\) −5136.02 −0.175960
\(949\) −18365.5 −0.628208
\(950\) 11270.2 0.384898
\(951\) 6115.31 0.208520
\(952\) −352.590 −0.0120037
\(953\) −9309.13 −0.316424 −0.158212 0.987405i \(-0.550573\pi\)
−0.158212 + 0.987405i \(0.550573\pi\)
\(954\) 20914.3 0.709774
\(955\) −9630.41 −0.326317
\(956\) 42365.1 1.43325
\(957\) −4783.40 −0.161573
\(958\) −35453.5 −1.19567
\(959\) 6958.86 0.234321
\(960\) −3657.73 −0.122971
\(961\) −29772.9 −0.999392
\(962\) −46158.7 −1.54700
\(963\) 9064.88 0.303335
\(964\) −1849.45 −0.0617913
\(965\) 8190.07 0.273210
\(966\) 4625.64 0.154066
\(967\) −41654.5 −1.38523 −0.692615 0.721308i \(-0.743541\pi\)
−0.692615 + 0.721308i \(0.743541\pi\)
\(968\) 14391.9 0.477864
\(969\) 503.467 0.0166911
\(970\) 6474.91 0.214326
\(971\) −34443.6 −1.13836 −0.569181 0.822212i \(-0.692740\pi\)
−0.569181 + 0.822212i \(0.692740\pi\)
\(972\) −20913.1 −0.690112
\(973\) 16503.5 0.543760
\(974\) −12315.8 −0.405156
\(975\) 656.047 0.0215491
\(976\) −206.639 −0.00677702
\(977\) −32195.4 −1.05427 −0.527134 0.849782i \(-0.676734\pi\)
−0.527134 + 0.849782i \(0.676734\pi\)
\(978\) 3007.80 0.0983425
\(979\) 6469.61 0.211205
\(980\) 15270.4 0.497750
\(981\) −8902.36 −0.289736
\(982\) 41698.6 1.35505
\(983\) 55304.6 1.79445 0.897224 0.441576i \(-0.145580\pi\)
0.897224 + 0.441576i \(0.145580\pi\)
\(984\) 1201.06 0.0389109
\(985\) 26914.1 0.870612
\(986\) 2010.49 0.0649360
\(987\) −1607.89 −0.0518537
\(988\) −29658.3 −0.955016
\(989\) 17829.2 0.573241
\(990\) −29264.8 −0.939493
\(991\) −44112.6 −1.41401 −0.707005 0.707209i \(-0.749954\pi\)
−0.707005 + 0.707209i \(0.749954\pi\)
\(992\) −1064.99 −0.0340861
\(993\) −5330.30 −0.170344
\(994\) −21094.7 −0.673122
\(995\) 5257.40 0.167508
\(996\) −831.643 −0.0264575
\(997\) −23829.2 −0.756948 −0.378474 0.925612i \(-0.623551\pi\)
−0.378474 + 0.925612i \(0.623551\pi\)
\(998\) 45970.6 1.45809
\(999\) 20300.6 0.642926
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 415.4.a.c.1.19 21
5.4 even 2 2075.4.a.g.1.3 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
415.4.a.c.1.19 21 1.1 even 1 trivial
2075.4.a.g.1.3 21 5.4 even 2