Properties

Label 4104.2.a.p.1.5
Level $4104$
Weight $2$
Character 4104.1
Self dual yes
Analytic conductor $32.771$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4104,2,Mod(1,4104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4104.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4104 = 2^{3} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-3,0,1,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.7706049895\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.7986588.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 16x^{3} + 23x^{2} + 24x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.29730\) of defining polynomial
Character \(\chi\) \(=\) 4104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.32769 q^{5} +2.77621 q^{7} +2.53271 q^{11} +0.745822 q^{13} -4.83810 q^{17} -1.00000 q^{19} -1.29730 q^{23} +6.07351 q^{25} +2.01162 q^{29} +1.93811 q^{31} +9.23836 q^{35} -1.83001 q^{37} +11.7908 q^{41} +5.64376 q^{43} +4.39768 q^{47} +0.707340 q^{49} +1.00809 q^{53} +8.42806 q^{55} -0.602695 q^{59} +4.18161 q^{61} +2.48186 q^{65} +1.92649 q^{67} -0.548896 q^{71} -5.91971 q^{73} +7.03133 q^{77} +8.96335 q^{79} -11.0065 q^{83} -16.0997 q^{85} -10.4316 q^{89} +2.07056 q^{91} -3.32769 q^{95} +16.0146 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{5} + q^{7} + 4 q^{11} + 3 q^{13} - 5 q^{17} - 5 q^{19} + q^{23} + 10 q^{25} - 4 q^{29} + 16 q^{31} + 6 q^{35} + 7 q^{37} - 7 q^{41} + 3 q^{43} - 7 q^{47} + 18 q^{49} + 2 q^{53} + q^{55} + 15 q^{59}+ \cdots + 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.32769 1.48819 0.744094 0.668075i \(-0.232882\pi\)
0.744094 + 0.668075i \(0.232882\pi\)
\(6\) 0 0
\(7\) 2.77621 1.04931 0.524654 0.851315i \(-0.324195\pi\)
0.524654 + 0.851315i \(0.324195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.53271 0.763640 0.381820 0.924237i \(-0.375297\pi\)
0.381820 + 0.924237i \(0.375297\pi\)
\(12\) 0 0
\(13\) 0.745822 0.206854 0.103427 0.994637i \(-0.467019\pi\)
0.103427 + 0.994637i \(0.467019\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.83810 −1.17341 −0.586706 0.809800i \(-0.699576\pi\)
−0.586706 + 0.809800i \(0.699576\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.29730 −0.270506 −0.135253 0.990811i \(-0.543185\pi\)
−0.135253 + 0.990811i \(0.543185\pi\)
\(24\) 0 0
\(25\) 6.07351 1.21470
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.01162 0.373548 0.186774 0.982403i \(-0.440197\pi\)
0.186774 + 0.982403i \(0.440197\pi\)
\(30\) 0 0
\(31\) 1.93811 0.348094 0.174047 0.984737i \(-0.444315\pi\)
0.174047 + 0.984737i \(0.444315\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 9.23836 1.56157
\(36\) 0 0
\(37\) −1.83001 −0.300852 −0.150426 0.988621i \(-0.548064\pi\)
−0.150426 + 0.988621i \(0.548064\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.7908 1.84141 0.920705 0.390259i \(-0.127614\pi\)
0.920705 + 0.390259i \(0.127614\pi\)
\(42\) 0 0
\(43\) 5.64376 0.860665 0.430333 0.902670i \(-0.358396\pi\)
0.430333 + 0.902670i \(0.358396\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.39768 0.641467 0.320733 0.947170i \(-0.396071\pi\)
0.320733 + 0.947170i \(0.396071\pi\)
\(48\) 0 0
\(49\) 0.707340 0.101049
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.00809 0.138472 0.0692362 0.997600i \(-0.477944\pi\)
0.0692362 + 0.997600i \(0.477944\pi\)
\(54\) 0 0
\(55\) 8.42806 1.13644
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.602695 −0.0784642 −0.0392321 0.999230i \(-0.512491\pi\)
−0.0392321 + 0.999230i \(0.512491\pi\)
\(60\) 0 0
\(61\) 4.18161 0.535400 0.267700 0.963502i \(-0.413736\pi\)
0.267700 + 0.963502i \(0.413736\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.48186 0.307837
\(66\) 0 0
\(67\) 1.92649 0.235358 0.117679 0.993052i \(-0.462455\pi\)
0.117679 + 0.993052i \(0.462455\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.548896 −0.0651420 −0.0325710 0.999469i \(-0.510369\pi\)
−0.0325710 + 0.999469i \(0.510369\pi\)
\(72\) 0 0
\(73\) −5.91971 −0.692849 −0.346425 0.938078i \(-0.612604\pi\)
−0.346425 + 0.938078i \(0.612604\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.03133 0.801294
\(78\) 0 0
\(79\) 8.96335 1.00846 0.504228 0.863571i \(-0.331777\pi\)
0.504228 + 0.863571i \(0.331777\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.0065 −1.20812 −0.604059 0.796940i \(-0.706451\pi\)
−0.604059 + 0.796940i \(0.706451\pi\)
\(84\) 0 0
\(85\) −16.0997 −1.74626
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.4316 −1.10575 −0.552873 0.833266i \(-0.686469\pi\)
−0.552873 + 0.833266i \(0.686469\pi\)
\(90\) 0 0
\(91\) 2.07056 0.217053
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.32769 −0.341414
\(96\) 0 0
\(97\) 16.0146 1.62603 0.813017 0.582240i \(-0.197824\pi\)
0.813017 + 0.582240i \(0.197824\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.4596 −1.04077 −0.520383 0.853933i \(-0.674211\pi\)
−0.520383 + 0.853933i \(0.674211\pi\)
\(102\) 0 0
\(103\) 12.2896 1.21093 0.605464 0.795873i \(-0.292988\pi\)
0.605464 + 0.795873i \(0.292988\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.74024 0.361583 0.180791 0.983521i \(-0.442134\pi\)
0.180791 + 0.983521i \(0.442134\pi\)
\(108\) 0 0
\(109\) 0.796097 0.0762523 0.0381261 0.999273i \(-0.487861\pi\)
0.0381261 + 0.999273i \(0.487861\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.5716 −1.84114 −0.920572 0.390573i \(-0.872277\pi\)
−0.920572 + 0.390573i \(0.872277\pi\)
\(114\) 0 0
\(115\) −4.31701 −0.402563
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.4316 −1.23127
\(120\) 0 0
\(121\) −4.58539 −0.416854
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.57231 0.319517
\(126\) 0 0
\(127\) 14.4047 1.27821 0.639106 0.769119i \(-0.279304\pi\)
0.639106 + 0.769119i \(0.279304\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.00809 0.437559 0.218780 0.975774i \(-0.429792\pi\)
0.218780 + 0.975774i \(0.429792\pi\)
\(132\) 0 0
\(133\) −2.77621 −0.240728
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.8745 −0.929074 −0.464537 0.885554i \(-0.653779\pi\)
−0.464537 + 0.885554i \(0.653779\pi\)
\(138\) 0 0
\(139\) −13.3924 −1.13592 −0.567962 0.823054i \(-0.692268\pi\)
−0.567962 + 0.823054i \(0.692268\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.88895 0.157962
\(144\) 0 0
\(145\) 6.69404 0.555909
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.86245 0.562194 0.281097 0.959679i \(-0.409302\pi\)
0.281097 + 0.959679i \(0.409302\pi\)
\(150\) 0 0
\(151\) 8.96335 0.729427 0.364714 0.931120i \(-0.381167\pi\)
0.364714 + 0.931120i \(0.381167\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.44942 0.518030
\(156\) 0 0
\(157\) −13.6405 −1.08863 −0.544315 0.838881i \(-0.683210\pi\)
−0.544315 + 0.838881i \(0.683210\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.60158 −0.283844
\(162\) 0 0
\(163\) 0.723528 0.0566711 0.0283355 0.999598i \(-0.490979\pi\)
0.0283355 + 0.999598i \(0.490979\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.29842 0.100475 0.0502373 0.998737i \(-0.484002\pi\)
0.0502373 + 0.998737i \(0.484002\pi\)
\(168\) 0 0
\(169\) −12.4438 −0.957212
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.66163 −0.734560 −0.367280 0.930110i \(-0.619711\pi\)
−0.367280 + 0.930110i \(0.619711\pi\)
\(174\) 0 0
\(175\) 16.8613 1.27460
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.1459 1.65526 0.827631 0.561272i \(-0.189688\pi\)
0.827631 + 0.561272i \(0.189688\pi\)
\(180\) 0 0
\(181\) 8.35714 0.621181 0.310591 0.950544i \(-0.399473\pi\)
0.310591 + 0.950544i \(0.399473\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.08970 −0.447723
\(186\) 0 0
\(187\) −12.2535 −0.896065
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.67973 0.338613 0.169307 0.985563i \(-0.445847\pi\)
0.169307 + 0.985563i \(0.445847\pi\)
\(192\) 0 0
\(193\) 4.16026 0.299462 0.149731 0.988727i \(-0.452159\pi\)
0.149731 + 0.988727i \(0.452159\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.6825 −1.68731 −0.843654 0.536887i \(-0.819600\pi\)
−0.843654 + 0.536887i \(0.819600\pi\)
\(198\) 0 0
\(199\) 26.0175 1.84433 0.922167 0.386793i \(-0.126417\pi\)
0.922167 + 0.386793i \(0.126417\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.58467 0.391967
\(204\) 0 0
\(205\) 39.2360 2.74036
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.53271 −0.175191
\(210\) 0 0
\(211\) −8.40509 −0.578630 −0.289315 0.957234i \(-0.593428\pi\)
−0.289315 + 0.957234i \(0.593428\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.7807 1.28083
\(216\) 0 0
\(217\) 5.38059 0.365258
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.60836 −0.242725
\(222\) 0 0
\(223\) −11.0568 −0.740415 −0.370207 0.928949i \(-0.620713\pi\)
−0.370207 + 0.928949i \(0.620713\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.1991 −1.00880 −0.504401 0.863470i \(-0.668287\pi\)
−0.504401 + 0.863470i \(0.668287\pi\)
\(228\) 0 0
\(229\) 12.1372 0.802051 0.401026 0.916067i \(-0.368654\pi\)
0.401026 + 0.916067i \(0.368654\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −25.0327 −1.63994 −0.819972 0.572403i \(-0.806011\pi\)
−0.819972 + 0.572403i \(0.806011\pi\)
\(234\) 0 0
\(235\) 14.6341 0.954623
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.2653 0.664005 0.332003 0.943278i \(-0.392276\pi\)
0.332003 + 0.943278i \(0.392276\pi\)
\(240\) 0 0
\(241\) 15.1915 0.978573 0.489287 0.872123i \(-0.337257\pi\)
0.489287 + 0.872123i \(0.337257\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.35381 0.150379
\(246\) 0 0
\(247\) −0.745822 −0.0474555
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.15837 0.136235 0.0681177 0.997677i \(-0.478301\pi\)
0.0681177 + 0.997677i \(0.478301\pi\)
\(252\) 0 0
\(253\) −3.28568 −0.206569
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.47891 −0.279387 −0.139693 0.990195i \(-0.544612\pi\)
−0.139693 + 0.990195i \(0.544612\pi\)
\(258\) 0 0
\(259\) −5.08049 −0.315686
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −14.0693 −0.867551 −0.433775 0.901021i \(-0.642819\pi\)
−0.433775 + 0.901021i \(0.642819\pi\)
\(264\) 0 0
\(265\) 3.35462 0.206073
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.2321 1.11163 0.555817 0.831305i \(-0.312406\pi\)
0.555817 + 0.831305i \(0.312406\pi\)
\(270\) 0 0
\(271\) −10.3102 −0.626302 −0.313151 0.949703i \(-0.601385\pi\)
−0.313151 + 0.949703i \(0.601385\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.3824 0.927595
\(276\) 0 0
\(277\) 19.0354 1.14373 0.571863 0.820349i \(-0.306221\pi\)
0.571863 + 0.820349i \(0.306221\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.4559 −1.27995 −0.639977 0.768394i \(-0.721056\pi\)
−0.639977 + 0.768394i \(0.721056\pi\)
\(282\) 0 0
\(283\) 18.1089 1.07646 0.538231 0.842797i \(-0.319093\pi\)
0.538231 + 0.842797i \(0.319093\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.7337 1.93221
\(288\) 0 0
\(289\) 6.40724 0.376896
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.8295 −0.632665 −0.316333 0.948648i \(-0.602452\pi\)
−0.316333 + 0.948648i \(0.602452\pi\)
\(294\) 0 0
\(295\) −2.00558 −0.116769
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.967555 −0.0559551
\(300\) 0 0
\(301\) 15.6683 0.903103
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13.9151 0.796776
\(306\) 0 0
\(307\) 2.13590 0.121902 0.0609512 0.998141i \(-0.480587\pi\)
0.0609512 + 0.998141i \(0.480587\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −20.9895 −1.19021 −0.595104 0.803649i \(-0.702889\pi\)
−0.595104 + 0.803649i \(0.702889\pi\)
\(312\) 0 0
\(313\) −3.71839 −0.210176 −0.105088 0.994463i \(-0.533512\pi\)
−0.105088 + 0.994463i \(0.533512\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.968935 0.0544208 0.0272104 0.999630i \(-0.491338\pi\)
0.0272104 + 0.999630i \(0.491338\pi\)
\(318\) 0 0
\(319\) 5.09484 0.285256
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.83810 0.269199
\(324\) 0 0
\(325\) 4.52976 0.251266
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.2089 0.673097
\(330\) 0 0
\(331\) −19.9099 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.41076 0.350257
\(336\) 0 0
\(337\) 20.5821 1.12118 0.560590 0.828093i \(-0.310574\pi\)
0.560590 + 0.828093i \(0.310574\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.90866 0.265819
\(342\) 0 0
\(343\) −17.4697 −0.943278
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −11.1438 −0.598228 −0.299114 0.954217i \(-0.596691\pi\)
−0.299114 + 0.954217i \(0.596691\pi\)
\(348\) 0 0
\(349\) −11.3843 −0.609386 −0.304693 0.952451i \(-0.598554\pi\)
−0.304693 + 0.952451i \(0.598554\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −22.7867 −1.21281 −0.606407 0.795154i \(-0.707390\pi\)
−0.606407 + 0.795154i \(0.707390\pi\)
\(354\) 0 0
\(355\) −1.82655 −0.0969435
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.4273 0.972557 0.486278 0.873804i \(-0.338354\pi\)
0.486278 + 0.873804i \(0.338354\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −19.6989 −1.03109
\(366\) 0 0
\(367\) 14.5173 0.757795 0.378897 0.925439i \(-0.376303\pi\)
0.378897 + 0.925439i \(0.376303\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.79868 0.145300
\(372\) 0 0
\(373\) −9.06395 −0.469314 −0.234657 0.972078i \(-0.575397\pi\)
−0.234657 + 0.972078i \(0.575397\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.50031 0.0772698
\(378\) 0 0
\(379\) −32.9824 −1.69419 −0.847096 0.531440i \(-0.821651\pi\)
−0.847096 + 0.531440i \(0.821651\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.6808 −0.647961 −0.323980 0.946064i \(-0.605021\pi\)
−0.323980 + 0.946064i \(0.605021\pi\)
\(384\) 0 0
\(385\) 23.3981 1.19248
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.2609 −0.773757 −0.386879 0.922131i \(-0.626447\pi\)
−0.386879 + 0.922131i \(0.626447\pi\)
\(390\) 0 0
\(391\) 6.27647 0.317415
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 29.8272 1.50077
\(396\) 0 0
\(397\) 16.3641 0.821290 0.410645 0.911795i \(-0.365303\pi\)
0.410645 + 0.911795i \(0.365303\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.3769 1.46701 0.733506 0.679683i \(-0.237883\pi\)
0.733506 + 0.679683i \(0.237883\pi\)
\(402\) 0 0
\(403\) 1.44548 0.0720046
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.63488 −0.229742
\(408\) 0 0
\(409\) −9.66647 −0.477976 −0.238988 0.971023i \(-0.576816\pi\)
−0.238988 + 0.971023i \(0.576816\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.67321 −0.0823331
\(414\) 0 0
\(415\) −36.6261 −1.79791
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 36.9032 1.80284 0.901420 0.432946i \(-0.142526\pi\)
0.901420 + 0.432946i \(0.142526\pi\)
\(420\) 0 0
\(421\) 30.0798 1.46600 0.733000 0.680229i \(-0.238119\pi\)
0.733000 + 0.680229i \(0.238119\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −29.3843 −1.42535
\(426\) 0 0
\(427\) 11.6090 0.561800
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.4136 0.549772 0.274886 0.961477i \(-0.411360\pi\)
0.274886 + 0.961477i \(0.411360\pi\)
\(432\) 0 0
\(433\) 22.7978 1.09559 0.547797 0.836611i \(-0.315467\pi\)
0.547797 + 0.836611i \(0.315467\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.29730 0.0620583
\(438\) 0 0
\(439\) −17.1584 −0.818927 −0.409463 0.912327i \(-0.634284\pi\)
−0.409463 + 0.912327i \(0.634284\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 27.3080 1.29744 0.648722 0.761025i \(-0.275304\pi\)
0.648722 + 0.761025i \(0.275304\pi\)
\(444\) 0 0
\(445\) −34.7131 −1.64556
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.31003 −0.297789 −0.148894 0.988853i \(-0.547571\pi\)
−0.148894 + 0.988853i \(0.547571\pi\)
\(450\) 0 0
\(451\) 29.8626 1.40618
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.89017 0.323016
\(456\) 0 0
\(457\) −15.3027 −0.715828 −0.357914 0.933755i \(-0.616512\pi\)
−0.357914 + 0.933755i \(0.616512\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.25298 0.244655 0.122328 0.992490i \(-0.460964\pi\)
0.122328 + 0.992490i \(0.460964\pi\)
\(462\) 0 0
\(463\) 39.9432 1.85632 0.928158 0.372186i \(-0.121392\pi\)
0.928158 + 0.372186i \(0.121392\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.86164 0.178696 0.0893478 0.996000i \(-0.471522\pi\)
0.0893478 + 0.996000i \(0.471522\pi\)
\(468\) 0 0
\(469\) 5.34834 0.246963
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.2940 0.657239
\(474\) 0 0
\(475\) −6.07351 −0.278672
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −35.3644 −1.61584 −0.807920 0.589292i \(-0.799407\pi\)
−0.807920 + 0.589292i \(0.799407\pi\)
\(480\) 0 0
\(481\) −1.36486 −0.0622323
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 53.2915 2.41984
\(486\) 0 0
\(487\) −25.6252 −1.16119 −0.580594 0.814193i \(-0.697180\pi\)
−0.580594 + 0.814193i \(0.697180\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −25.1502 −1.13501 −0.567506 0.823370i \(-0.692091\pi\)
−0.567506 + 0.823370i \(0.692091\pi\)
\(492\) 0 0
\(493\) −9.73241 −0.438326
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.52385 −0.0683540
\(498\) 0 0
\(499\) −25.8605 −1.15767 −0.578837 0.815443i \(-0.696493\pi\)
−0.578837 + 0.815443i \(0.696493\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.3342 0.817480 0.408740 0.912651i \(-0.365968\pi\)
0.408740 + 0.912651i \(0.365968\pi\)
\(504\) 0 0
\(505\) −34.8062 −1.54885
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.0888 −1.42231 −0.711156 0.703035i \(-0.751828\pi\)
−0.711156 + 0.703035i \(0.751828\pi\)
\(510\) 0 0
\(511\) −16.4343 −0.727013
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 40.8959 1.80209
\(516\) 0 0
\(517\) 11.1380 0.489850
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 28.9870 1.26994 0.634971 0.772536i \(-0.281012\pi\)
0.634971 + 0.772536i \(0.281012\pi\)
\(522\) 0 0
\(523\) 26.8215 1.17282 0.586412 0.810013i \(-0.300540\pi\)
0.586412 + 0.810013i \(0.300540\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.37676 −0.408458
\(528\) 0 0
\(529\) −21.3170 −0.926827
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.79382 0.380903
\(534\) 0 0
\(535\) 12.4464 0.538103
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.79149 0.0771647
\(540\) 0 0
\(541\) −12.0367 −0.517498 −0.258749 0.965945i \(-0.583310\pi\)
−0.258749 + 0.965945i \(0.583310\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.64916 0.113478
\(546\) 0 0
\(547\) −11.5681 −0.494616 −0.247308 0.968937i \(-0.579546\pi\)
−0.247308 + 0.968937i \(0.579546\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.01162 −0.0856978
\(552\) 0 0
\(553\) 24.8841 1.05818
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.2520 0.688619 0.344309 0.938856i \(-0.388113\pi\)
0.344309 + 0.938856i \(0.388113\pi\)
\(558\) 0 0
\(559\) 4.20924 0.178032
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 38.8534 1.63748 0.818739 0.574167i \(-0.194674\pi\)
0.818739 + 0.574167i \(0.194674\pi\)
\(564\) 0 0
\(565\) −65.1283 −2.73997
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.91728 −0.164221 −0.0821104 0.996623i \(-0.526166\pi\)
−0.0821104 + 0.996623i \(0.526166\pi\)
\(570\) 0 0
\(571\) 37.2665 1.55955 0.779776 0.626058i \(-0.215333\pi\)
0.779776 + 0.626058i \(0.215333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.87917 −0.328584
\(576\) 0 0
\(577\) 8.16835 0.340053 0.170026 0.985440i \(-0.445615\pi\)
0.170026 + 0.985440i \(0.445615\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −30.5563 −1.26769
\(582\) 0 0
\(583\) 2.55321 0.105743
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.3668 0.592980 0.296490 0.955036i \(-0.404184\pi\)
0.296490 + 0.955036i \(0.404184\pi\)
\(588\) 0 0
\(589\) −1.93811 −0.0798583
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.56900 0.0644313 0.0322157 0.999481i \(-0.489744\pi\)
0.0322157 + 0.999481i \(0.489744\pi\)
\(594\) 0 0
\(595\) −44.6961 −1.83236
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.2853 −0.869695 −0.434848 0.900504i \(-0.643198\pi\)
−0.434848 + 0.900504i \(0.643198\pi\)
\(600\) 0 0
\(601\) −23.6232 −0.963610 −0.481805 0.876278i \(-0.660019\pi\)
−0.481805 + 0.876278i \(0.660019\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −15.2587 −0.620356
\(606\) 0 0
\(607\) −4.50269 −0.182759 −0.0913793 0.995816i \(-0.529128\pi\)
−0.0913793 + 0.995816i \(0.529128\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.27988 0.132690
\(612\) 0 0
\(613\) −3.32327 −0.134226 −0.0671128 0.997745i \(-0.521379\pi\)
−0.0671128 + 0.997745i \(0.521379\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30.4475 1.22577 0.612885 0.790172i \(-0.290009\pi\)
0.612885 + 0.790172i \(0.290009\pi\)
\(618\) 0 0
\(619\) −40.8559 −1.64214 −0.821068 0.570831i \(-0.806621\pi\)
−0.821068 + 0.570831i \(0.806621\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −28.9603 −1.16027
\(624\) 0 0
\(625\) −18.4800 −0.739201
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.85377 0.353023
\(630\) 0 0
\(631\) −38.9565 −1.55083 −0.775416 0.631451i \(-0.782460\pi\)
−0.775416 + 0.631451i \(0.782460\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 47.9344 1.90222
\(636\) 0 0
\(637\) 0.527549 0.0209023
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −38.6625 −1.52708 −0.763539 0.645762i \(-0.776540\pi\)
−0.763539 + 0.645762i \(0.776540\pi\)
\(642\) 0 0
\(643\) −28.1296 −1.10932 −0.554662 0.832075i \(-0.687153\pi\)
−0.554662 + 0.832075i \(0.687153\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −40.0471 −1.57441 −0.787207 0.616689i \(-0.788474\pi\)
−0.787207 + 0.616689i \(0.788474\pi\)
\(648\) 0 0
\(649\) −1.52645 −0.0599184
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −33.5455 −1.31274 −0.656368 0.754441i \(-0.727908\pi\)
−0.656368 + 0.754441i \(0.727908\pi\)
\(654\) 0 0
\(655\) 16.6654 0.651170
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −27.0745 −1.05467 −0.527336 0.849657i \(-0.676809\pi\)
−0.527336 + 0.849657i \(0.676809\pi\)
\(660\) 0 0
\(661\) 28.7930 1.11992 0.559959 0.828520i \(-0.310817\pi\)
0.559959 + 0.828520i \(0.310817\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −9.23836 −0.358248
\(666\) 0 0
\(667\) −2.60967 −0.101047
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.5908 0.408853
\(672\) 0 0
\(673\) −46.2242 −1.78181 −0.890907 0.454186i \(-0.849930\pi\)
−0.890907 + 0.454186i \(0.849930\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.59160 −0.330202 −0.165101 0.986277i \(-0.552795\pi\)
−0.165101 + 0.986277i \(0.552795\pi\)
\(678\) 0 0
\(679\) 44.4598 1.70621
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.7018 −0.447757 −0.223878 0.974617i \(-0.571872\pi\)
−0.223878 + 0.974617i \(0.571872\pi\)
\(684\) 0 0
\(685\) −36.1870 −1.38264
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.751858 0.0286435
\(690\) 0 0
\(691\) −4.71655 −0.179426 −0.0897130 0.995968i \(-0.528595\pi\)
−0.0897130 + 0.995968i \(0.528595\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −44.5656 −1.69047
\(696\) 0 0
\(697\) −57.0450 −2.16073
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0483 0.983831 0.491915 0.870643i \(-0.336297\pi\)
0.491915 + 0.870643i \(0.336297\pi\)
\(702\) 0 0
\(703\) 1.83001 0.0690201
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −29.0380 −1.09208
\(708\) 0 0
\(709\) 28.4740 1.06936 0.534681 0.845054i \(-0.320432\pi\)
0.534681 + 0.845054i \(0.320432\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.51431 −0.0941615
\(714\) 0 0
\(715\) 6.28583 0.235077
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.82832 −0.180066 −0.0900330 0.995939i \(-0.528697\pi\)
−0.0900330 + 0.995939i \(0.528697\pi\)
\(720\) 0 0
\(721\) 34.1184 1.27064
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.2176 0.453749
\(726\) 0 0
\(727\) −26.0141 −0.964808 −0.482404 0.875949i \(-0.660236\pi\)
−0.482404 + 0.875949i \(0.660236\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −27.3051 −1.00992
\(732\) 0 0
\(733\) 2.93251 0.108315 0.0541574 0.998532i \(-0.482753\pi\)
0.0541574 + 0.998532i \(0.482753\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.87924 0.179729
\(738\) 0 0
\(739\) −13.2892 −0.488852 −0.244426 0.969668i \(-0.578600\pi\)
−0.244426 + 0.969668i \(0.578600\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.75074 0.174288 0.0871439 0.996196i \(-0.472226\pi\)
0.0871439 + 0.996196i \(0.472226\pi\)
\(744\) 0 0
\(745\) 22.8361 0.836650
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.3837 0.379412
\(750\) 0 0
\(751\) 49.3812 1.80194 0.900972 0.433876i \(-0.142855\pi\)
0.900972 + 0.433876i \(0.142855\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 29.8272 1.08552
\(756\) 0 0
\(757\) 13.5342 0.491910 0.245955 0.969281i \(-0.420898\pi\)
0.245955 + 0.969281i \(0.420898\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.4451 0.994884 0.497442 0.867497i \(-0.334273\pi\)
0.497442 + 0.867497i \(0.334273\pi\)
\(762\) 0 0
\(763\) 2.21013 0.0800122
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.449503 −0.0162306
\(768\) 0 0
\(769\) −10.2830 −0.370814 −0.185407 0.982662i \(-0.559360\pi\)
−0.185407 + 0.982662i \(0.559360\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −49.0937 −1.76578 −0.882889 0.469582i \(-0.844405\pi\)
−0.882889 + 0.469582i \(0.844405\pi\)
\(774\) 0 0
\(775\) 11.7711 0.422831
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.7908 −0.422449
\(780\) 0 0
\(781\) −1.39019 −0.0497450
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −45.3913 −1.62009
\(786\) 0 0
\(787\) −7.31410 −0.260720 −0.130360 0.991467i \(-0.541613\pi\)
−0.130360 + 0.991467i \(0.541613\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −54.3349 −1.93193
\(792\) 0 0
\(793\) 3.11873 0.110750
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.4698 −0.477126 −0.238563 0.971127i \(-0.576676\pi\)
−0.238563 + 0.971127i \(0.576676\pi\)
\(798\) 0 0
\(799\) −21.2764 −0.752705
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.9929 −0.529088
\(804\) 0 0
\(805\) −11.9849 −0.422413
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.2678 −0.818051 −0.409025 0.912523i \(-0.634131\pi\)
−0.409025 + 0.912523i \(0.634131\pi\)
\(810\) 0 0
\(811\) 10.2519 0.359994 0.179997 0.983667i \(-0.442391\pi\)
0.179997 + 0.983667i \(0.442391\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.40767 0.0843372
\(816\) 0 0
\(817\) −5.64376 −0.197450
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 15.6122 0.544869 0.272435 0.962174i \(-0.412171\pi\)
0.272435 + 0.962174i \(0.412171\pi\)
\(822\) 0 0
\(823\) −49.7015 −1.73249 −0.866243 0.499624i \(-0.833472\pi\)
−0.866243 + 0.499624i \(0.833472\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33.5764 −1.16756 −0.583782 0.811910i \(-0.698428\pi\)
−0.583782 + 0.811910i \(0.698428\pi\)
\(828\) 0 0
\(829\) −43.6713 −1.51677 −0.758383 0.651810i \(-0.774010\pi\)
−0.758383 + 0.651810i \(0.774010\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.42218 −0.118572
\(834\) 0 0
\(835\) 4.32073 0.149525
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.1340 0.833198 0.416599 0.909090i \(-0.363222\pi\)
0.416599 + 0.909090i \(0.363222\pi\)
\(840\) 0 0
\(841\) −24.9534 −0.860462
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −41.4089 −1.42451
\(846\) 0 0
\(847\) −12.7300 −0.437408
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.37407 0.0813821
\(852\) 0 0
\(853\) 13.5896 0.465298 0.232649 0.972561i \(-0.425261\pi\)
0.232649 + 0.972561i \(0.425261\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.95504 0.305898 0.152949 0.988234i \(-0.451123\pi\)
0.152949 + 0.988234i \(0.451123\pi\)
\(858\) 0 0
\(859\) −10.0099 −0.341534 −0.170767 0.985311i \(-0.554625\pi\)
−0.170767 + 0.985311i \(0.554625\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 49.1539 1.67322 0.836609 0.547801i \(-0.184535\pi\)
0.836609 + 0.547801i \(0.184535\pi\)
\(864\) 0 0
\(865\) −32.1509 −1.09316
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.7016 0.770098
\(870\) 0 0
\(871\) 1.43682 0.0486847
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.91747 0.335272
\(876\) 0 0
\(877\) −19.5430 −0.659920 −0.329960 0.943995i \(-0.607035\pi\)
−0.329960 + 0.943995i \(0.607035\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −11.0905 −0.373649 −0.186825 0.982393i \(-0.559820\pi\)
−0.186825 + 0.982393i \(0.559820\pi\)
\(882\) 0 0
\(883\) 32.6991 1.10041 0.550206 0.835029i \(-0.314549\pi\)
0.550206 + 0.835029i \(0.314549\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.29213 0.244846 0.122423 0.992478i \(-0.460934\pi\)
0.122423 + 0.992478i \(0.460934\pi\)
\(888\) 0 0
\(889\) 39.9905 1.34124
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.39768 −0.147163
\(894\) 0 0
\(895\) 73.6947 2.46334
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.89873 0.130030
\(900\) 0 0
\(901\) −4.87726 −0.162485
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 27.8099 0.924434
\(906\) 0 0
\(907\) 39.6456 1.31641 0.658204 0.752839i \(-0.271316\pi\)
0.658204 + 0.752839i \(0.271316\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.9341 −0.362262 −0.181131 0.983459i \(-0.557976\pi\)
−0.181131 + 0.983459i \(0.557976\pi\)
\(912\) 0 0
\(913\) −27.8762 −0.922567
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 13.9035 0.459135
\(918\) 0 0
\(919\) −0.603265 −0.0198999 −0.00994994 0.999950i \(-0.503167\pi\)
−0.00994994 + 0.999950i \(0.503167\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.409378 −0.0134749
\(924\) 0 0
\(925\) −11.1146 −0.365445
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −34.3751 −1.12781 −0.563905 0.825840i \(-0.690702\pi\)
−0.563905 + 0.825840i \(0.690702\pi\)
\(930\) 0 0
\(931\) −0.707340 −0.0231821
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40.7758 −1.33351
\(936\) 0 0
\(937\) 35.0958 1.14653 0.573265 0.819370i \(-0.305677\pi\)
0.573265 + 0.819370i \(0.305677\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31.0709 −1.01288 −0.506442 0.862274i \(-0.669039\pi\)
−0.506442 + 0.862274i \(0.669039\pi\)
\(942\) 0 0
\(943\) −15.2962 −0.498112
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 49.2023 1.59886 0.799430 0.600760i \(-0.205135\pi\)
0.799430 + 0.600760i \(0.205135\pi\)
\(948\) 0 0
\(949\) −4.41505 −0.143318
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29.7875 0.964913 0.482457 0.875920i \(-0.339745\pi\)
0.482457 + 0.875920i \(0.339745\pi\)
\(954\) 0 0
\(955\) 15.5727 0.503920
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −30.1900 −0.974885
\(960\) 0 0
\(961\) −27.2437 −0.878830
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.8440 0.445655
\(966\) 0 0
\(967\) −55.1653 −1.77400 −0.886999 0.461772i \(-0.847214\pi\)
−0.886999 + 0.461772i \(0.847214\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.5605 0.756093 0.378046 0.925787i \(-0.376596\pi\)
0.378046 + 0.925787i \(0.376596\pi\)
\(972\) 0 0
\(973\) −37.1800 −1.19194
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −30.8486 −0.986935 −0.493467 0.869764i \(-0.664271\pi\)
−0.493467 + 0.869764i \(0.664271\pi\)
\(978\) 0 0
\(979\) −26.4202 −0.844392
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.964602 −0.0307660 −0.0153830 0.999882i \(-0.504897\pi\)
−0.0153830 + 0.999882i \(0.504897\pi\)
\(984\) 0 0
\(985\) −78.8080 −2.51103
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.32165 −0.232815
\(990\) 0 0
\(991\) 59.2666 1.88266 0.941332 0.337481i \(-0.109575\pi\)
0.941332 + 0.337481i \(0.109575\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 86.5782 2.74471
\(996\) 0 0
\(997\) 47.8885 1.51664 0.758322 0.651880i \(-0.226019\pi\)
0.758322 + 0.651880i \(0.226019\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4104.2.a.p.1.5 5
3.2 odd 2 4104.2.a.q.1.1 yes 5
4.3 odd 2 8208.2.a.ca.1.5 5
12.11 even 2 8208.2.a.cd.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.p.1.5 5 1.1 even 1 trivial
4104.2.a.q.1.1 yes 5 3.2 odd 2
8208.2.a.ca.1.5 5 4.3 odd 2
8208.2.a.cd.1.1 5 12.11 even 2