Newspace parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.p (of order \(408\), degree \(128\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.1444428123\) |
Analytic rank: | \(0\) |
Dimension: | \(8576\) |
Relative dimension: | \(67\) over \(\Q(\zeta_{408})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{408}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −3.14834 | − | 2.30225i | 3.28582 | + | 2.56174i | 3.39906 | + | 10.6847i | −1.47962 | − | 0.276588i | −4.44712 | − | 15.6300i | 2.60078 | − | 1.99565i | 8.93960 | − | 26.6722i | 2.03891 | + | 8.10667i | 4.02156 | + | 4.27724i |
21.2 | −3.09961 | − | 2.26662i | −0.127755 | − | 0.0996022i | 3.25741 | + | 10.2395i | −7.59618 | − | 1.41997i | 0.170231 | + | 0.598300i | 1.43711 | − | 1.10273i | 8.23105 | − | 24.5581i | −2.18882 | − | 8.70272i | 20.3266 | + | 21.6190i |
21.3 | −2.99391 | − | 2.18932i | −0.00398819 | − | 0.00310933i | 2.95775 | + | 9.29750i | 9.08269 | + | 1.69785i | 0.00513296 | + | 0.0180405i | 7.60459 | − | 5.83521i | 6.78526 | − | 20.2445i | −2.19522 | − | 8.72815i | −23.4756 | − | 24.9681i |
21.4 | −2.97290 | − | 2.17396i | −1.71585 | − | 1.33773i | 2.89942 | + | 9.11414i | 3.00382 | + | 0.561512i | 2.19287 | + | 7.70713i | −8.04167 | + | 6.17059i | 6.51243 | − | 19.4305i | −1.04062 | − | 4.13748i | −7.70936 | − | 8.19950i |
21.5 | −2.95014 | − | 2.15731i | −3.38474 | − | 2.63886i | 2.83669 | + | 8.91697i | 0.831514 | + | 0.155437i | 4.29261 | + | 15.0869i | −4.35489 | + | 3.34163i | 6.22226 | − | 18.5647i | 2.29768 | + | 9.13554i | −2.11775 | − | 2.25240i |
21.6 | −2.76952 | − | 2.02524i | 1.19744 | + | 0.933567i | 2.35606 | + | 7.40613i | −0.653831 | − | 0.122222i | −1.42565 | − | 5.01064i | −4.20606 | + | 3.22742i | 4.11263 | − | 12.2704i | −1.63290 | − | 6.49239i | 1.56327 | + | 1.66266i |
21.7 | −2.68967 | − | 1.96684i | −2.96732 | − | 2.31342i | 2.15322 | + | 6.76852i | 3.99314 | + | 0.746448i | 3.43096 | + | 12.0586i | 2.64255 | − | 2.02770i | 3.28554 | − | 9.80272i | 1.25784 | + | 5.00114i | −9.27208 | − | 9.86158i |
21.8 | −2.68542 | − | 1.96373i | 4.21566 | + | 3.28667i | 2.14260 | + | 6.73512i | 1.36686 | + | 0.255510i | −4.86665 | − | 17.1045i | 0.936382 | − | 0.718511i | 3.24329 | − | 9.67665i | 4.77435 | + | 18.9828i | −3.16882 | − | 3.37029i |
21.9 | −2.58268 | − | 1.88861i | 1.62520 | + | 1.26706i | 1.89079 | + | 5.94357i | 3.85111 | + | 0.719898i | −1.80439 | − | 6.34179i | 5.56108 | − | 4.26716i | 2.27463 | − | 6.78657i | −1.15939 | − | 4.60970i | −8.58659 | − | 9.13250i |
21.10 | −2.55140 | − | 1.86573i | −4.16183 | − | 3.24470i | 1.81607 | + | 5.70871i | −7.26226 | − | 1.35755i | 4.56475 | + | 16.0434i | 0.255082 | − | 0.195731i | 1.99952 | − | 5.96576i | 4.59751 | + | 18.2796i | 15.9961 | + | 17.0131i |
21.11 | −2.40558 | − | 1.75910i | −0.841559 | − | 0.656107i | 1.47977 | + | 4.65157i | −4.57291 | − | 0.854825i | 0.870278 | + | 3.05871i | 5.95986 | − | 4.57316i | 0.834620 | − | 2.49017i | −1.91748 | − | 7.62387i | 9.49679 | + | 10.1006i |
21.12 | −2.34533 | − | 1.71505i | 2.89471 | + | 2.25681i | 1.34660 | + | 4.23295i | −6.42035 | − | 1.20017i | −2.91852 | − | 10.2575i | −9.12845 | + | 7.00451i | 0.408099 | − | 1.21760i | 1.09092 | + | 4.33747i | 12.9995 | + | 13.8260i |
21.13 | −2.11486 | − | 1.54651i | −4.28019 | − | 3.33698i | 0.868321 | + | 2.72951i | 7.37549 | + | 1.37872i | 3.89132 | + | 13.6766i | 1.03165 | − | 0.791617i | −0.945591 | + | 2.82126i | 4.98936 | + | 19.8376i | −13.4659 | − | 14.3220i |
21.14 | −2.01731 | − | 1.47517i | 4.06090 | + | 3.16601i | 0.680781 | + | 2.13999i | 9.09221 | + | 1.69963i | −3.52166 | − | 12.3774i | −2.63166 | + | 2.01934i | −1.39330 | + | 4.15703i | 4.27204 | + | 16.9856i | −15.8345 | − | 16.8413i |
21.15 | −2.00582 | − | 1.46677i | 1.28816 | + | 1.00430i | 0.659278 | + | 2.07240i | 4.28592 | + | 0.801176i | −1.11075 | − | 3.90388i | −4.78569 | + | 3.67219i | −1.44137 | + | 4.30048i | −1.54447 | − | 6.14077i | −7.42163 | − | 7.89348i |
21.16 | −1.97622 | − | 1.44513i | 3.65349 | + | 2.84838i | 0.604430 | + | 1.89999i | −9.18551 | − | 1.71707i | −3.10381 | − | 10.9088i | 7.41791 | − | 5.69196i | −1.56086 | + | 4.65699i | 3.03947 | + | 12.0849i | 15.6712 | + | 16.6675i |
21.17 | −1.93068 | − | 1.41183i | −0.650907 | − | 0.507469i | 0.521667 | + | 1.63983i | 7.25030 | + | 1.35532i | 0.540236 | + | 1.89873i | −5.16938 | + | 3.96660i | −1.73242 | + | 5.16882i | −2.02907 | − | 8.06754i | −12.0846 | − | 12.8529i |
21.18 | −1.87616 | − | 1.37196i | −2.27472 | − | 1.77344i | 0.425102 | + | 1.33628i | −5.80963 | − | 1.08601i | 1.83464 | + | 6.44810i | −7.01076 | + | 5.37954i | −1.91878 | + | 5.72485i | −0.165999 | − | 0.660008i | 9.40985 | + | 10.0081i |
21.19 | −1.80222 | − | 1.31789i | −2.33941 | − | 1.82388i | 0.298547 | + | 0.938465i | 0.349559 | + | 0.0653439i | 1.81245 | + | 6.37011i | 9.64109 | − | 7.39787i | −2.13935 | + | 6.38294i | −0.0489291 | − | 0.194541i | −0.543865 | − | 0.578443i |
21.20 | −1.59279 | − | 1.16475i | −2.07047 | − | 1.61421i | −0.0322475 | − | 0.101368i | −2.55276 | − | 0.477193i | 1.41770 | + | 4.98268i | −6.76777 | + | 5.19309i | −2.57500 | + | 7.68276i | −0.514037 | − | 2.04380i | 3.51021 | + | 3.73338i |
See next 80 embeddings (of 8576 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
409.p | odd | 408 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 409.3.p.a | ✓ | 8576 |
409.p | odd | 408 | 1 | inner | 409.3.p.a | ✓ | 8576 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
409.3.p.a | ✓ | 8576 | 1.a | even | 1 | 1 | trivial |
409.3.p.a | ✓ | 8576 | 409.p | odd | 408 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(409, [\chi])\).