Newspace parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.n (of order \(136\), degree \(64\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.1444428123\) |
Analytic rank: | \(0\) |
Dimension: | \(4352\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{136})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{136}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −3.94845 | + | 0.182548i | −0.588736 | + | 0.327924i | 11.5740 | − | 1.07249i | −7.47952 | − | 2.89758i | 2.26473 | − | 1.40226i | −4.85758 | + | 11.7272i | −29.8444 | + | 4.16312i | −4.49881 | + | 7.26583i | 30.0614 | + | 10.0756i |
11.2 | −3.85024 | + | 0.178008i | −4.24324 | + | 2.36347i | 10.8098 | − | 1.00167i | 6.19198 | + | 2.39879i | 15.9168 | − | 9.85527i | −0.445733 | + | 1.07609i | −26.1723 | + | 3.65088i | 7.68123 | − | 12.4056i | −24.2676 | − | 8.13369i |
11.3 | −3.75130 | + | 0.173433i | 2.33784 | − | 1.30217i | 10.0592 | − | 0.932125i | 2.10260 | + | 0.814551i | −8.54408 | + | 5.29027i | −0.699538 | + | 1.68883i | −22.6963 | + | 3.16600i | −0.968047 | + | 1.56345i | −8.02875 | − | 2.69096i |
11.4 | −3.64488 | + | 0.168513i | 4.77679 | − | 2.66065i | 9.27385 | − | 0.859349i | −6.67381 | − | 2.58545i | −16.9625 | + | 10.5027i | 2.86289 | − | 6.91162i | −19.2022 | + | 2.67859i | 11.0007 | − | 17.7668i | 24.7609 | + | 8.29903i |
11.5 | −3.57541 | + | 0.165301i | −0.716795 | + | 0.399252i | 8.77330 | − | 0.812966i | 4.52848 | + | 1.75434i | 2.49684 | − | 1.54598i | 3.75575 | − | 9.06718i | −17.0541 | + | 2.37895i | −4.38350 | + | 7.07959i | −16.4812 | − | 5.52394i |
11.6 | −3.39470 | + | 0.156946i | −1.03242 | + | 0.575055i | 7.51639 | − | 0.696496i | −5.85749 | − | 2.26920i | 3.41450 | − | 2.11417i | 4.76659 | − | 11.5076i | −11.9436 | + | 1.66606i | −4.00268 | + | 6.46456i | 20.2405 | + | 6.78394i |
11.7 | −3.37181 | + | 0.155888i | 2.85075 | − | 1.58786i | 7.36183 | − | 0.682174i | 0.435768 | + | 0.168817i | −9.36463 | + | 5.79834i | 0.148229 | − | 0.357856i | −11.3442 | + | 1.58244i | 0.867579 | − | 1.40119i | −1.49564 | − | 0.501288i |
11.8 | −3.25420 | + | 0.150451i | −4.88051 | + | 2.71842i | 6.58422 | − | 0.610118i | −5.60785 | − | 2.17249i | 15.4731 | − | 9.58056i | 1.08129 | − | 2.61047i | −8.42884 | + | 1.17577i | 11.6916 | − | 18.8826i | 18.5759 | + | 6.22602i |
11.9 | −3.15813 | + | 0.146009i | −1.71713 | + | 0.956433i | 5.96951 | − | 0.553156i | −2.82066 | − | 1.09273i | 5.28325 | − | 3.27125i | −0.201059 | + | 0.485398i | −6.24697 | + | 0.871415i | −2.70413 | + | 4.36732i | 9.06755 | + | 3.03914i |
11.10 | −3.14914 | + | 0.145594i | 5.12161 | − | 2.85272i | 5.91297 | − | 0.547917i | 6.64265 | + | 2.57338i | −15.7134 | + | 9.72930i | −3.99096 | + | 9.63504i | −6.05191 | + | 0.844205i | 13.3550 | − | 21.5691i | −21.2933 | − | 7.13680i |
11.11 | −3.13998 | + | 0.145170i | −3.57707 | + | 1.99241i | 5.85549 | − | 0.542591i | 0.113194 | + | 0.0438515i | 10.9427 | − | 6.77543i | −2.02453 | + | 4.88764i | −5.85459 | + | 0.816681i | 4.08781 | − | 6.60203i | −0.361792 | − | 0.121261i |
11.12 | −3.12914 | + | 0.144669i | −1.35978 | + | 0.757392i | 5.78765 | − | 0.536305i | 7.32532 | + | 2.83785i | 4.14537 | − | 2.56670i | −3.92800 | + | 9.48302i | −5.62300 | + | 0.784375i | −3.46253 | + | 5.59218i | −23.3325 | − | 7.82027i |
11.13 | −2.70393 | + | 0.125010i | 3.05013 | − | 1.69891i | 3.31269 | − | 0.306966i | 7.96146 | + | 3.08429i | −8.03497 | + | 4.97504i | 3.44387 | − | 8.31423i | 1.80454 | − | 0.251723i | 1.67911 | − | 2.71185i | −21.9128 | − | 7.34444i |
11.14 | −2.58312 | + | 0.119425i | 0.980302 | − | 0.546025i | 2.67532 | − | 0.247905i | −1.99403 | − | 0.772493i | −2.46703 | + | 1.52752i | −2.02538 | + | 4.88969i | 3.36326 | − | 0.469155i | −4.07504 | + | 6.58142i | 5.24309 | + | 1.75731i |
11.15 | −2.53276 | + | 0.117096i | 3.83884 | − | 2.13822i | 2.41820 | − | 0.224080i | −6.59902 | − | 2.55647i | −9.47246 | + | 5.86510i | −4.19675 | + | 10.1319i | 3.94611 | − | 0.550458i | 5.42681 | − | 8.76461i | 17.0131 | + | 5.70220i |
11.16 | −2.48980 | + | 0.115110i | 0.859768 | − | 0.478888i | 2.20292 | − | 0.204131i | −8.70688 | − | 3.37306i | −2.08553 | + | 1.29130i | 1.04203 | − | 2.51568i | 4.41290 | − | 0.615573i | −4.22802 | + | 6.82849i | 22.0667 | + | 7.39600i |
11.17 | −2.22478 | + | 0.102858i | −3.77370 | + | 2.10194i | 0.956140 | − | 0.0885994i | 5.25614 | + | 2.03624i | 8.17946 | − | 5.06451i | 3.25482 | − | 7.85783i | 6.70511 | − | 0.935324i | 5.08479 | − | 8.21221i | −11.9032 | − | 3.98956i |
11.18 | −2.15703 | + | 0.0997256i | 4.01874 | − | 2.23842i | 0.659908 | − | 0.0611495i | −1.58675 | − | 0.614710i | −8.44532 | + | 5.22912i | 5.07836 | − | 12.2603i | 7.13717 | − | 0.995593i | 6.40182 | − | 10.3393i | 3.48397 | + | 1.16771i |
11.19 | −2.09918 | + | 0.0970509i | 2.68089 | − | 1.49324i | 0.414200 | − | 0.0383813i | 0.420051 | + | 0.162728i | −5.48274 | + | 3.39477i | 1.55324 | − | 3.74985i | 7.45933 | − | 1.04053i | 0.219488 | − | 0.354485i | −0.897555 | − | 0.300830i |
11.20 | −2.04001 | + | 0.0943154i | −0.934413 | + | 0.520464i | 0.169815 | − | 0.0157357i | 4.53708 | + | 1.75767i | 1.85712 | − | 1.14988i | 0.0302228 | − | 0.0729644i | 7.74549 | − | 1.08045i | −4.13565 | + | 6.67930i | −9.42147 | − | 3.15776i |
See next 80 embeddings (of 4352 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
409.n | odd | 136 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 409.3.n.a | ✓ | 4352 |
409.n | odd | 136 | 1 | inner | 409.3.n.a | ✓ | 4352 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
409.3.n.a | ✓ | 4352 | 1.a | even | 1 | 1 | trivial |
409.3.n.a | ✓ | 4352 | 409.n | odd | 136 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(409, [\chi])\).