Newspace parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.m (of order \(102\), degree \(32\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.26588144267\) |
Analytic rank: | \(0\) |
Dimension: | \(1056\) |
Relative dimension: | \(33\) over \(\Q(\zeta_{102})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{102}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.71461 | + | 0.336142i | 0.641913 | − | 2.93106i | 5.31655 | − | 1.33717i | −1.78410 | + | 3.58296i | −0.757292 | + | 8.17248i | 1.56632 | − | 0.904315i | −8.88163 | + | 3.44076i | −5.45368 | − | 2.50909i | 3.63877 | − | 10.3261i |
4.2 | −2.59763 | + | 0.321657i | −0.362240 | + | 1.65404i | 4.70464 | − | 1.18327i | 0.734587 | − | 1.47525i | 0.408934 | − | 4.41310i | −1.81212 | + | 1.04623i | −6.95890 | + | 2.69589i | 0.120770 | + | 0.0555630i | −1.43366 | + | 4.06844i |
4.3 | −2.44555 | + | 0.302825i | 0.203668 | − | 0.929975i | 3.94943 | − | 0.993322i | 0.799625 | − | 1.60586i | −0.216460 | + | 2.33598i | 2.44108 | − | 1.40936i | −4.76209 | + | 1.84484i | 1.90202 | + | 0.875070i | −1.46923 | + | 4.16937i |
4.4 | −2.44024 | + | 0.302168i | −0.527261 | + | 2.40755i | 3.92389 | − | 0.986898i | −1.22273 | + | 2.45557i | 0.559162 | − | 6.03432i | 1.16589 | − | 0.673128i | −4.69136 | + | 1.81744i | −2.79288 | − | 1.28493i | 2.24176 | − | 6.36166i |
4.5 | −2.38232 | + | 0.294995i | 0.583884 | − | 2.66609i | 3.64884 | − | 0.917721i | 1.56697 | − | 3.14691i | −0.604514 | + | 6.52374i | −3.39230 | + | 1.95855i | −3.94517 | + | 1.52837i | −4.04174 | − | 1.85950i | −2.80471 | + | 7.95920i |
4.6 | −2.01647 | + | 0.249693i | 0.0951539 | − | 0.434486i | 2.06420 | − | 0.519168i | −0.964566 | + | 1.93711i | −0.0833868 | + | 0.899887i | −1.20954 | + | 0.698327i | −0.243446 | + | 0.0943116i | 2.54567 | + | 1.17119i | 1.46133 | − | 4.14696i |
4.7 | −1.81839 | + | 0.225166i | 0.0538242 | − | 0.245769i | 1.31626 | − | 0.331054i | −0.121124 | + | 0.243249i | −0.0425349 | + | 0.459024i | 3.86720 | − | 2.23273i | 1.09816 | − | 0.425430i | 2.66789 | + | 1.22742i | 0.165479 | − | 0.469596i |
4.8 | −1.62587 | + | 0.201326i | 0.446735 | − | 2.03985i | 0.663313 | − | 0.166830i | −0.650392 | + | 1.30616i | −0.315655 | + | 3.40647i | −1.92598 | + | 1.11196i | 2.01044 | − | 0.778847i | −1.23603 | − | 0.568664i | 0.794486 | − | 2.25459i |
4.9 | −1.52819 | + | 0.189231i | −0.292770 | + | 1.33683i | 0.359969 | − | 0.0905358i | 1.10345 | − | 2.21603i | 0.194439 | − | 2.09833i | −2.32698 | + | 1.34348i | 2.33879 | − | 0.906052i | 1.02400 | + | 0.471117i | −1.26695 | + | 3.59533i |
4.10 | −1.36768 | + | 0.169355i | −0.738030 | + | 3.36995i | −0.0977346 | + | 0.0245812i | −0.477318 | + | 0.958584i | 0.438669 | − | 4.73399i | −3.78786 | + | 2.18692i | 2.69963 | − | 1.04584i | −8.08647 | − | 3.72037i | 0.490476 | − | 1.39187i |
4.11 | −1.12461 | + | 0.139257i | 0.660209 | − | 3.01461i | −0.694241 | + | 0.174609i | 0.846864 | − | 1.70073i | −0.322672 | + | 3.48219i | 3.49702 | − | 2.01900i | 2.86979 | − | 1.11176i | −5.92657 | − | 2.72666i | −0.715552 | + | 2.03059i |
4.12 | −1.09959 | + | 0.136159i | −0.601511 | + | 2.74659i | −0.749037 | + | 0.188390i | 0.354399 | − | 0.711729i | 0.287444 | − | 3.10202i | 3.88313 | − | 2.24192i | 2.86432 | − | 1.10964i | −4.45652 | − | 2.05032i | −0.292785 | + | 0.830864i |
4.13 | −1.09740 | + | 0.135888i | 0.168622 | − | 0.769951i | −0.753764 | + | 0.189579i | 1.14792 | − | 2.30534i | −0.0804192 | + | 0.867861i | −2.29327 | + | 1.32402i | 2.86365 | − | 1.10938i | 2.16100 | + | 0.994220i | −0.946468 | + | 2.68588i |
4.14 | −0.660303 | + | 0.0817632i | −0.201422 | + | 0.919720i | −1.51028 | + | 0.379850i | 0.0742276 | − | 0.149069i | 0.0578001 | − | 0.623763i | 1.49636 | − | 0.863923i | 2.20702 | − | 0.855003i | 1.92008 | + | 0.883378i | −0.0368243 | + | 0.104500i |
4.15 | −0.577700 | + | 0.0715348i | −0.295059 | + | 1.34728i | −1.61097 | + | 0.405176i | −1.46049 | + | 2.93305i | 0.0740781 | − | 0.799430i | −1.41038 | + | 0.814285i | 1.98728 | − | 0.769877i | 0.997297 | + | 0.458829i | 0.633907 | − | 1.79890i |
4.16 | −0.382682 | + | 0.0473863i | 0.393250 | − | 1.79563i | −1.79539 | + | 0.451560i | −1.01508 | + | 2.03855i | −0.0654011 | + | 0.705791i | −0.224957 | + | 0.129879i | 1.38480 | − | 0.536473i | −0.344257 | − | 0.158383i | 0.291852 | − | 0.828215i |
4.17 | −0.0467833 | + | 0.00579302i | 0.297826 | − | 1.35991i | −1.93744 | + | 0.487285i | 1.58600 | − | 3.18511i | −0.00605525 | + | 0.0653466i | 2.56040 | − | 1.47825i | 0.175731 | − | 0.0680787i | 0.964728 | + | 0.443845i | −0.0557467 | + | 0.158198i |
4.18 | 0.275196 | − | 0.0340767i | 0.564527 | − | 2.57771i | −1.86502 | + | 0.469072i | −0.964382 | + | 1.93674i | 0.0675159 | − | 0.728612i | −0.713507 | + | 0.411944i | −1.01441 | + | 0.392984i | −3.60049 | − | 1.65649i | −0.199397 | + | 0.565847i |
4.19 | 0.430306 | − | 0.0532834i | −0.344272 | + | 1.57199i | −1.75727 | + | 0.441971i | 1.70873 | − | 3.43158i | −0.0643811 | + | 0.694782i | −0.624407 | + | 0.360502i | −1.54124 | + | 0.597079i | 0.372752 | + | 0.171493i | 0.552428 | − | 1.56768i |
4.20 | 0.689284 | − | 0.0853519i | 0.0642285 | − | 0.293276i | −1.47177 | + | 0.370164i | −0.212539 | + | 0.426836i | 0.0192400 | − | 0.207633i | 2.30590 | − | 1.33131i | −2.27817 | + | 0.882566i | 2.64351 | + | 1.21621i | −0.110069 | + | 0.312352i |
See next 80 embeddings (of 1056 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
409.m | even | 102 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 409.2.m.a | ✓ | 1056 |
409.m | even | 102 | 1 | inner | 409.2.m.a | ✓ | 1056 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
409.2.m.a | ✓ | 1056 | 1.a | even | 1 | 1 | trivial |
409.2.m.a | ✓ | 1056 | 409.m | even | 102 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(409, [\chi])\).