Newspace parameters
Level: | \( N \) | \(=\) | \( 409 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 409.j (of order \(34\), degree \(16\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.26588144267\) |
Analytic rank: | \(0\) |
Dimension: | \(512\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{34})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{34}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 | −2.51626 | + | 0.974803i | −1.98811 | + | 2.63269i | 3.90328 | − | 3.55831i | 1.78186 | − | 0.333087i | 2.43625 | − | 8.56254i | − | 2.19975i | −3.94738 | + | 7.92740i | −2.15746 | − | 7.58270i | −4.15892 | + | 2.57509i | |
64.2 | −2.36165 | + | 0.914908i | −0.527400 | + | 0.698390i | 3.26232 | − | 2.97399i | −2.65297 | + | 0.495926i | 0.606571 | − | 2.13188i | 2.86569i | −2.72569 | + | 5.47393i | 0.611391 | + | 2.14882i | 5.81166 | − | 3.59843i | ||
64.3 | −2.31215 | + | 0.895732i | −0.0552629 | + | 0.0731799i | 3.06569 | − | 2.79474i | 2.34376 | − | 0.438125i | 0.0622265 | − | 0.218704i | − | 0.578751i | −2.37449 | + | 4.76862i | 0.818688 | + | 2.87739i | −5.02669 | + | 3.11240i | |
64.4 | −2.10908 | + | 0.817061i | 0.641756 | − | 0.849822i | 2.30260 | − | 2.09910i | −1.89686 | + | 0.354584i | −0.659157 | + | 2.31670i | − | 5.06839i | −1.12492 | + | 2.25915i | 0.510642 | + | 1.79472i | 3.71091 | − | 2.29770i | |
64.5 | −1.93089 | + | 0.748031i | 1.48697 | − | 1.96907i | 1.69077 | − | 1.54134i | −1.05732 | + | 0.197648i | −1.39826 | + | 4.91436i | 1.01192i | −0.265723 | + | 0.533644i | −0.845160 | − | 2.97043i | 1.89373 | − | 1.17255i | ||
64.6 | −1.73754 | + | 0.673128i | 1.84458 | − | 2.44262i | 1.08794 | − | 0.991789i | 3.58534 | − | 0.670216i | −1.56085 | + | 5.48581i | − | 2.17800i | 0.438410 | − | 0.880446i | −1.74293 | − | 6.12578i | −5.77854 | + | 3.57792i | |
64.7 | −1.68032 | + | 0.650958i | −1.10732 | + | 1.46632i | 0.921699 | − | 0.840240i | 1.04292 | − | 0.194955i | 0.906126 | − | 3.18470i | 0.706453i | 0.604657 | − | 1.21432i | −0.102966 | − | 0.361886i | −1.62553 | + | 1.00648i | ||
64.8 | −1.61114 | + | 0.624159i | −1.75835 | + | 2.32844i | 0.728183 | − | 0.663826i | −2.61321 | + | 0.488494i | 1.37964 | − | 4.84893i | 0.331347i | 0.781437 | − | 1.56934i | −1.50882 | − | 5.30295i | 3.90536 | − | 2.41809i | ||
64.9 | −1.38122 | + | 0.535088i | 0.903233 | − | 1.19607i | 0.143433 | − | 0.130756i | 0.194887 | − | 0.0364307i | −0.607560 | + | 2.13535i | 4.67077i | 1.19235 | − | 2.39456i | 0.206226 | + | 0.724809i | −0.249688 | + | 0.154600i | ||
64.10 | −1.15769 | + | 0.448492i | −1.33116 | + | 1.76274i | −0.338915 | + | 0.308961i | 3.26993 | − | 0.611255i | 0.750495 | − | 2.63772i | 5.08626i | 1.36059 | − | 2.73242i | −0.514272 | − | 1.80748i | −3.51142 | + | 2.17418i | ||
64.11 | −1.13351 | + | 0.439126i | −0.140594 | + | 0.186177i | −0.385994 | + | 0.351880i | −0.776111 | + | 0.145080i | 0.0776107 | − | 0.272773i | − | 1.96808i | 1.36669 | − | 2.74468i | 0.806094 | + | 2.83313i | 0.816025 | − | 0.505261i | |
64.12 | −0.673140 | + | 0.260776i | 0.685945 | − | 0.908338i | −1.09290 | + | 0.996314i | 2.63797 | − | 0.493122i | −0.224864 | + | 0.790317i | − | 1.09699i | 1.11941 | − | 2.24808i | 0.466432 | + | 1.63934i | −1.64713 | + | 1.01986i | |
64.13 | −0.627577 | + | 0.243125i | 1.85147 | − | 2.45174i | −1.14327 | + | 1.04223i | −2.05362 | + | 0.383888i | −0.565861 | + | 1.98879i | − | 0.753508i | 1.06409 | − | 2.13697i | −1.76211 | − | 6.19316i | 1.19547 | − | 0.740206i | |
64.14 | −0.592730 | + | 0.229625i | 0.225892 | − | 0.299130i | −1.17942 | + | 1.07518i | −3.62989 | + | 0.678544i | −0.0652055 | + | 0.229174i | − | 1.54949i | 1.01886 | − | 2.04614i | 0.782538 | + | 2.75033i | 1.99574 | − | 1.23571i | |
64.15 | −0.447123 | + | 0.173216i | −1.70817 | + | 2.26198i | −1.30810 | + | 1.19249i | 3.21793 | − | 0.601535i | 0.371948 | − | 1.30726i | − | 4.70612i | 0.805788 | − | 1.61824i | −1.37772 | − | 4.84219i | −1.33461 | + | 0.826357i | |
64.16 | −0.140619 | + | 0.0544762i | −0.638343 | + | 0.845302i | −1.46121 | + | 1.33207i | 1.10200 | − | 0.205999i | 0.0437144 | − | 0.153640i | 0.848915i | 0.267345 | − | 0.536902i | 0.513934 | + | 1.80629i | −0.143740 | + | 0.0890001i | ||
64.17 | 0.0629738 | − | 0.0243962i | −1.54025 | + | 2.03962i | −1.47465 | + | 1.34432i | −2.58595 | + | 0.483398i | −0.0472364 | + | 0.166019i | 3.05952i | −0.120273 | + | 0.241541i | −0.966689 | − | 3.39756i | −0.151054 | + | 0.0935287i | ||
64.18 | 0.0965931 | − | 0.0374204i | −1.37988 | + | 1.82726i | −1.47009 | + | 1.34016i | −1.91105 | + | 0.357238i | −0.0649104 | + | 0.228137i | − | 4.66124i | −0.184197 | + | 0.369918i | −0.613815 | − | 2.15734i | −0.171227 | + | 0.106019i | |
64.19 | 0.182521 | − | 0.0707092i | 1.16489 | − | 1.54257i | −1.44970 | + | 1.32158i | −2.32205 | + | 0.434067i | 0.103544 | − | 0.363920i | 3.16183i | −0.345651 | + | 0.694161i | −0.201551 | − | 0.708377i | −0.393132 | + | 0.243417i | ||
64.20 | 0.568337 | − | 0.220175i | 0.666600 | − | 0.882721i | −1.20349 | + | 1.09712i | 4.10071 | − | 0.766555i | 0.184500 | − | 0.648452i | 2.73732i | −0.985778 | + | 1.97971i | 0.486148 | + | 1.70863i | 2.16181 | − | 1.33853i | ||
See next 80 embeddings (of 512 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
409.j | even | 34 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 409.2.j.a | ✓ | 512 |
409.j | even | 34 | 1 | inner | 409.2.j.a | ✓ | 512 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
409.2.j.a | ✓ | 512 | 1.a | even | 1 | 1 | trivial |
409.2.j.a | ✓ | 512 | 409.j | even | 34 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(409, [\chi])\).