Properties

Label 409.2.j.a
Level $409$
Weight $2$
Character orbit 409.j
Analytic conductor $3.266$
Analytic rank $0$
Dimension $512$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [409,2,Mod(64,409)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(409, base_ring=CyclotomicField(34)) chi = DirichletCharacter(H, H._module([7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("409.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 409 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 409.j (of order \(34\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.26588144267\)
Analytic rank: \(0\)
Dimension: \(512\)
Relative dimension: \(32\) over \(\Q(\zeta_{34})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{34}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 512 q - 15 q^{2} - 15 q^{3} - 73 q^{4} - 17 q^{5} + 17 q^{6} - 5 q^{8} - 31 q^{9} - 27 q^{10} + 34 q^{11} + 40 q^{12} - 17 q^{13} + 17 q^{14} - 13 q^{15} - 53 q^{16} - 9 q^{17} - 4 q^{18} - 17 q^{19} - 21 q^{20}+ \cdots + 187 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1 −2.51626 + 0.974803i −1.98811 + 2.63269i 3.90328 3.55831i 1.78186 0.333087i 2.43625 8.56254i 2.19975i −3.94738 + 7.92740i −2.15746 7.58270i −4.15892 + 2.57509i
64.2 −2.36165 + 0.914908i −0.527400 + 0.698390i 3.26232 2.97399i −2.65297 + 0.495926i 0.606571 2.13188i 2.86569i −2.72569 + 5.47393i 0.611391 + 2.14882i 5.81166 3.59843i
64.3 −2.31215 + 0.895732i −0.0552629 + 0.0731799i 3.06569 2.79474i 2.34376 0.438125i 0.0622265 0.218704i 0.578751i −2.37449 + 4.76862i 0.818688 + 2.87739i −5.02669 + 3.11240i
64.4 −2.10908 + 0.817061i 0.641756 0.849822i 2.30260 2.09910i −1.89686 + 0.354584i −0.659157 + 2.31670i 5.06839i −1.12492 + 2.25915i 0.510642 + 1.79472i 3.71091 2.29770i
64.5 −1.93089 + 0.748031i 1.48697 1.96907i 1.69077 1.54134i −1.05732 + 0.197648i −1.39826 + 4.91436i 1.01192i −0.265723 + 0.533644i −0.845160 2.97043i 1.89373 1.17255i
64.6 −1.73754 + 0.673128i 1.84458 2.44262i 1.08794 0.991789i 3.58534 0.670216i −1.56085 + 5.48581i 2.17800i 0.438410 0.880446i −1.74293 6.12578i −5.77854 + 3.57792i
64.7 −1.68032 + 0.650958i −1.10732 + 1.46632i 0.921699 0.840240i 1.04292 0.194955i 0.906126 3.18470i 0.706453i 0.604657 1.21432i −0.102966 0.361886i −1.62553 + 1.00648i
64.8 −1.61114 + 0.624159i −1.75835 + 2.32844i 0.728183 0.663826i −2.61321 + 0.488494i 1.37964 4.84893i 0.331347i 0.781437 1.56934i −1.50882 5.30295i 3.90536 2.41809i
64.9 −1.38122 + 0.535088i 0.903233 1.19607i 0.143433 0.130756i 0.194887 0.0364307i −0.607560 + 2.13535i 4.67077i 1.19235 2.39456i 0.206226 + 0.724809i −0.249688 + 0.154600i
64.10 −1.15769 + 0.448492i −1.33116 + 1.76274i −0.338915 + 0.308961i 3.26993 0.611255i 0.750495 2.63772i 5.08626i 1.36059 2.73242i −0.514272 1.80748i −3.51142 + 2.17418i
64.11 −1.13351 + 0.439126i −0.140594 + 0.186177i −0.385994 + 0.351880i −0.776111 + 0.145080i 0.0776107 0.272773i 1.96808i 1.36669 2.74468i 0.806094 + 2.83313i 0.816025 0.505261i
64.12 −0.673140 + 0.260776i 0.685945 0.908338i −1.09290 + 0.996314i 2.63797 0.493122i −0.224864 + 0.790317i 1.09699i 1.11941 2.24808i 0.466432 + 1.63934i −1.64713 + 1.01986i
64.13 −0.627577 + 0.243125i 1.85147 2.45174i −1.14327 + 1.04223i −2.05362 + 0.383888i −0.565861 + 1.98879i 0.753508i 1.06409 2.13697i −1.76211 6.19316i 1.19547 0.740206i
64.14 −0.592730 + 0.229625i 0.225892 0.299130i −1.17942 + 1.07518i −3.62989 + 0.678544i −0.0652055 + 0.229174i 1.54949i 1.01886 2.04614i 0.782538 + 2.75033i 1.99574 1.23571i
64.15 −0.447123 + 0.173216i −1.70817 + 2.26198i −1.30810 + 1.19249i 3.21793 0.601535i 0.371948 1.30726i 4.70612i 0.805788 1.61824i −1.37772 4.84219i −1.33461 + 0.826357i
64.16 −0.140619 + 0.0544762i −0.638343 + 0.845302i −1.46121 + 1.33207i 1.10200 0.205999i 0.0437144 0.153640i 0.848915i 0.267345 0.536902i 0.513934 + 1.80629i −0.143740 + 0.0890001i
64.17 0.0629738 0.0243962i −1.54025 + 2.03962i −1.47465 + 1.34432i −2.58595 + 0.483398i −0.0472364 + 0.166019i 3.05952i −0.120273 + 0.241541i −0.966689 3.39756i −0.151054 + 0.0935287i
64.18 0.0965931 0.0374204i −1.37988 + 1.82726i −1.47009 + 1.34016i −1.91105 + 0.357238i −0.0649104 + 0.228137i 4.66124i −0.184197 + 0.369918i −0.613815 2.15734i −0.171227 + 0.106019i
64.19 0.182521 0.0707092i 1.16489 1.54257i −1.44970 + 1.32158i −2.32205 + 0.434067i 0.103544 0.363920i 3.16183i −0.345651 + 0.694161i −0.201551 0.708377i −0.393132 + 0.243417i
64.20 0.568337 0.220175i 0.666600 0.882721i −1.20349 + 1.09712i 4.10071 0.766555i 0.184500 0.648452i 2.73732i −0.985778 + 1.97971i 0.486148 + 1.70863i 2.16181 1.33853i
See next 80 embeddings (of 512 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
409.j even 34 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 409.2.j.a 512
409.j even 34 1 inner 409.2.j.a 512
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
409.2.j.a 512 1.a even 1 1 trivial
409.2.j.a 512 409.j even 34 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(409, [\chi])\).